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Differential Network (DN) analysis is a method that has long been used to

interpret changes in gene expression data and provide biological insights.

The method identifies the rewiring of gene networks in response to external

perturbations. Our study applies the DN method to the analysis of RNA-

sequencing (RNA-seq) time series datasets. We focus on expression

changes: (i) in saliva of a human subject after pneumococcal vaccination

(PPSV23) and (ii) in primary B cells treated ex vivo with a monoclonal

antibody drug (Rituximab). The DN method enabled us to identify the

activation of biological pathways consistent with the mechanisms of

action of the PPSV23 vaccine and target pathways of Rituximab. The

community detection algorithm on the DN revealed clusters of genes

characterized by collective temporal behavior. All saliva and some B cell

DN communities showed characteristic time signatures, outlining a

chronological order in pathway activation in response to the

perturbation. Moreover, we identified early and delayed responses within

network modules in the saliva dataset and three temporal patterns in the

B cell data.
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1 Introduction

Network-based analysis, in particular, Differential Network (DN) analysis methods,

have been very useful in analyzing the dynamics of gene expression under the effect of an

external perturbation Ideker and Krogan (2012); Bandyopadhyay et al. (2010). DN

analysis is a method based on the subtraction of one network from another and has

been used inmany genomics studies in the past decade Ha et al. (2015); Hsiao et al. (2016);

Mitra et al. (2013). In a gene-gene correlation network (co-expression network), vertices

represent genes while edges represent significant correlation of the expression of two
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genes Zhang and Horvath (2005). Typically, these co-expression

networks are weighted by the strength and the sign of the

correlation between two genes. The DN analysis method uses

a pairwise cancellation of nodes and edges common to two

networks that describe the expression data before and after a

given perturbation. In doing so, the process leaves behind

interaction variations that describe the network rewiring

induced by the perturbation. For instance, in gene expression

studies, DN analysis has been successfully implemented to

separate gene expressions under specific drug responses from

generic stress responses Cabusora et al. (2005). It also aided

researchers in investigating dysfunctional gene regulatory

networks in unhealthy states, providing insights into the

genetic basis of diseases de la Fuente (2010). By focusing on

the structural difference between two networks, the effectiveness

of DN analysis has been demonstrated in identifying biological

activities in different states.

When DN analysis is built from longitudinal gene expression

data, there is also the opportunity to map the DN structure to key

time-resolved features of the gene expression response to

perturbations. For instance, identifying clusters of genes with

common time activation and their temporal ordering. In the

present study, we applied such a DN approach to RNA-

sequencing (RNA-seq) time series datasets retrieved from two

longitudinal RNA-seq experiments: (i) The first dataset

(GSE108664) was generated from saliva samples from a

healthy individual before and after the administration of the

Pneumococcal Polysaccharide Vaccine (PPSV23) Mias et al.

(2021). The primary goal of this study was to gain insights

into the adaptive immune responses to PPSV23 through saliva

profiling. Due to its convenience in processing relative to blood

samples, saliva draws much interest for diagnostics as well as

health monitoring applications. Saliva analysis can produce

results in a timely manner, its collection is minimally invasive,

and little training is required for saliva sampling, even for non-

medically trained professionals. (ii) The second dataset

(GSE100441) was generated from a time course experiment

on primary B cells, where one set was treated with Rituximab

and another used as an untreated control. Rituximab is known

for its therapeutic use in targeting B cells Edwards et al. (2004) to

treat cancers such as lymphomas and leukemias. This drug has a

history of safe and effective usage since 1997 Bosch et al. (2014),

and the World Health Organization (WHO) place Rituximab on

their list of essential medicines World Health Organization

(2021). Rituximab binds with CD20, expressed on pre-B and

mature B cells, but not on stem cells, early pro-B or normal

plasma cells Shaw et al. (2003). The binding causes perturbations

to intracellular signaling and membrane structure Johnson and

Glennie (2003), mediating the cell depletion. It is worthwhile

mentioning that the B cell pathways of Rituximab activation have

been experimentally validated Clynes et al. (2000); Jazirehi et al.

(2003, 2005); Vega et al. (2005), and can be compared to the

pathways identified by the DN method. Both the saliva and

primary B cell experiments involve drug-treated samples

(treatment sets) and untreated samples (control sets)

monitored over time.

For both datasets, we started with building gene networks,

one for each of the control and the treatment sets. We used gene-

gene correlations between time series signals, over 24 h in saliva

and 15 h in B cells, to evaluate pairwise gene connections.

Graphically, the time series correlation networks built from

the treatment sets summarized a system-wide pathway

activation due to the perturbation, whereas the networks from

the controls sets acted as the baseline. Within the DN analysis

framework, we subtracted the baseline network from the one

obtained using the treatment data, arriving at the final differential

network.

The presence of modules, also known as communities,

describes a topological property of networks Girvan and

Newman (2002); Newman (2006); Fortunato (2010); Porter

et al. (2009). One community is a group of densely connected

nodes. In the context of a biological system, nodes in the same

community are assumed to be close in biological functions

Hartwell et al. (1999); Rives and Galitski (2003); Gulbahce

and Lehmann (2008); Han (2008); Calderer and Kuijjer

(2021). We exploited this property of the differential network

to observe fine details of gene groups affected by the perturbation.

That is, we employed one of the most established module

detection algorithms, the Louvain method Blondel et al.

(2008), to identify communities in our final differential

network. We further explored communities by clustering

heatmap and pathway enrichment analysis. The clustering

heatmaps enabled us to characterize communities by their

unique temporal patterns. Additionally, we identified early

(and late) responding communities to perturbations and

arrived at a sequential activation order for specifically the

saliva DN communities. Lastly, we performed Reactome Croft

et al. (2010) pathway enrichment analysis on individual

communities and annotated the results with hub genes (based

on DN centrality).

Our investigation extends applications of DN to gene

expression time series that include perturbative activation. The

two DN applications, and particularly the community-wide

investigations provide further biological insight in gene

expression changes in both Rituximab treatment, as well as

pneumococcal vaccination. Specifically, each of the three

investigations on DN communities provided unique

perspectives on the biological response to perturbations: (i)

Using our heatmap analyses, we found that each DN

community can have its own temporal pattern and be used as

a categorization of time-resolved gene activation. (ii) Using

community enrichment, we determined the associations

between the activated biological pathways and their gene

clusters (communities). Combined with the community

temporal patterns, our results provide a chronological order of

pathway activations, and show how these may be obtained
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through a DN application. (iii) Lastly, our community hub

analysis gave further insights into the biological functionality

of individual genes in a community. These include, for example,

the presence of the hub gene IL4R in one of the saliva DN

communities, which suggests that the respective cluster of genes

collectively activated T cells in response to the PPSV23 vaccine,

and may explain a fever event in the experimental subject.

Likewise, the presence of the hub gene PELI, known to be an

oncogene in lymphomagenesis, in one of the B cell DN

communities suggests that the entire community participates

in the B cell response to Rituximab. Additional findings are

summarized in the results below, and illustrate the utility of

extending DN analyses to investigate time-resolved gene

expression changes induced by drug and vaccine treatments.

2 Materials and methods

2.1 Data acquisition

Data for this investigation were obtained from Gene

Expression Omnibus (GEO) for two time series studies using

RNA-seq experiments, on Saliva (accession GSE108664) and

Rituximab (GSE100441). Both sets of data are further

described below. The raw RNA-seq data were mapped using

Kallisto Bray et al. (2016), with bootstrap sample parameter, -b,

was set to 100. GENCODE Harrow et al. (2012) v28 transcripts

and genome built GRCh38.p12 were used for annotation. We

used Sleuth Pimentel et al. (2017)(with DESeq Anders and Huber

(2010) adjustment of Transcripts per Million) to compile results

across timepoints.

The saliva dataset was obtained from our previous study of

immune responses to the PPSV23 vaccine (GSE108664) Mias

et al. (2021). In this study, hourly saliva samples were collected

from a healthy individual over two 24 h periods and profiled with

RNA-seq every hour. The first 24 h period provides a baseline

RNA expression dataset, which we call untreated data. In the

second 24 h period, the same individual was monitored after

receiving the PPSV23 vaccine. Saliva samples were again

collected hourly over 24 h and profiled by RNA-seq. This

second step yielded the RNA expression dataset after the

PPSV23 vaccination. We call these data the treated dataset.

Both treated and untreated datasets have 24 time points of

84,647 possible expression signals using GENCODE

annotation Harrow et al. (2012). We note that all data

obtained were made publicly available by the original authors,

Mias et al.Mias et al. (2021), as described therein (Michigan State

University Institutional Review Board Protocol LEGACY15-071

[15–071]), and no additional institutional review board

approvals were required for this investigation.

The perturbation in the primary B cell experiment was

Rituximab, a monoclonal antibody drug used in the treatment

of different types of lymphomas and leukemias. The

experimental study (data from GSE100441) began by

culturing in parallel primary B cells with and without

Rituximab. During the 15 h of Rituximab treatment, the

treated and untreated primary B cells were both sampled at

the same six time points simultaneously and profiled by RNA-

seq. The untreated group provided a baseline, which we call

untreated data, whereas the treated experiment produced the

treated dataset. Since this study included a replicated experiment,

each of the first and second duplicates was processed to generate

a separate network.

2.2 Data preprocessing

For quality control, we pre-processed the experimental data

and filtered signals with multiple missing points right after

importing the published data files. We coded all the data

analysis in Python in this study. Using Python’s pandas

package The Pandas development team (2020), McKinney

(2010), we checked for missing values for each gene’s

expression, removing duplicate records and eliminating genes

with constant values across all the 24 time points for the saliva

dataset (6 time points for the B cell datasets).

We replaced missing signals with zero and also set values less

than 1 to 1. Genes with zero variance in their time series were

excluded from our analysis. Moreover, we considered a gene

signal as sparse and removed it if its time series had missing

values for more than 1/8 of the time points. The same quality

control procedure was used for both the saliva and primary B cell

datasets.

2.3 Gene selection

After quality control, we further processed the data to pre-

screen and identify a pool of candidate genes that showed

response to the perturbations (vaccine in the saliva and

Rituximab in the B cell). We selected genes that are highly

expressed in both untreated and treated cases. Our goal with

the differential networks was to identify genes that displayed

notable changes. Hence the cutoffs were selected to exclude

constant signals, and signals with moderate changes when

comparing corresponding paired timepoints. For each of these

genes, we calculated the time-averaged relative difference

between treated and untreated normalized intensities, ΔTU:

ΔTU � 1
N

∑
i

Ti − Ui

Ti + Ui
(1)

where Ti is the expression value at time i in the treated dataset, Ui

is the expression value at time i in the untreated dataset, and N is

the total number of time points. This calculation yielded a ΔTU

distribution curve, from which we computed the lower and upper

quartiles. As our goal was to identify time-resolved changes,

Frontiers in Genetics frontiersin.org03

Xue et al. 10.3389/fgene.2022.1026487

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1026487


genes were selected if their ΔTUs were within the bottom 25% or

top 25% of the ΔTU distribution respectively. The Python Pandas

package was used for all the above computations The Pandas

development team (2020), McKinney (2010).

2.4 Co-expression networks construction

After gene selection, we calculated their pairwise Pearson

correlation coefficients and built the co-expression networks.

Genes were represented as nodes and were joined by edges if

there was a non-zero correlation between them. We used the co-

expression coefficient as a weight for each edge. In the layout

representation of the networks, the node-node distance reflects

their correlation coefficients. Two genes are nearby if they have a

high positive correlation. They are far apart when they have a low

positive correlation or remote if negatively correlated. We used

Python’s open source Networkx package Hagberg et al. (2008) for

network visualization and calculation of the network metrics.

We constructed the network with edges in the 99.5% quantile

of the correlation distribution, and excluding singletons. The

one-sided quantile cutoff essentially selects for positive

correlations and is consistent with our modularity-based

community analysis discussed further below. For the saliva

data, we built one treated and one untreated network. Since

we have data from two repeated experiments for B-cells, we built

two networks for the Rituximab treatment and two networks for

the untreated control. Then, we took the intersections between

the two networks corresponding to the repeats to obtain a single

Rituximab-treated network and one single control network.

2.5 Differential networks construction

We defined the DN as the control network subtracted from the

treated networks both for the saliva and B cell cases. In the

subtraction, we remove an edge if that edge appears both in the

treated and untreated networks. Edges appearing only in the treated

network and absent in the untreated are kept in the differential

network. Edges appearing only in the untreated network are not

included. Isolated nodes left after this procedure are discarded. We

analyzed the DN’s structure using modularity Girvan and Newman

(2002); Newman (2006), as complex biological networks usually

display a high degree of modularity Hartwell et al. (1999).

Modularity is a measure to quantify relative edge densities from

within the communities in comparison with those outsides. We

utilized the Louvain community detection method Blondel et al.

(2008), as implemented in a published Python package Bonald et al.

(2020), a greedy algorithm formodularitymaximization, to partition

the entire DN into smaller clusters, also known as communities. The

algorithm consists of two stages: first, individual nodes are joined

into communities to achieve local maximum modularity; second,

nodes within the same community are aggregated to form a new

network where the node-assignment procedure is repeated until the

modularity no longer increases. This graph clustering algorithm is

not deterministic and can therefore result in slightly different

partitions for the same graph. The partition yielded a few major

components and many tiny communities of fewer than five genes,

disconnected from the central islands. We pruned out these small

communities from the DN. We found that the majority of our

communities with a low number of genes yield no significant

enrichment Reimand et al. (2019); Gene Set Enrichment Analysis

(2022).

2.6 Community specific time-resolved
analysis

In order to investigate the time-resolved response present

within the communities, we applied clustering heatmaps to each

of the DN communities. For genes in the same community, we

first retrieved their treated and untreated expressions, then

normalized each time series by subtracting individual time

points from the time 0, followed by normalization with the

Euclidean norm, for both expressions. We then took the

difference between the normalized treated and untreated time

series. Finally, we dendrogram-clustered these series (rows) with

the complete-linkage method (Farthest Point Algorithm) Defays

(1977); Hartigan (1985). The same procedure was repeated in all

communities, and each delivered a clustering heatmap.

As the heatmaps rendered distinctive time-resolved responses in

each community, we identified communities that responded quickly

to perturbations and those that responded slowly. In particular, we

characterized saliva communities by their peak times and arranged

them in temporal order. We did not obtain an order for the B cell

communities, as the B cell heatmaps did not show dominant peak

times. However, we were still able to characterize B cell communities

based on 3 distinguishable temporal pattern categories.

2.7 Pathway enrichment

We conducted Reactome Enrichment Analysis Croft et al. (2010)

on each community to identify over-represented biological pathways

within each community, using the Python package PyIOmica

Domanskyi et al. (2020). As the majority of our communities with

a low number of genes yield no significant enrichment, we focused on

results for communities with 8 or more genes Reimand et al. (2019);

Gene Set Enrichment Analysis (2022).

2.8 Community hub identification

Hubs are a typical feature in network topology. Visually, hubs

represent highly connected nodes in a network. However, global

connectivity differs from the regional structures. We isolated each
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community and identified localized hubs, only considering the

communities rather than the global DN in our calculations. We

adopted the standard Degree Centrality (DC) algorithm (which has

been integrated with the Python networkx package) and identified

the genes with the top five DC values as the community hub genes.

We examined these hubs using functional annotations (such as

pathway and memberships, including from GeneCards Suite Stelzer

et al. (2016)) to evaluate if their biological properties could

potentially elucidate the more general functionality of the module

of their membership.

2.9 Results formatting and visualization

We stored the DN nodes and edges, communities, and

pathway enrichment analyses into spreadsheets that are

provided in the Online Data Files (ODFs) both for the saliva

and B cell data. Using Mathematica Wolfram Research, Inc.

(2021), we visualized the saliva and B cell DNs with their major

connected components and communities.

3 Results

Our RNA-seq time series raw data were retrieved from the Gene

Expression Omnibus (GEO) database under accessions

GSE108664 and GSE100441 for the saliva and B cell experiments,

respectively. The study of the immune response to the

PPSV23 vaccine in saliva probed the expression of a potential

84,647 gene identifiers (GENCODE annotation Harrow et al.

(2012)) at 24 time points Mias et al. (2021). The other study of

drug activation byRituximab inB cells provided a dataset for six time

points. Since gene co-expression networks rely on correlations, our

network analysis could be prone to spurious correlations, which we

removed as described in the Methods section.

We constructed our saliva DN by subtracting the saliva network

without vaccine from the network obtained using post-vaccine data.

The B cell DN in response to Rituximab was generated in a similar

manner. Next, we clustered the DNs into communities using the

Louvain community detection method Blondel et al. (2008). We

then conducted a Reactome Enrichment Analysis Croft et al. (2010)

using PyIOmica Domanskyi et al. (2020), on each community to

identify significant pathways and associated genes. We also

visualized the heatmaps of relative gene expression as a function

of time for each community. Finally, we plotted the DNs and their

major individual communities. The workflow is summarized in

Figure 1. See the Methods section for additional details.

3.1 Saliva DN

Our saliva DN contains 1144 nodes (i.e., genes) and

13,775 edges. The Louvain algorithm identified 48 communities

(modules) in total. 15 of the communities have a size of at least four

nodes, while the remaining 33 are pairs or triplets. In the global saliva

DNvisualization, we excluded the communities with pairs or triplets,

as none of them belonged to the three major connected components

of the DN network. We also filtered the network to remove

connected components with less than four genes. The global

saliva DN is presented in Figure 2A, where communities are

visualized using different colors and encircled in loops.

Furthermore, community labels are based on their size (largest to

smallest, with C0 being the largest community, and C14 the

smallest).

3.2 Saliva communities temporal
visualization

We further visualized each community’s change over time

with heatmaps within the DN network. This is shown for C0 and

C1 in Figure 2C. Here, each row denotes a gene, while each

column corresponds to a time point (pre and post vaccination).

The values plotted in the heatmaps are rescaled gene expression

differences between the treated data and the control, and indicate

the expression at the particular time point relative to the first time

point of the experiment, with rows normalized using Euclidean

norm. Red indicates up-regulated genes, blue down-regulated

genes, and white indicates unchanged expression. The

hierarchical clustering dendrograms revealed relationships

among genes at each time point based on the similarity of the

gene expressions. The prominent red columns show that genes

are upregulated together at these time points. Note that the

C0 heatmap has a pronounced peak at time point six, making C0

an early responding module, while C1 is a late responding cluster,

with a pronounced peak at time point 19, as illustrated in

Figure 2C.

Here we only show heatmaps for C0 and C1 as representative

communities. However, we provide the other communities’

heatmaps and with their corresponding Reactome pathway

analysis in the ODFs (folder “Results/SLV_results/

network_plots”). Our saliva DN has a clear pattern of mostly

discrete punctuated gene expression response times for each

community. As these punctuated response times, save for one

exception (both C0 and C11 show maximized response at t5),

are specific to each community, they reflect the biological signatures

for individual groups.Most of our salivaDN communities have only

one punctuated activation time, although C5 in the saliva DN has

3 up-regulation events at time points 15, 20, and 22 that do not

overlap with those of other communities. Between the communities,

we observed strong temporally-specific relationships. Our heatmaps

are suggestive of the presence of directional signaling between early-

activation communities and subsequent groups, with a potential

sequential activation pattern as follows: C6, C9, C8, C2, C0, and C1,

C3, C4, C10, C5, C1, and finally C5. At time points from t6 to t10,

t14, and from t16 to t18, no communities activated.
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3.3 Pathway enrichment of saliva
communities

In our pathway analysis, we queried individual communities to

investigate how their highly co-expressed genes are functionally

related. Our analysis is based on the Reactome pathway database

Croft et al. (2010); Joshi-Tope et al. (2005); Matthews et al. (2009).

Statistically significant enrichment of pathways (with False

Discovery Rate (FDR) < 0.05) was identified in six communities,

C0, C1, C2, C4, C8 and C9. The majority of statistically significant

Reactome pathways were related to response to stimulus, immune

response, and inflammatory response. Among the six communities,

C0 and C1 are the two largest communities. C0 comprises of

248 genes, colored in red in the global DN shown in Figure 2A,

whereas C1 contains 198 genes, colored in yellow in the same panel.

We display C0 and C1 in Figure 2B as representative communities.

Genes that belong to the statistically significant biological pathways are

highlighted in red in Figure 2B.

In the C0 community, the Reactome enrichment analysis

identified 15 statistically significant pathways (FDR < 0.05): (i)

three pathways for interferon signaling, (ii) three related to the

immune system, (iii) four related to antigen presentation, (iv) one

associated with ER-Phagosomes, (v) one lymphoid-related, and (vi)

three pertaining to interleukin-12 signaling. In particular, the alpha,

beta, and gamma signaling pathways all appear in the interferon

signaling pathways. The immune system pathways include one

cytokine signaling and one related to the adaptive immune

system. Among the four antigen-related pathways, two are

explicitly associated to the dependence of Class I MHC. The

Endosomal/Vacuolar pathway implies the involvement of the

Class I MHC and of the Antigen processing-Cross presentation.

Lastly, interleukin-12 plays a crucial role in the coordination of

innate and adaptive immunity Watford et al. (2003).

In the C1 community, the Reactome analysis identified

9 statistically significant pathways (FDR < 0.05). Two of

these pathways are broadly related to the immune system and

cytokine signaling. Another two pathways, the NGF-stimulated

transcription and the FOXO-mediated transcription pathways,

modulate cell survival, growth, and differentiation. In Table 1 we

have listed all the results of the Reactome pathway enrichment

analysis for C0 and C1 with FDR < 0.05.

Of the communities we observed, the C0 community exhibits the

strongest response to the stimulus and immune system, based on FDR

~ O(10−14). The complete pathway enrichment analysis for all

communities in saliva is provided in the Online Data Files (ODFs),

available on Zenodo, in the “Results/SLV_results/reactome_analysis”

folder.

3.4 B cell DN

Our B cell DN consists of 1,759 nodes (genes) and 10,421 edges

that we classified into 145 communities using the Louvain algorithm.

Similar to the saliva DN, most of these communities are small

FIGURE 1
Workflow Overview. Our methodology starts with time course experimental data, followed by network construction, differential network
determination, community detection, sequential ordering by activation pattern, pathway analyses of individual communities, community hub gene
interpretation, and final results including analyses and temporal trend visualizations.
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clusters on small components. Due to its larger size relative to the

saliva DN and larger number of communities, our cutoff for plotting

was increased to 8 nodes both for community and component size.

The global B cell DN is presented in Figure 3A, with five components

and 14 communities. Here, we omitted the remaining

130 communities since they neither belong to any of the five

main components, nor are they large enough for Reactome

enrichment analysis. Like in the saliva DN, communities were

ordered in descending size (largest to smallest, from C0 to

C13 respectively), designated with different colors, and encircled

by loops. Figure 3 has the same format of Figure 2. In this case,

C2 and C4 are displayed in panel b, as magnified representations of

the purple cluster and the green cluster, respectively, in panel a. Panel

b’s magnified perspective provides details about the communities’

internal structures. In Figure 3B, for example, we observe that some

of the genes highlighted in red form a clique.

3.5 Pathway enrichment of B cell
communities

As for the saliva DN, we conducted a community-wise

Reactome enrichment analysis for communities with at least

8 genes. 14 communities in the B cell DN were analyzed. This

analysis found 9 communities with statistically significant

pathway enrichment (FDR < 0.05.): C2, C4, C5, C6, C7, C9,

C10, C12, and C13. Most of the pathways associated with genes

in these communities centered around transcriptional regulation,

protein metabolism, DNA binding ability, and signaling. Among

its 111 statistically significant pathways, C4 was strongly

enriched with genes in the FCERI-mediated NF-κB activation

pathway, the B cell receptor (BCR) signaling pathway, and the Fc

epsilon receptor (FCERI) signaling pathway. These pathways and

others relevant to Rituximab mechanism of action are listed in

Table 2. The NF-κB pathway activation by FCERI leads to the

production of cytokines during mast cell activation, making it

important in allergic inflammatory diseases Klemm et al. (2006).

C4 also contained genes in the B cell receptor pathway, an

important pathway related to B cells. The Fc epsilon gene is

expressed on antigen-presenting cells, and its signaling occurs on

the plasma membrane. A comprehensive list of statistically

significant pathways can be found in the Online Data Files

(ODFs) in the “Results/Bcell_results/reactome_analysis” folder.

In summary, C4 contains the highest number of responsive

pathways relevant to the B cell response to Rituximab. As our

representative communities, we display the C2 and C4 in

Figure 3B, our two largest among the 9 communities with

statistically significant pathways. Our top 10 pathways based

on FDR from the Reactome enrichment analysis for C2 and

C4 are listed in Table 2.

FIGURE 2
Differential network analysis for the saliva experiment. (A) Differential network with community structure found by the Louvain community
detection method. (B) Isolated visualizations of C0 (top) and C1 (bottom) communities with red highlights indicating genes found in statistically
significant Reactome pathways (FDR<0.05), and their corresponding edges in the network. (C) Heatmaps of C0 (top) and C1 (bottom) over 24 h.
Columns represent time points while rows denote gene identifiers. The row data show the difference in each entry’s expression relative to time
0. The relative values were determined by subtracting the individual time points from time point 0 and then normalizing using a Euclidean norm, so
that each row ranges from -1 (down-regulation) to 1 (up-regulation). For the dendrogram clustering we used the complete-linkage method (also
known as the Farthest Point Algorithm) Defays (1977); Hartigan (1985).
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3.6 B cell communities temporal
visualization

The heatmaps for the temporal behavior for the C2 and

C4 communities of the B cell data are shown in Figure 3C. The

formatting of the heatmaps is the same as that of the saliva

heatmaps; all values in the heatmaps refer to gene expression

relative to time 0 in the treated dataset. The C4’s blue column at

time point 2 and the less prominent blue column for C2 at time

point 15 identify patterns of down-regulation in the two

TABLE 1 Reactome pathway enrichment analysis. Statistically significant pathways (FDR < 0.05) are summarized for saliva DN communities C0 and
C1. In the full analysis, we omitted small communities with fewer than 8 genes Reimand et al. (2019); Gene Set Enrichment Analysis (2022), and
12 communities (C0 to C11) qualified for the pathway analysis.

Pathway Name Entities
FDR

Submitted entities found

Saliva DN: C0

Antigen Presentation: Folding, assembly and peptide loading of
class I MHC

1.2E-14 HLA-B, NAA15

Endosomal/Vacuolar pathway 1.2E-14 HLA-B

Interferon gamma signaling 1.2E-14 STAT1, IRF1, HLA-B, PTPN6

Class I MHC mediated antigen processing and presentation 1.2E-14 PSMD8, TLR1, CDH1, RPN1, GBF1, HLA-B, UBR4, CYBA, NAA15, ELOC, FBXO32,
FBXO11

ER-Phagosome pathway 1.2E-14 PSMD8, TLR1, RPN1, HLA-B

Interferon alpha/beta signaling 1.2E-14 STAT1, IRF1, HLA-B, PTPN6

Interferon Signaling 1.2E-14 EIF4A1, STAT1, IRF1, HLA-B, PTPN6, ARIH1

Antigen processing-Cross presentation 1.2E-14 PSMD8, TLR1, RPN1, HLA-B, CYBA

Immunoregulatory interactions between a Lymphoid and a non-
Lymphoid cell

1.2E-14 CDH1, CD81, HLA-B, FCGR2B

Cytokine Signaling in Immune system 1.1E-11 EIF4A1, STAT1, IRF1, HLA-B, PTPN6, ARIH1

Adaptive Immune System 4.1E-09 CD81, TCF25, RPN1, GBF1, HLA-B, UBR4, CYBA, PPP2R5D, FBXO32, FBXO11,
ANKRD9, TLR1, PSMD8, CDH1, AKT2, PTPN6, ELOC, NAA15, FCGR2B, SIPA1,
ARF5

Immune System 1.3E-05 CCDC71L, DDX3Y, EIF4A1, ASAH1, IL1RN, SERPINA1, TCF25, CD81, RPN1,
RPLP0, UBR4, TNFAIP3, CSF2RA, PLD2, PSMD8, ANKRD9, CDH1, AKT2, OLR1,
ELOC, ARIH1, SERPINB2, TNFSF14, GSTO1, STAT1, GBF1, HLA-B, CYBA,
PPP2R5D, FBXO32, FBXO11, FGR, CEACAM3, CLEC4A, TLR1, IRF1, TCP1, TXNIP,
PTPN6, CYSTM1, NAA15, FCGR2B, SIPA1, BIRC2, ARF5, TRIM56

Gene and protein expression by JAK-STAT signaling after
Interleukin-12 stimulation

3.2E-03 SERPINB2, GSTO1, TCP1, RPLP0, ARF5

Interleukin-12 family signaling 4.6E-03 SERPINB2, GSTO1, STAT1, TCP1, RPLP0, ARF5

Interleukin-12 signaling 8.0E-03 SERPINB2, GSTO1, TCP1, RPLP0, ARF5

Saliva DN: C1

Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/
IMPs/VICKZs) bind RNA

2.7E-03 CD44

Nuclear Events (kinase and transcription factor activation) 1.8E-02 PPP2CB, TF, ID2, CHD4, FOS, DUSP6, DNM2

FOXO-mediated transcription of cell death genes 1.8E-02 BCL2L11, BCL6, NFYC

Signaling by NTRKs 2.4E-02 PPP2CB, RALA, TF, ID2, CLTA, FURIN, CHD4, FOS, DUSP6, DNM2

Signaling by NTRK1 (TRKA) 2.6E-02 PPP2CB, RALA, TF, ID2, CLTA, CHD4, FOS, DUSP6, DNM2

Immune System 2.9E-02 NAPA, RALA, CIITA, AHCYL1, RPN2, UNC93B1, JADE1, CLTA, BCL10, CFP,
TANK, GNS, FCAR, STK10, PPP2CB, BCL2L11, TRIM29, ALOX5, NLRP3, FLNA,
SIRPA, SLC12A6, IL6R, GBP4, RAP1GAP2, DDX17, CR1, WSB1, CISH, SH2D3C,
KLHL21, FNDC3A, FOS, LILRB3, MTOR, DUSP6, VEGFA, DNM2, TF, ZNFX1,
NASP, BCL6, MAN2B1, TACC2, CD300C, CALM1, CD44, LGMN

Cytokine Signaling in Immune system 3.6E-02 RALA, CIITA, CISH, RPN2, SH2D3C, FNDC3A, FOS, MTOR, DUSP6, VEGFA,
PPP2CB, ZNFX1, BCL2L11, NASP, BCL6, TRIM29, ALOX5, FLNA, IL6R, GBP4,
CD44

trans-Golgi Network Vesicle Budding 3.9E-02 NAPA, CPD, CLTA, GNS, CLINT1, DNM2

NGF-stimulated transcription 3.9E-02 TF, ID2, CHD4, FOS, DNM2
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communities. While C2 shows a trend of initial up-regulation

followed by a gradual diffusion, C4 exhibits an initial down-

regulation, followed by later up-regulation.

Though C2 and C4 are our representative communities,

we carried out heatmap visualization for all 9 communities

that demonstrated statistically significant pathway

enrichment. These heatmaps are available to view in the

ODFs in the “Results/Bcell_results/network_plots/

heatmaps” folder. Overall, in the B cell community

heatmaps, we recognized three types of time patterns in

terms of collective behavior within an individual

community. In the first pattern group, the majority of

genes started with a moderate degree of down-regulation.

By 7 h, most instead displayed slight or moderate up-

regulation. However, each of these timepoints contained a

minority of genes with a small level of fluctuation, with the

size of the deviating group differing in each heatmap. The

second observed time pattern operated in reverse, with most

genes beginning upregulated and shifting towards

downregulation by the 15-h mark. Finally, a third group

remained consistent in its behavior, with genes trending

one way or remaining unchanged across the entire time

period.

3.7 Community hubs

We examined the community hub genes for both saliva and

B cell DNs, and reported the degree centrality in their respective

Results tables in the ODFs with sheet name “Degree Centrality”.

When two DC values are the same, the genes are tied in rankings

in our consideration as community hubs.

3.8 Biological considerations

In our results, a number of expected pathways emerged.

These included pathways associated with antigen presentation

and processing, Class I MHC mediated antigen processing and

presentation, and ER-phagocytosis, and pathways governing the

immunoregulation of interactions between Lymphoid and non-

Lymphoid cells Joshi-Tope et al. (2005). Further results indicative

of the participation of immune cells, included the CLEC

inflammasome pathway in C4. This pathway is associated

with enabling host immune system to mount a fungal/

bacterial defense using T-Helper 17 cells (TH17) Gringhuis

et al. (2012); Cheng et al. (2011). Interferon signaling,

cytokine signaling, immune/adaptive immune, and interleukin

FIGURE 3
Differential network analysis for the B cell experiment. (A) Differential network with community structure found by the Louvain community
detection method. (B) Isolated visualizations of C2 (top) and C4 (bottom) communities with red highlights indicating genes found in statistically
significant Reactome pathways (FDR<0.05), and their corresponding edges in the network. (C) Heatmaps of C2 (top) and C4 (bottom) over 15 h
(6 time points). Columns represent time points while rows denote genes. These row data demonstrate the difference in each entry’s expression
relative to time 0. The relative values were determined by subtracting the individual time points from time point 0 and then normalizing using a
Euclidean norm, so that each row ranges from -1 (down-regulation) to 1 (up-regulation). For the dendrogram clustering we used the complete-
linkage method (Farthest Point Algorithm) Defays (1977); Hartigan (1985).
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stimulation and signaling are all part of a generalized immune

response Abbas et al. (2018). We found these more general

pathways in the pathway enrichment analysis of C0, C1, C2,

C9, and C10. Interferon signaling is crucial in antiviral defense,

cell regulation and growth, and immune response modulation

Bonjardim et al. (2009). Our Reactome pathway analysis results

are consistent with the results of our saliva multi-omics study

Mias et al. (2021), which observed that vaccination activates

various immune response and regulation pathways, which are

also identified in our present results, including ER-Phagosome

pathway, Interferon alpha/beta and gamma signaling, cytokine

signaling, and MHC antigen presentation.

From our community hub gene analysis, a few hub genes are

suggestive of community functionality. Notably, the community

C2 hub gene, BIRC2, regulates NF-κB signaling as well as

inflammatory signaling and immunity Liu-Mares et al. (2007);

Consortium (2021). For one of the C2 hubs, URGCP, previous

findings indicate that its upregulation and downregulation are

significantly involved in the molecular mechanisms of non-small

cell lung cancer Cai et al. (2015); Consortium (2021).

Accordingly, the presence of the URGCP is consistent with

our vaccine targeting the respiratory system. As for

community C3, the IL4R gene encodes interleukin four and

interleukin 13 to regulate IgE production, which further

TABLE 2 Reactome pathway enrichment analysis. Statistically significant pathways are summarized for primary B cell DN community C2 and C4. In
the full analysis, we omitted small communities with fewer than 8 genes Reimand et al. (2019); Gene Set Enrichment Analysis (2022), and
14 communities (C0 to C13) qualified for the pathway analysis.

Pathway Name Entities
FDR

Submitted entities found

B cell DN: C2

Peptide chain elongation 1.3E-06 EEF1A1, RPL4, RPL7A, RPL27A, RPS6, RPL36, RPL14, RPS20, RPL15, FAU, UBA52,
RPL28

Response of EIF2AK4 (GCN2) to amino acid deficiency 1.3E-06 RPL4, RPL7A, RPL27A, RPS6, RPL36, RPL14, RPS20, FAU, RPL15, UBA52, RPL28, ATF3

Eukaryotic Translation Elongation 1.6E-06 EEF1A1, RPL4, RPL7A, RPL27A, RPS6, RPL36, RPL14, RPS20, RPL15, FAU, UBA52,
RPL28

GTP hydrolysis and joining of the 60S ribosomal subunit 5.9E-06 RPL4, EIF4A1, RPL7A, RPL27A, RPS6, RPL36, RPL14, RPS20, RPL15, FAU, UBA52,
RPL28

L13a-mediated translational silencing of Ceruloplasmin
expression

5.9E-06 RPL4, EIF4A1, RPL7A, RPL27A, RPS6, RPL36, RPL14, RPS20, RPL15, FAU, UBA52,
RPL28

Nonsense Mediated Decay (NMD) independent of the Exon
Junction Complex (EJC)

5.9E-06 RPL4, RPL7A, RPL27A, RPS6, RPL36, RPL14, RPS20, RPL15, FAU, UBA52, RPL28

Formation of a pool of free 40S subunits 7.7E-06 RPL4, RPL7A, RPL27A, RPS6, RPL36, RPL14, RPS20, RPL15, FAU, UBA52, RPL28

Eukaryotic Translation Termination 7.7E-06 RPL4, RPL7A, RPL27A, RPS6, RPL36, RPL14, RPS20, RPL15, FAU, UBA52, RPL28

Cap-dependent Translation Initiation 9.2E-06 RPL4, EIF4A1, RPL7A, RPL27A, RPS6, RPL36, RPL14, RPS20, RPL15, FAU, UBA52,
RPL28

Eukaryotic Translation Initiation 9.2E-06 RPL4, EIF4A1, RPL7A, RPL27A, RPS6, RPL36, RPL14, RPS20, RPL15, FAU, UBA52,
RPL28

B cell DN: C4

Metabolism of RNA 1.4E-02 SF3B4, MT-ND6, NUP205, UTP3, POP1, DDX23, CSTF2, PHAX, PLRG1, DIEXF,
ZFP36L1, FTSJ3, CHERP, PSMD8, EFTUD2, PSMD9, PSMC4, PSME3, NUP35, SKIV2L2

Mitotic Anaphase 1.4E-02 PSMD8, PSMD9, NUP205, CCNB1, SPAST, PSMC4, PSME3, NUP35, SMC1A, EMD,
KPNB1

Mitotic Metaphase and Anaphase 1.4E-02 PSMD8, PSMD9, NUP205, CCNB1, SPAST, PSMC4, PSME3, NUP35, SMC1A, EMD,
KPNB1

FCERI mediated NF-kB activation 1.4E-02 IGLV2-11, PSMD8, PSMD9, IGKV2-29, IGKV1-16, PSMC4, PSME3, IGKV4-1

Signaling by the B Cell Receptor (BCR) 1.4E -02 IGLV2-11, PSMD8, PSMD9, IGKV2-29, IGKV1-16, PSMC4, PSME3, IGKV4-1, PIK3AP1

Fc epsilon receptor (FCERI) signaling 1.4E-02 IGLV2-11, PSMD8, PSMD9, IGKV2-29, IGKV1-16, PSMC4, PSME3, IGKV4-1

Host Interactions of HIV factors 1.4E-02 PSMD8, PSMD9, NUP205, PSMC4, PSME3, NUP35, KPNB1

G1/S Transition 1.4E-02 PSMD8, PSMD9, CCNB1, MCM7, PSMC4, PSME3, KPNB1

ABC-family proteins mediated transport 1.4E-02 PSMD8, PSMD9, PSMC4, PSME3, CSTF2, EIF2S1

Assembly of the pre-replicative complex 1.4E-02 PSMD8, PSMD9, MCM7, PSMC4, PSME3
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activates the JAK/STAT pathway Bhattacharjee et al. (2013). This

pathway orchestrates cytokine receptors, modulates T helper cell

polarization, and also mediates human monocytes/macrophages

Bhattacharjee et al. (2013); Seif et al. (2017). Lastly, in community

C5, the EBF1 is known as a leading transcription factor of B-cell

specification Yang et al. (2016). In summary, IL4R and

EBF1 became the most connected gene in C3 and C5,

respectively, which implies that these two communities are

each centered around T cells (C3) and B cells (C5). Moreover,

given that the experimental subject had a post-vaccination fever

at hour 11 Mias et al. (2021), at which our C3 heatmap

coincidentally peaks (see figure in ODFs), the hub gene IL4R

in C3 appears to relate the fever event with T cell responses.

Regarding our primary B cell results, previous work

Seyfizadeh et al. (2016) has established both the biological

pathways and the mechanisms of action associated with

Rituximab. These previous studies have demonstrated

Rituximab’s ability to cause antibody-dependent and

complement-dependent cellular cytotoxicity, growth inhibition

and apoptosis, and regulation of the cell cycle. We also expected

to observe Rituximab regulations of the B cell receptor (BCR)

based on prior research. Notably, our findings included the

enrichment of the nuclear factor κB (NF-κB) pathways.

According to Jazirehi et al. (2005) Jazirehi et al. (2005) and

Bonavida (2007), Jazirehi and Bonavida (2005), treating Non-

Hodgkin’s lymphoma (NHL) B cell lines with Rituximab inhibits

NF-κB’s signaling pathways by up-regulating RKIP and Raf-1

kinase inhibitors. RKIP has been found to antagonize signal

transduction pathways that mediate the NF-κB activation Yeung

et al. (2001).

Following NF-κB’s down-regulation due to RKIP’s up-

regulation, the Bcl-xl expression is also down-regulated. As a

result, tumor cells become more chemosensitive. Rituximab also

decreased the activity of NF-κB-inducing kinase, IkB kinase, and

IkB-a phosphorylation. Finally, the introduction of Rituximab

also decreased the activity of the IKK kinase and NF-κB binding

to DNA from 3 to 6 h after treatment Jazirehi et al. (2005).

Among the more general enriched pathways observed are

signaling pathways that play a role in the molecular mechanisms

of chemosensitization, which are also impacted by Rituximab. In

line with those effects, we anticipate impacts in the MAPK

signaling pathway, the interleukin cytokine regulatory loop,

and the Bcl-2 expression. Concerning the expression of genes

involved in the healing process, research has uncovered

Rituximab’s role in affecting pathways associated with

immunoglobulin production, chemotaxis, immune response,

cell development, and wound healing. Rituximab can also

increase existing drug-induced apoptosis Seyfizadeh et al. (2016).

In our community of C4, for example, our Reactome analysis

found 5 NF-κB related pathways with FDR < 0.05. Of these five

pathways, one is shown in Table 1; the remaining are displayed in

the comprehensive table in the ODFs (“Results/Bcell_results/

reactome_analysis” folder). Alongside these NF-κB pathways in

C4 is the BCR pathway. Our results suggest that the

C4 community response is highly relevant because of the

activation of both NF-κB and BCR pathways.

Our C2 community appears to be involved with the

metabolism of proteins and cellular responses to external

stimuli. Rituximab targets the CD20 B cell transmembrane

protein that is involved in B-cell development, activation and

proliferation Seyfizadeh et al. (2016). The C2 community

captures cell development pathways included in our

expectations of more generalized responses.

We also observed relevant responses in other communities. For

example, the C8 community showed activity in the RAF/MAP

kinase cascade pathway. In a similar fashion, C10 demonstrated

CD22 mediated BCR regulation, classical antibody-mediated

complement activation, FCGR activation, antigen activation of the

BCR, and initial complement triggering, etc. The pathways that

emerged in our results are thus consistent and highly overlap with

established pathways from previous studies.

Hub genes most pertinent to B cell/lymphocytes included

PELI1 in community C5, PRDM2, MALAT1, and SND1 in C2.

Other high centrality genes with similar relevance includedMAPK8 in

C6 and AFF3 in C1. Among these, PELI1 turned out to be closely

associatedwith antitumor immunity in B cells, which is the therapeutic

goal of the Rituxmab treatment. A previous study Park et al. (2014)

showed that prolonged expression of PELI1 causes B cell

hyperactivation, which, in turn, promotes various lymphoid

malignancies. To a lesser extent, an increased expression of

PELI1 can induce BCL6, an oncoprotein known for advancing

lymphomagenesis, for example, B-acute lymphoblastic leukemia

and chronic myeloid leukemia. This pathway has been recognized

as a potential therapeutic target for treating B cell lymphoma. Out of

the C2 hub genes, PRDM2 is a tumor suppressor Steele-Perkins et al.

(2001), whereas the upregulation of MALAT1 is linked to tumor cell

proliferation andmetastasis, such as leukemiaHuang et al. (2017). The

protein encoded by gene SND1 is known to interact with Epstein-Barr

virus nuclear antigen 2 (EBNA 2), which is essential for B-lymphocyte

transformationTong et al. (1995). As an oncogene Blanco et al. (2011),

SND1 has attracted clinical investigation as a cancer treatment

candidate due to its association with cell proliferation, and

malignant transformation Ochoa et al. (2018). The literature also

has reported that MAPK8, which we found in community C6,

mediates starvation-induced BCL2 phosphorylation Wei et al.

(2008), a sign of cell apoptosis, and AFF3, found in community

C1, serves a role in lymphoid maturation and oncogenesis Hiwatari

et al. (2003). The fact that these genes appear as hubs in the

Rituximab’s DN is consistent with their known important roles in

B-cell malignancies and merits further investigation.

4 Discussion

Our goal was to use a DN approach to identify the activation of

biological processes caused by a perturbation in saliva and primary
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B cells. This study applied DN analysis, community identification and

Reactome pathway analysis of the DN communities, and identified

communities with highly statistically significant enrichment. In this

study we implemented a modularity-based community detection, that

works with positive correlations. This is a limitation of the modularity

approach to the DN that may be addressed using different community

detection algorithms and merits followup investigations. We analyzed

the DNs of two gene expression datasets where a perturbation was

applied: (i) Saliva dataset (PPSV23 vaccination as perturbation; 24 time

points), (ii) Primary B-Cells dataset (ex-vivo Rituximab drug treatment

as perturbation; six time points). In summary, our results from the saliva

DN revealed pathway activation in immunological and inflammatory

responses. In the B cell DN, statistically significant pathways were

activated in the regulation of transcription, immune cell survival,

activation and differentiation, and inflammatory response.

Streptococcus Pneumoniae’s virulence and associated host

immunity have been extensively studied Brooks and Mias (2018).

The PPSV23 is an inactivated vaccine that uses purified capsular

polysaccharides, and is typically administered to older adults (65+)

and susceptible younger individualsUS Food andDrugAdministration

(2014); Butler et al. (1993); Smit et al. (1977); Pletz et al. (2008). In our

analysis, we focused on the vaccine’s potential pathways of action. Our

initial saliva investigation in PPSV23 established that an immune

response to the vaccination can be detected utilizing non-invasive

saliva monitoring at the molecular level Mias et al. (2021). Since

aggregate saliva was sampled, we expected that multiple immune

cells contained therein are involved in the observed patterns and

associated immune responses. Based on our previous findings and

general vaccine responses, we anticipated the activation of pathways

involved with antigen presentation and processing, regulation of IgM

and B/T cells, Lymphoid cells, MHCmolecules, and phagocytosis. We

also expected the activation of pathways of general immune response to

stimuli or inflammation.

Communities aid in defining the genes’ collective behavior,

and observing the collective behavior of communities in the

entire network can clarify relative trends between these collective

behaviors. The generated heatmaps for each community depicted

gene regulation for individual time points, and also displayed

trends over time within the identified communities. The trends

we observed in our saliva data were consistent with a time-

dependent regulation. The results suggest a sequence of

communities activations (up- and down-regulation) at

individual timepoints, indicative of sequential immune system

responses due to the PPSV23 vaccination. In the primary B cell,

data were less clear, as fewer time points were monitored, and

also the network was more densely connected. The B-cell

heatmaps still indicate overall trends associated with

Rituximab activation (both up- and down-regulation) within

the first 7 h of the treatment. Our future work will focus on the

possibility of establishing a causal chained signaling response,

and associated pathways across these communities.

Our analysis showed the applicability of a DN approach in

evaluating time course RNA-seq data. Specifically, the DN method

results in the saliva experiment data were consistent with our

previous work on profiling PPSV23 vaccination responses Mias

et al. (2021). For the primary B cell responses to Rituximab, the DN

has found the same signaling pathway as numerous prior

experimental results, thus helping with our validation from a

computational perspective. The DN approach complements prior

studies by offering a systems-level network perspective of aggregate

temporal changes due to drug activation. In future work we plan to

address the identification of sequential activation of network

communities, as well determining directionality/causality in such

activations.
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