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Many standard-textbook population-genetic results apply to a wide range of

species. Sometimes, however, population-genetic models and principles need

to be tailored to a particular species. This is particularly true for malaria, which

next to tuberculosis and HIV/AIDS ranks among the economically most relevant

infectious diseases. Importantly, malaria is not one disease—five human-

pathogenic species of Plasmodium exist. P. falciparum is not only the most

severe form of human malaria, but it also causes the majority of infections. The

second most relevant species, P. vivax, is already considered a neglected

disease in several endemic areas. All human-pathogenic species have

distinct characteristics that are not only crucial for control and eradication

efforts, but also for the population-genetics of the disease. This is particularly

true in the context of selection. Namely, fitness is determined by so-called

fitness components, which are determined by the parasites live-history, which

differs between malaria species. The presence of hypnozoites, i.e., dormant

liver-stage parasites, which can cause disease relapses, is a distinct feature of P.

vivax and P. ovale sp. In P. malariae inactivated blood-stage parasites can cause

a recrudescence years after the infection was clinically cured. To properly

describe population-genetic processes, such as the spread of anti-malarial drug

resistance, these features must be accounted for appropriately. Here, we

introduce and extend a population-genetic framework for the evolutionary

dynamics of malaria, which applies to all human-pathogenic malaria species.

The model focuses on, but is not limited to, the spread of drug resistance. The

framework elucidates how the presence of dormant liver stage or inactivated

blood stage parasites that act like seed banks delay evolutionary processes. It is

shown that, contrary to standard population-genetic theory, the process of

selection and recombination cannot be decoupled in malaria. Furthermore, we

discuss the connection between haplotype frequencies, haplotype prevalence,

transmission dynamics, and relapses or recrudescence in malaria.
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1 Introduction

After a decade of declining incidence the number of annual

malaria infections rises since 2018, challenging the WHO goal

to reduce malaria incidence by at least 90% by 2030 (WHO,

2021a). This is partly attributed to the rapid emergence and

spread of anti-malarial drug resistance, an evolutionary-genetic

process whose understanding is a global health priority (WHO,

2021b).

Malaria is caused in humans and animals by Plasmodium

parasites. These unicellular, haploid eukaryotes are transmitted

by numerous species of female Anopheles mosquitoes. Both the

parasite and vector species are adapted to specific human or

animal hosts. Five species of Plasmodium are pathogenic to

humans, which can be transmitted by over 100 Anopheles

species (Nicoletti, 2020). Over 95% of the 240 million annual

infections and 620,000 deaths worldwide are attributed to P.

falciparum. Although, the WHO recommended the use of RTS,S,

the first approved malaria vaccine, in children to prevent P.

falciparum infections in areas of moderate to high transmission,

the vaccine’s efficacy is low and malaria control depends strongly

on reliable diagnostics and drug treatments to cure acute

infections (Greenwood et al., 2021). While the second most

relevant species, Plasmodium vivax, receives considerable

attention, the other species P. ovale sp., P. malariae, and P.

knowlesi are somewhat neglected, due to an outdated distinction

between harmful and harmless malaria species (Lover et al.,

2018).

The spread of deletions in the histidine-rich protein 2 and 3

(HRP2/3) genes of P. falciparum, which encode for the antigens

targeted by rapid diagnostic tests (RDTs) as well as drug-resistant

P. falciparum and P. vivax haplotypes substantially challenge

successful malaria control. These evolutionary genetic processes

are tightly linked to the pathogen’s complex transmission cycle,

which besides some species-specific differences, is commonly

shared among all Plasmodia (Su et al., 2019; Beshir et al., 2022).

The transmission cycle starts with an infected mosquito

taking her blood meal. She inoculates parasites in the form of

sporozoites from her salivary glands into the human body. This

is followed by the exo-erythrocytic cycle, during which

sporozoites reach the liver to infect hepatocytes. In the

infected liver cells parasites mature into schizonts. The

erythrocytic cycle is initiated when the schizonts rupture and

merozoites are released into the bloodstream. Erythrocytes are

invaded by merozoites, which form ring stage trophozoites and

then mature into schizonts. Once they rupture, new merozoites

are released into the bloodstream. During this step of asexual

reproduction, some parasites differentiate into male or female

gametocytes, which do not reproduce in the human host. Once

a mosquito ingests male and female gametocytes, the

sporogonic cycle is initiated. Gametes released by male and

female gametocytes fertilize and form zygotes. Following a step

of meiosis, and hence recombination, the zygote becomes

tetraploid and develops into ookinetes, which migrate

through the midgut wall and transform into oocysts. In the

oocyst sporozoite budding occurs in the haploid state. Division

of each oocyst produces thousands of sporozoites that move

into the mosquito salivary glands, completing the transmission

cycle. Because gametocytes immediately release gametes, only

parasites exiting the same host recombine, potentially leading

to a high degree of inbreeding during the sexual reproduction of

the parasite (Ngwa et al., 2016).

Species-specific differences occur in the number of parasites

within an infection (parasitemia and gametocytemia counts), and

the duration of the various phases in the transmission cycle. The

replication of merozoites in 72-hour- rather than 48-hour-cycles

distinguishes P. ovale sp. from other species. The onset of

gametocytogenesis and the longevity of gametocytes were

argued to accelerate drug-resistance evolution in P. falciparum

compared to P. vivax (Schneider and Escalante, 2013). Dormant

liver-stage parasites (hypnozoites), can result in disease relapses

weeks, months, or even years after the clearance of blood stage

parasites and occur only in P. vivax and P. ovale sp. Currently

primaquine (PQ) and tafenoquine (TQ) are the only approved

drugs to clear hypnozoites (Watson et al., 2021). Unfortunately,

patients with (glucose-6 phosphate dehydrogenase) G6PD

deficiency, which is widespread in many malaria-endemic

areas, cannot be treated with these drugs (Baird et al., 2018;

Dean et al., 2020). Extremely prolonged carriage of blood-stage

parasites causing recrudescences occur in P. malariae (Collins

and Jeffery, 2007). It is commonly accepted, although not

completely ruled out, that the rebounce of parasitaemia in P.

malariae is not caused by quiescent pre-erythrocytic stages such

as hypnozoites. Because of relapses occurring in P. vivax, P. ovale

sp., and prolonged blood stage parasite carriage in P. malariae,

these species are resilient in areas in which P. falciparum

transmission cannot be sustained. While all other human

malaria species can—at least in theory—be eradicated by

concentrating on the human host, this is not possible for P.

knowlesi, which is characterized by zoonotic transmission. It

became the predominant species in several endemic countries in

Southeast Asia, which shifted from malaria control toward

elimination (Sutherland, 2016).

The characteristics of the transmission cycle render the

application of standard textbook population-genetic results

incorrect. Particularly it was shown that the process of

selection acting on parasites in the human hosts (including

selection for drug resistance) and recombination cannot be

separated (Schneider and Kim, 2010). Hence, population-

genetic theory and models have to be tailored to the malaria

transmission cycle. This has been done mainly for P. falciparum.

Because a clear path to eradication has been chartered only for P.

falciparum, the other malaria species gain more importance due

to their resilient nature (Lover et al., 2018). This requires to

further adapt population-genetic theory to the characteristics of

other human-pathogenic malaria species.
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Here, we extend a population-genetic framework, originally

developed for P. falciparum, to be applicable to all other malaria

species.

We exemplify the importance of species-specific differences

by clarifying the role of hypnozoites in the evolution of drug

resistance in P. vivax vs. P. falciparum. We also clarify, how

haplotype frequencies (i.e., their relative abundance in the

parasite population) and prevalence (i.e., the likelihood that a

given haplotype occurs in an infection) are affected by relapses/

recrudescence in other malaria species. Based on this framework,

we discuss past and current developments with relevance for the

evolutionary genetics of malaria.

2 Methods

We extend the population-genetic framework of (Schneider

and Kim, 2010; Schneider and Kim, 2011; Schneider, 2021) that

describes the temporal change in the distribution of parasite

haplotypes due to recombination and selection in generations of

FIGURE 1
Transmission cycle of humanmalaria. All species have the same cycle, but parasites life-stages have differentmorphology (illustrated here for P.
falciparum). In P. vivax and P. ovale sp. dormant hypnozoites remain in the liver. In P. malariae recrudescence form prolonged blood stage parasites
occur. In P. knowlesi humans and non-human primates can be infected.
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transmission cycles. While the original framework was tailored to

P. falciparum, the extension captures the characteristics of all

human-pathogenic malaria species.

The model is based on an idealization of the complex malaria

transmission cycle (cf. Figure 1), which is illustrated in Figure 2.

Although, pathogen, mosquito vector, human hosts (and, in the

case of P. knowlesi the animal host) are involved in transmission,

the framework does not require to model transmission dynamics

(i.e., the interaction of mosquito vectors and human or animal

hosts) explicitly. This conceptional advantages arise, because

haplotype frequencies are considered at the end of the

sporogenic cycle (cf. Figure 2). Thus, the frequency

distribution of parasite haplotypes in the mosquitoes’ salivary

glands, which are ready for vector-host transmission, is followed.

Host and vector populations are assumed to be sufficiently

large and malaria infections sufficiently frequent to justify a

deterministic description of the evolutionary dynamics. Steps

of full transmission cycles correspond to steps of sexual

reproduction, because only one step of sexual reproduction

occurs during one full transmission cycle, namely inside the

mosquito vector. Many steps of asexual reproduction occur

inside the vectors and hosts.

2.1 Genetic architecture of haplotypes

The genetic architecture of haplotypes is determined by their

allelic configuration at one or several loci. We denote the number

FIGURE 2
Illustrated is the idealization of the malaria transmission cycle underlying the population-genetic framework. The illustrated genetic
architecture of malaria haplotypes assumes two biallelic loci, leading to four possible haplotypes. Furthermore, two groups of hosts are illustrated.
Each host is infected by randomly drawing haplotypes from generation t, or a relapse/recrudescence from a previous generation occurs, which
corresponds to randomly draw parasites from a previous generation (haplotype reservoir). With probability G(t)

g a host belongs to group g in
generation t. The selective environment is different in the two groups. Recombination occurs exclusively between haplotypes exiting the same host.
After recombination, haplotypes in the mosquitoes are pooled together to derive their distribution in generation t +1.
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of all possible haplotypes by H. E.g., L biallelic loci lead to H = 2L

haplotypes. In general, if haplotypes are determined by L loci, and

nl alleles are segregating at locus l, H = n1 · n2 ·. . .·nL. The
frequency of haplotype h in generation t is denoted by P(t)

h .

Collectively, the vector of haplotype frequencies is Pt �
(P(t)

1 , . . . , P(t)
H ).

2.2 Idealizing the transmission cycle

The idealized transmission cycles allows to describe the

evolutionary genetics of malaria in generations of full

transmission cycles (Figure 2). In generation t, it is assumed

that all hosts are infected (or have a relapse or recrudescence) at

the same time. Moreover, host-vector transmission is also

synchronized. Inside the mosquito, parasites, which were

ingested by the mosquitoes, can recombine during one step of

sexual reproduction. This determines the distribution of

haplotypes in the mosquitoes’ salivary glands of the parasite

(sporozoite) population in generation t + 1.

2.2.1 Heterogeneity
Disease exposure and transmission intensities are

heterogeneous in endemic areas and change over time (e.g. in

the context of seasonal transmission) (Bousema et al., 2011;

Selvaraj et al., 2018). Moreover, hosts are heterogeneous

regarding their level of genetic and naturally acquired

immunity, number of co-morbidities, or the drug treatment

they receive to cure the infection (in case they receive any),

etc. (Hedrick, 2011; Gonzales et al., 2020). All of these factors can

be addressed by modeling hosts in different groups (strata). Let

G(t)
g be the probability that a host, in which an infection occurs in

generation t, belongs to group g. Hence, G(t)
1 +/ + G(t)

S � 1 for

every generation t.

The number of groups, S, has to be chosen to capture the

features important to the specific application of the framework.

For instance, when considering drug resistance evolution, a

simple distinction would be between treated and untreated

infections, i.e., S = 2. In the case of P. knowlesi different

groups can model human and animal hosts. In the simplest

case one would have just two groups (S = 2), namely humans and

animals.

2.2.2 Relapses and recrudescence
Hosts are not modelled explicitly. This becomes relevant

when considering relapses (in P. vivax and P. ovale sp.) and

recrudescence in P. malariae. In the following we use relapse and

recrudescence synonymously, unless a distinction is necessary.

In the idealized transmission cycle, a relapse in generation t,

which occurs after a delay of d generations, is equivalent to a new

infection from the sporozoite population from d generations in

the past, i.e., from generation t − d. Let R(t)
d be the probability that

an infection in generation t is a relapse, with a delay of d

generations, where R(t)
0 is the probability of a new infection at

time t. Assuming the maximum possible delay is D, the relation

∑D
d�0 R

(t)
d � 1 for all t, and 1 − R(t)

0 is the probability that a relapse

occurs at time t.

The framework models the haplotype distribution in

generations of transmission cycles not in real-time. The higher

the transmission intensities, the more transmission cycles occur

per year. The choice of the distribution of relapses has to take this

into account (see Results section The effect of recrudescences and

relapses). Moreover, the timing of relapses depends on the

Plasmodium species (White, 2011).

Importantly, a host might have been exposed differently to

the disease in the past, i.e., the host might belong to different

groups in generations t − d and t. Let G(t−d,t)
g′,g be the probability

that a host, who belonged to group g′ in generation t − d, belongs

to group g in generation t (d ≥ 0). Marginalisation yields

G(t)
g � ∑S

g′�1
G(t−d,t)

g′,g (1)

for all t, d, g. Hence, the probability that a relapse occurs in

generation t in a host in group g after a delay of d generations,

when he belonged to group g′, is given by

R(t)
d G(t−d,t)

g′,g .

2.3 Vector-host transmission and
multiplicity of infection

The presence of multiple genetically distinct parasite

haplotypes within an infection is frequently referred to as

multiplicity of infection (MOI) or complexity of infections

(COI) and considered important in malaria. The terms MOI

and COI are ambiguously defined in the literature (see

(Schneider et al., 2022) for a comprehensive review).

Although, it is unclear whether MOI is affecting the clinical

pathogenesis of malaria, or whether different parasite haplotypes

are competing within infections (intra-host competition), MOI

mediates the amount of meiotic recombination and scales with

transmission intensities (Pacheco et al., 2020) (see Figure 3).

Different parasite haplotypes can occur within an infection,

because they are 1) sequentially transmitted (during the course of

one disease episode) by different mosquitoes (super-infection); 2)

co-transmitted by one mosquito (co-infection); 3) mixed up with

parasites from previous infections by relapses or recrudescence.

Concerning models of MOI, the focus was mainly on super-

infections. More recently, the importance of co-infections is

being emphasized. Namely, more parasite genomics data is

being generated, which has enough resolution to study genetic

relatedness of parasites. Such data is appropriate for molecular

surveillance of transmission routes (Ndiaye et al., 2021). Formal

population-genetic frameworks to describe the evolutionary
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genetics of malaria that consider relapses do not exist.

Mathematical models describing relapses in P. vivax and P.

ovale sp. are limited to epidemiological models, e.g., the

compartmental model of (Chamchod and Beier, 2013), which

neglects parasite genetics. A population-genetic framework

applicable to all human-pathogenic malaria species has to be

flexible enough to accommodate super-infections, co-infections,

relapses, and recrudescence.

To set up the framework an infection is identified by a vector

m = (m1, . . . ,mH), wheremh is the number of times haplotype h

is infecting. Hence, mh = 0 or mh > 0 if haplotype h is absent or

present in the infection, respectively. The number mh accounts

for super-infections with the same haplotype. Moreover, it can be

interpreted as the “concentration” of haplotype h if several

haplotypes are co-infecting, etc.

Let Pr [m|t] be the probability of an infection with

configuration m given generation t. The infection might be a

new infection or a relapse. The probability of infectionm, given it

occurs in generation t, when the host belongs to group g, and

given it is a relapse with a delay of d generations, when the host

belonged to group g′, is denoted by Pr [m|t − d, g′; t, g]. Hence,

the probability of infection m occurring in a host in group g in

generation t, which is a relapse from generation t − d, when the

host belonged to group g′, is

Pr m; t − d, g′; t, g[ ] � Pr m|t − d, g′; t, g[ ]R(t)
d G(t−d,t)

g′,g . (2)

The conditional probability Pr [m|t − d, g′; t, g] reflects the model

of super- and co-infections. There are many possible models.

Super- and co-infections are both notoriously difficult to address.

Namely, knowledge about the vector dynamics and the

distribution of haplotype combinations in the mosquito

population must be known. This is a difficult task and

research on the topic is currently expanding, (cf. Nkhoma

et al., 2012; Wong et al., 2018; Zhu et al., 2019; Nkhoma

et al., 2020; Dia and Cheeseman, 2021; Neafsey et al., 2021).

FIGURE 3
Illustration of the relationship between inbreeding andMOI. Top: An infection with MOI = 1 (single-clone infection) leads only to recombination
between clones, i.e., effectively to no recombination. Bottom: Shown is a super-infection with four infective events (MOI = 4) and three different
haplotypes being transmitted (one haplotype is transmitted independently by two mosquitoes). Recombination between the illustrated haplotypes
leads to the creation of new haplotypes.
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2.3.1 A model for super-infections
Many approaches to estimate MOI or COI by Bayesian or

maximum-likelihood methods (e.g. (Hill and Babiker, 1995;

Stephens et al., 2001; Rastas et al., 2005; Li et al., 2007; Hastings

and Smith, 2008; Druet and Georges, 2010; Ross et al., 2012;Wigger

et al., 2013; Taylor et al., 2014; Galinsky et al., 2015; Ken-Dror and

Hastings, 2016; Schneider, 2018; Hashemi and Schneider, 2021)) are

based on a model, which assumes only super-infections, but no co-

infections. The number of super-infections m is referred to as

multiplicity of infection (MOI; see Figure 3).

LetM(t,g)
m be the probability that a host belonging to group g

is super-infected exactly m times in generation t. This is a

probability distribution, hence

∑∞
m�1

M(t,g)
m � 1 (3)

for all t and g. At each infectious event, exactly one haplotype is

randomly drawn from the mosquito population, i.e., the

haplotype distribution Pt. Hence, given MOI m in generation

t, the infection m = (m1, . . . , mH), which indicates how many

times haplotype h was transmitted, follows a multinomial

distribution with parameters m and Pt, i.e.,

Pr m|m; t[ ] � m
m

( )Pm
t , (4)

where (m
m
) ≔ m!∏H

h�1 mh!
is a multinomial coefficient, and

Pm
t ≔ ∏H

h�1 P
(t)
h mh. Clearly, the constraint |m|≔ ∑H

h�1 mh � m
must hold. If an infection is a relapse with a delay of d
generations, the haplotypes have to be drawn according to the
distribution Pt−d.

Therefore, the probability of infection m given it has MOI

m = |m| and occurs in generation t, when the host belongs to

group g, from a relapse with a delay of d generations, when the

host belonged to group g′, is given by

Pr m, m|t − d, g′; t, g[ ] � M(t−d,g′)
m

m
m

( )Pm
t−d, (5)

whereM(t−d,g′)
m is the probability of MOIm in generation t − d of

a host in group g′. This model makes the expression (WHO,

2021b) much more explicit.

2.3.2 Choices for the distribution of super-
infections

The model (WHO, 2021b) becomes even more explicit for

specific choices of the distribution of MOI. A popular choice

emerges from the assumption of rare and independent infections,

namely that MOI is conditionally Poisson distributed (cf.

Schneider, 2021), i.e.,

M(t,g)
m � 1

exp λt,g( ) − 1

λmt,g
m!

, (6)

where λt,g > 0 is the Poisson parameter of group g in generation t

and m = 1, 2, . . ..

Another popular choice is the conditional negative-binomial

distribution. It is similar to the Poisson distribution but over-

dispersed (cf. 17).

2.4 The exo-erythrocytic and erythrocytic
cycles

Assume an infection subsumed by the vector m having MOI

m = |m|. Since all steps of reproduction are clonal inside the host,

it is not necessary to model the different parasite stages explicitly.

Rather, it suffices to model the change in haplotype frequencies

inside the host as a single step.

If the host belongs to group g, the ‘absolute’ frequency of

haplotype h is mh
m W(t,g)

m,h . Here,W(t,g)
m,h is the fitness in generation t

of haplotype h in infection m of a host belonging to group g. It is

interpreted as the expected number of gametocyte descendants of

a single copy of haplotype h infecting the host at the time a

mosquito takes her blood meal.

2.4.1 Host-vector transmission
Concerning host-vector transmission, a mosquito ingests a

fraction f of male and female gametocytes at her blood meal. The

gametocyte haplotypes ingested are assumed to be proportional

to the haplotype frequencies within the host. More precisely,

fmh
m W(t,g)

m,h male and female haplotype h are ingested from

infection m in group g. (Note different fractions f can also be

assumed for male and female gametocytes, reflecting an unequal

sex ratio.)

2.4.2 Sporogonic cycle
Recombination occurs immediately after the blood meal (see

Figure 1), and only parasites descending from the same host can

recombine (see Figure 3). Assuming the mosquito bite a host

from group gwith infectionm, the probability that a male gamete

of haplotype h fertilizes a female i-gamete is the product of their

relative frequencies in the mosquito’s gut, i.e.,

fmh
m W

t,g( )
m,h

fW
t,g( )

m

· f
mi
mW

t,g( )
m,i

fW
t,g( )

m

� mhW
t,g( )

m,h miW
t,g( )

m,i

m2W
t,g( )

m 2
, (7)

where

fW
t,g( )

m ≔ f∑H
j�1

mj

m
W

t,g( )
m,j (8)

is the total amount of parasites in the mosquito’s gut. Therefore,

the absolute number of such matings is obtained by multiplying

the probability of the mating by the total amount of parasites, i.e.,

fA
t,g( )

h,i (9)
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where

A(t,g)
m,h,i ≔

mhW
t,g( )

m,h miW
t,g( )

m,i

m2W
t,g( )

m

. (10)

The absolute frequency of haplotype h in the population of

mosquitoes, which descends from infections with configuration

m, given 1) MOI m = |m|, 2) the infections occur in generation t,

3) in hosts in group g, which 4) are either novel infections (delay

d = 0) or relapses with a delay of d generations, is

Pr m|m; t − d; t, g[ ] ∑H
j,l�1

fA(t,g)
m,j,lr jl → h( ), (11)

where r (jl → h) is the probability that a mating between

gametes with haplotypes j and l lead to offspring of

haplotype h.

The absolute number of haplotype h in the mosquito

population, which descend from hosts in group g with MOI

m, is calculated from the theorem of total probability, i.e., by

‘averaging’ over all possible infections m with MOI m.

Incorporating all relapses it is given by

P
p g,m( )
h t( ) � ∑D

d�0
R(t)
d ∑

m: |m|�m
Pr m|m; t − d; t, g[ ]

× ∑H
j,l�1

fA(t,g)
m,j,lr jl → h( ). (12)

If an infection in generation t is a relapse from generation t − d

the host might have belonged to a different group g′ then. Noting,
that

Pr m|t − d; t, g[ ] � ∑S
g′�1

G(t−d,t)
g′,g Pr m|m; t − d, g′; t, g[ ] (13)

equation (Su et al., 2019) can be rewritten as

P
p g,m( )
h t( ) � ∑D

d�0
R(t)
d ∑S

g′�1
G(t−d,t)

g′,g ∑
m: |m|�m

Pr m|m; t − d, g′; t, g[ ]

× ∑H
j,l�1

fA(t,g)
m,j,lr jl → h( ).

(14)

2.5 Evolutionary dynamics

To determine the number of haplotypes h in generation t +

1, equation (Ngwa et al., 2016) has to be averaged over all

possible groups and values of MOI. Hence, the absolute

frequency of haplotype h in the next generation’s

sporozoite population is

Pp
h t + 1( ) � f∑D

d�0
R(t)
d ∑S

g,g′�1
G(t−d,t)

g′,g ∑∞
m�1

× ∑
m: |m|�m

Pr m, m|t − d, g′; t, g[ ]

× ∑H
j,l�1

A(t,g)
m,j,lr jl → h( ). (15)

The relative frequency of haplotype h in the sporozoite

population in generation t + 1 is hence

Ph t + 1( ) � Pp
h t( )

∑H
i�1

Pp
i t( )

. (16)

The dynamics (Watson et al., 2021) are extremely flexible.

They allow tomodel, e.g., temporal changes in selection pressures

(for instance changing treatment policies in the context of drug-

resistance evolution, temporally varying transmission intensities,

intra-host competition of parasites, super- and co-infections,

relapses, recrudescences etc.). This however requires to specify

the model more explicitly.

Next, we show how this is done if only super-infections but

no co-infections are considered.

2.6 Evolutionary dynamics with super-
infections

We introduce a couple of simplifying assumptions, which

make the model more explicit. First, only super- but no co-

infections are assumed. I.e., the super-infection model (Lover

et al., 2018) applies and is substituted into (Schneider and

Escalante, 2013). Thus, (Schneider and Escalante, 2013), becomes

Pp
h t + 1( ) � f∑D

d�0
R(t)
d ∑S

g,g′�1
G(t−d,t)

g′,g ∑∞
m�1

M(t−d,g′)
m ∑

m: |m|�m
(m
m
)Pm

t−d

× ∑H
j,l�1

A(t,g)
m,j,lr jl → h( ).

(17)

3 Results

The framework is appropriate to investigate numerous

evolutionary-genetics aspects in malaria. It would be far too

comprehensive to exemplify the full flexibility. Hence, only

special cases are illustrated here. We assume that only super-

infections but no co-infections occur, i.e., the dynamics (Baird

et al., 2018) are assumed. First, we clarify the difference

between haplotype frequency and prevalence. Then we

focus on a simple model of drug resistance. Although it is

applicable to all malaria species, primarily it shall illustrate the

differences between P. falciparum and P. vivax, because there

Frontiers in Genetics frontiersin.org08

Schneider and Salas 10.3389/fgene.2022.1030463

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1030463


were no reports on drug resistance in any of the other species

(Tseha and Tyagi, 2021).

3.1 Frequency and prevalence

The evolutionary genetics of malaria are described as the

time-change in the frequency distribution of parasite haplotypes.

For instance, monitoring the frequencies of haplotypes, which

confer drug resistance is essential. However, concerning the

clinical pathogenesis, the occurrence of resistance-conferring

haplotypes in infections is more relevant. Due to super- and

co-infections the frequency of a haplotype h, i.e., its relative

abundance among sporozoites in the mosquito population does

not coincide with the probability that haplotype h occurs in an

infection. The latter is referred to as the haplotype’s prevalence.

If only super-infections are considered, the prevalence of

haplotype h in generation t, denoted by q(t)h is derived in section

Prevalence in the Mathematical Appendix. It is given by

q t( )
h � 1 −∑D

d�0
R(t)
d ∑S

g′�1
G(t−d)

g′ U(t−d)
g′ 1 − P(t−d)

h( ), (18)

where U(t−d)
g′ (x) is the probability generating function of the

MOI distribution in group g′ in generation t − d. This function

characterizes transmission in group g′ in generation t − d. From

the above expression it is clear that prevalence depends on (i) the

frequency of haplotype h, (ii) the distributions of MOI in the

various groups, and (iii) the distribution of relapses/

recrudescence. If no relapses or recrudescences occur, as it is

the case for P. falciparum and P. knowlesi, the prevalence

simplifies to

q t( )
h � 1 −∑S

g�1
G(t)

g U(t)
g 1 − P(t−d)

h( ). (19)

Hence, for P. falciparum and P. knowlesi prevalence is

characterized by the haplotype frequency distribution in t, the

distribution of groups, and the MOI distributions in the groups.

We illustrate the effect of relapses on prevalence in a simple

example below.

3.2 Selection at a single locus without
intra-host competition

Assume drug resistance is determined by a single locus. This

is a reasonable assumption since often drug resistance is

determined mainly by mutations at one locus. For instance, in

P. falciparum resistance to chloroquine is determined by

mutations at the Pfcrt locus, while resistance artemisinin is

determined by mutations in the Kelch-13 propeller region

(Cui et al., 2015). The assumption is even justified in

sulfadoxine-pyrimethamine resistance, determined by the

Pfdhfr and Pfdhps loci, because mutations at the Pfdhfr locus

seem to have a much stronger effect (McCollum et al., 2012).

Assume n alleles A1, . . . , An are segregating at the selected

locus. The n different alleles confer different levels of drug

resistance. All other alleles are assumed to be neutral. Thus,

the number of possible haplotypes, H, is a multiple of n, i.e., H =

nN. Hence, N is the number of all possible haplotypes when the

resistance-conferring locus is disregarded. Let us assume that the

haplotypes are ordered such that haplotypes h = (a − 1)N + 1, . . . ,

aN carry allele Aa at the resistance-conferring locus. Therefore,

the frequency of allele Aa at time t + 1, denoted by p(t+1)
a is

given by

p(t)
a � ∑aN

h�(a−1)N+1
P(t)
h . (20)

Cumulatively, we denote the vector of allele frequencies in

generation t by pt.
Under the assumption of no intra-host competition of

parasites these dynamics can be made more explicit. In an

infection characterized by m of a host in group g, no intra-

host competition means that the fitness of an infecting haplotype

h is independent of what other haplotypes are present in the

infection, i.e., it is independent of m, or formally

W(t,g)
m,h � W(t,g)

h . (21)

Furthermore, because fitness is only determined by the

resistance-conferring locus, the fitness of haplotype h depends

only on its allele at this locus. Let the fitness of haplotypes

carrying alleleAa at the resistance-conferring locus be denoted by

w(t,g)
a , i. e,

w(t,g)
a � W(t,g)

h � W(t,g)
m,h for h

� a − 1( )N + 1, . . . , aN and for all m. (22)

Moreover, let the average fitness of allele Aa in generation t be

w(t)
a � ∑S

g�1
w(t,g)

a G(t)
g . (23)

As shown in the Mathematical Appendix the dynamics of the

allele frequencies are given by

p(t+1)
a �

w(t)
a ∑D

d�0
R(t)
d p t−d( )

a

∑n
b�1

w(t)
b ∑D

d�0
R(t)
d p t−d( )

b

. (24)

As in the case without relapses/recrudescence (cf. 17), these

dynamics are independent of the distribution of MOI. This

holds because no intra-host competition occurs and because

only super-infections are considered. Even without intra-host

competition the dynamics of the allele frequencies at the selected

locus might depend on MOI, depending on the assumed model

for co-infections; a general statement cannot be made.
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Further, the dynamics (Bousema et al., 2011) depend only on the

average fitnesses of the allelesw(t)
a . This implies that the stratification

of the host population into different groups does not need to be

modelled explicitly, when considering selection at a single locus.

Note that the average fitnesses can be scaled by any constant

without affecting the dynamics (Bousema et al., 2011). Hence, it

suffices to consider relative fitnesses, and fitness can be

normalized such that w(t)
1 � 1 in every generation.

3.2.1 The effect of recrudescences and relapses
In the dynamics of the allele frequencies (Bousema et al.,

2011) the effect of relapses or recrudescence is clearly visible. In

the case of no relapses or recrudescence, i.e., R(t)
d � 0 for d ≥ 0 the

dynamics simplify to

p(t+1)
a � w(t)

a p t( )
a

∑n
b�1

w(t)
b p t( )

b

. (25)

In this situation, the allele frequencies in generation t + 1 are

solely determined by the fitnesses and the allele frequencies in

generation t. Once relapses or recrudescences are considered, the

allele frequencies in generation t + 1, depend also on the allele

frequencies in previous generations. This is intuitively clear,

because relapses/recrudescence are equivalent to infections

from the sporozoite population from previous generations (see

Figure 2). Hence, relapses/recrudescence act as “seed banks”.

Intuitively, this will delay the evolutionary dynamics, because the

allele frequencies are averaged over several previous generations.

To further discuss the effect of relapses/recrudescence we

impose some additional assumptions. First, we assume that the

selective environment does not change over time, i.e., w(t)
a � wa

for all t. This is a reasonable assumption when considering drug

resistance evolution over a time period in which treatment

policies do not change. In this case, the change in allele

frequencies can be solved explicitly only in the absence of

relapses/recrudescence. Namely, the dynamics become

p(t+1)
a � wt+1

a p 0( )
a

∑n
b�1

wt+1
b p 0( )

b

, (26)

where p(0)
a are the initial allele frequencies in generation t = 0.

From these dynamics it follows that the average fitnesses wa can

be estimated from longitudinal data of allele frequencies by fitting

a straight-line regression (see 48, 17).

Once relapses/recrudescence are considered, the dynamics

can no longer be solved explicitly, but need to be calculated

recursively from the frequencies of the last D + 1 generations,

i.e., they become

p(t+1)
a �

wa ∑D
d�0

R(t)
d p t−d( )

a

∑n
b�1

wb ∑D
d�0

R(t)
d p t−d( )

b

. (27)

Importantly, to be able to iterate these dynamics, initial

frequencies need to be known from D generations in the past.

Hence, to calculate the frequencies in generation t = 1, initial

frequencies p(0)
a , p(−1)

a , . . . , p(−D)
a need to be specified. Moreover,

the distribution R(t)
d needs to be known. In practice, the

distribution of relapses might change over time. For instance,

changes in control policies impact malaria transmission and

hence the proportion of new infection in comparison to

relapses. If transmission intensities decrease, relapses amount

for a larger fraction of infections. Also the number of

transmission cycles during 1 year decrease. Because the

distribution of the time to relapse measured in years will not

change, the time distribution measured in units of transmission

cycles will change. In the simplest case the distribution of relapses

remains constant over time, i.e., R(t)
d � Rd, the change of allele

frequencies is given by

p(t+1)
a �

wa ∑D
d�0

Rdp t−d( )
a

∑n
b�1

wb ∑D
d�0

Rdp
t−d( )
b

. (28)

Unfortunately, even if the distribution of relapses is constant, the

average fitnesses can no longer be estimated by a linear

regression.

The distribution of relapses depends crucially on the specific

parasite strain (White, 2011). Consider the following example of

drug-resistance evolution, with just two alleles: allele A1 being the

drug sensitive wildtype and A2 the mutant allele conferring drug

resistance. The mutant allele first occurs in generation t = 0 at

frequency p(0)
2 � 0.001. Let w2 = 1 + s, where s is the selective

advantage of the drug resistant allele A2. We assume s = 0.1,

i.e., the fitness is increased by 10%, which is strong selection for

population-genetic processes, but reasonable for selection for

drug-resistance.

Regarding the distribution of relapses, we assume a situation

in which 1 year corresponds to 10 transmission cycles. Relapses

often occur in periodic patterns (White, 2011). We first assume a

pattern which resembles the relapse pattern described by

(Hankey et al., 1953) in temperate zones of Korea. Namely,

let v be the probability that a malaria episode relapses, i.e., R0 =

1 − v. We assume the first relapse can occur after 10 transmission

cycles, and all further relapses after 4 further transmission cycles

for a maximum delay of D = 90. More precisely, Rd � v
21 for d =

10, 14, 18, 22, . . . , 90 and Rd = 0 else. As a comparison we assume

a simple second pattern of relapses, in which relapses occur

4–50 generations after the initial infection with equal probability,

i.e., Rd � v
43 for d = 4, . . . , 50. Compared with the first pattern,

relapses occur more frequently and earlier.

The evolutionary dynamics are illustrated in Figure 4.

Without relapses v = 0, the resistance-conferring allele spreads

in approximately 110 generations, which corresponds to 11 years,

under the assumed number of 10 transmission cycles per year.

Relapses substantially slow down the spread of resistance. The
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reason is that relapses act like ‘seed banks’ which retain the

frequency distribution of previous generations. For the first

pattern (Figure 4A), 5% relapses already substantially delay

the spread of resistance to about 400 generations or 40 years.

With 20% relapses, the frequency of the mutant allele is just 75%

after 1,000 generations corresponding to 100 years. For the

second pattern (Figure 4B), the results are qualitatively

similar, but relapses have a less profound effect, because they

occur with shorter delay after the original infection.

These results provide formal evidence that drug resistance

spreads faster in P. falciparum, where no relapses occur, than in

P. vivax, where relapses are common. In fact, while drug

resistance is a major concern in P. falciparum, it is less

common in P. vivax (Schneider and Escalante, 2013).

The pattern of relapses depends on 1) genetic factors

mediating the frequency of their occurrence; 2) transmission

intensities determining the number of malaria generations

(transmission cycles per year); 3) the fractions of new

infections and relapses; and 4) treatment policies.

Particularly, if a drug is partnered with primaquine (PQ) or

tafenoquine (TQ) for radical cure, the fraction of relapses

reduces, accelerating the spread of resistance to the primary

treatment. However, since PQ or TQ also act on gametocytes,

they prevent transmission and reduce the selective advantage of

drug resistance (cf. 23).

3.2.2 Prevalence
Next consider the prevalences corresponding to the

evolutionary dynamics illustrated in Figure 4. The

evolutionary dynamics are determined by the average fitnesses

across the groups of hosts and the distribution of relapses.

Consequently, it was not necessary to specify the groups

explicitly. However, prevalence given by (Collins and Jeffery,

2007) depends on the generating functions of MOI in the

different groups. In the simplest case, which we consider here,

the whole population consists of only one group (S = 1).

Furthermore, we assume that the MOI distribution does not

change over time, and follows a conditional Poisson distribution

(cf. Eq. (6)) with parameter λ. The generating function of this

distribution is given by

U x( ) � exp λx( ) − 1
exp λx( ) − 1

(29)

(cf. 17).

The prevalence of the resistance-conferring allele is obtained

from (Collins and Jeffery, 2007) by assuming that haplotypes are

characterized by a single locus. Hence,

q t( )
2 � 1 −∑D

d�0
RdU 1 − p t−d( )

2( ) � ∑D
d�0

Rd

1 − exp −λp t−d( )
2( )

1 − exp −λ( ) . (30)

The prevalences corresponding to the dynamics illustrated in

Figure 4A, are depicted in Figure 5, assuming different values of

the Poisson parameter λ, corresponding to different transmission

intensities.

The case λ = 0, implies that only ‘single-infection’ (one

infective event) occurs, in which case prevalence and

frequency coincide. As shown in (Schneider, 2021) prevalence

always exceeds frequency in the case in which no relapses occur

(Figures 5A,F,K). This is intuitive, because the likelihood to

observe a parasite variant in an infection increases as the

average number of super-infections increase. If transmission

intensities are intermediate to high (λ ≥ 1), prevalence is

considerably higher than frequency (Figure 5F). If the

frequency of the resistance-conferring allele is small, the

difference between frequency and prevalence is small in

absolute terms, but high in relative terms (compare Figure 5F

with Figure 5K).

If relapses occur, the pattern is similar, however, prevalence

can be lower than frequency (see Figures 5F–J). The reason is that

prevalence is also determined by the frequency distribution of

past generations. This occurs only if the average number of

super-infections is small (λ slightly larger than 0) and is

increasingly pronounced if relapses are more frequent. In

general, the difference between frequency and prevalence

becomes smaller in absolute and relative terms as the fraction

FIGURE 4
Effect of relapses on the evolutionary dynamics. Shown is the frequency of the resistance-conferring allele as a function of time assuming
different proportions, v of relapses (colors) for the first (A) and second (B) patterns of relapses.
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FIGURE 5
Prevalence. Panels (A–E) show the prevalence of the resistance-conferring allele corresponding to the dynamics in Figure 4A for different
values of the Poisson parameter λ (colors). Panels (A–E) correspond to the dynamics with 0%, 5%, 10%, 15%, and 20% relapses, respectively. Panels
(F–J) show the corresponding difference between prevalence and frequency, and panels (K–O) show the corresponding relative difference
(prevalence minus frequency divided by frequency) in percent.
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of relapses increase. If this fraction is high (v = 0.15 or v = 0.2) the

particular pattern of relapses leads to oscillations in the relative

difference between prevalence and frequency, if the frequency of

the resistance-conferring allele is low (see Figures 5N,O).

4 Discussion

We introduced a general framework to model evolutionary-

genetic processes in malaria, which is flexible enough to capture the

characteristics of all human-pathogenic Plasmodium species. Such a

framework is justified since standard population-genetic theory can

only be approximately applied to malaria. The reason is rooted in the

malaria transmission cycle, which involves one step of sexual

reproduction in the mosquito vectors. A high degree of selfing

occurs during this step, because only parasites which descend

from the same human host can recombine (cf. Figure 3). The

framework extends the one introduced in (Schneider and Kim,

2010; Schneider and Kim, 2011; Schneider, 2021), which is only

applicable to P. falciparum, because it ignores relapses from dormant

liver stages as they occur in P. vivax and P. ovale sp., and

recrudescence form prolonged blood stage parasites as they occur

in P. malariae. These previously widely neglected species are resilient

because of relapses and recrudescence, and hence are gaining more

importance in the context of malaria eradication. We demonstrated

the importance of relapses/recrudescence by contrasting drug

resistance-evolution in P. vivax and P. falciparum.

The necessity to extend the population-genetic framework

toward other malaria species is clearly justified by the results

presented here. Even in the simplest case of resistance being

determined by a single locus, relapses have a profound effect on

the evolutionary dynamics, when assuming the same hypothetical

drug pressure in both species. Namely, relapses substantially delay

the spread of resistance, because they are equivalent—at least in the

idealization of the model—to infections with regard to past parasite

frequency distributions. In other words, relapses act as seed banks.

Dormancy by seed banks is known in evolutionary biology as a bet-

hedging strategy that allows organisms to survive through sub-

optimal conditions (Shoemaker and Lennon, 2018)—in the case of

malaria the absence of the vector. Seed banks are also known to slow

down evolutionary processes and influence recombination (Živković

and Tellier, 2012; Koopmann et al., 2017; Tellier, 2019). This is no

exception in malaria. Although exploring the effect of relapses/

recrudescence on recombination was beyond the scope of this work,

the effect is rather obvious. Because relapses/recrudescence slow

down the evolutionary dynamics, more genetic variation is

maintained, leading to a higher level of recombination. In fact, in

P. vivax higher levels of genetic variations than in P. falciparum are a

common empirical observation (e.g. (Pacheco et al., 2020)).

Our results have to be understood in a qualitative rather than a

quantitative context. Namely, the pattern of relapses have a substantial

influence on the evolutionary dynamics.Hence, for adequately predict

the spread of resistance, good empirical estimates on the pattern of

relapses are necessary. However, empirically distinguishing re-

infections (consecutive independent infectious), recrudescence (a

rebound of parasitaemia due to incomplete clearance of

merozoites), and relapses are notoriously difficult. With more

advanced molecular methods becoming available to produce deep-

sequencing data (e.g. (Zhong et al., 2018; Gruenberg et al., 2019)),

heuristicmethods to distinguish recrudescence from reinfections have

been proposed (Lin et al., 2015). Also haplotype-based statistical

models have been proposed (e.g. (Plucinski et al., 2015)). In principle

the framework here can be used to further develop statistical methods

to distinguish reinfections from relapses.

To obtain quantitative predictions it is also important to estimate

other model parameters. In the context of drug resistance, this

includes fitness parameters, metabolic costs for resistance, and the

proportion of asymptomatic or untreated infections. The latter can be

achieved by routine diagnostics using reliable methods such as ultra-

sensitive PCR (e.g. (Gruenberg et al., 2020)). However, also the

transmission potential, determined by the abundance of gametocytes

has to be determined (cf. 9). Selection parameters of drug-resistant

haplotypes can be determined from longitudinal molecular data by a

linear regressions in P. falciparum (McCollum et al., 2012; Schneider,

2021). Disentangling the fitness parameters into metabolic costs and

selective advantages of resistance is more difficult. Namely, costs and

selective advantages as found in vitro studies (cf. Cortese and Plowe,

1998) do not linearly scale with in vivo observations. In principle,

costs can be achieved by contrasting different populations with

different drug usage. Comparing such results with in vitro studies

helps to identify the functional relationship between in vitro

measurements and in vivo observations. Notably, fitness estimates

from a linear regression apply mainly to P. falciparum. For other

malaria species the estimates have to be adapted to the evolutionary

dynamics which account for relapses/recrudescence.

Note that the application to modelling drug resistance here

had only the purpose of contrasting the absence and presence of

relapses. Therefore, only a simplistic model was assumed for drug

resistance, i.e., resistance was assumed to be determined by a

single biallelic locus. The examples here did not exhibit the full

flexibility of the model. If drug resistance occurs in a stepwise

fashion as it is found in sulfadoxine-pyrimethamine resistant P.

falciparum haplotypes (Cortese and Plowe, 1998), where

resistance is caused by mutations at several codons in the

Pfdhfr and Pfdhps loci. To capture this situations, resistance-

conferring haplotypes have to be modelled by two mulltiallelic

loci, where each two-locus haplotype is associated with its own

metabolic costs and fitness advantage. Moreover, the mutation

haplotypes have to be introduced into the model at different time

points. A simple example can be found in (Schneider, 2021).

Relapses are irrelevant in P. falciparum, and recrudescences

can be neglected, because they occur shortly after the initial

infection and do not need to be modeled explicitly. Nevertheless,

if transmission intensities are high, which is mainly relevant for

P. falciparum, the assumption of non-overlapping generations

(transmission cycles) are questionable. In the extended
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framework, relapses can be reinterpreted to mimic overlapping

generations. This explains, at least partially, why drug resistance

in P. falciparum does not necessarily spread first in areas of high

transmission (as they occur in Africa) with many more

transmission cycles per year.

Reinterpreting relapses in the framework is also important when

applied to P. knowlesi, which is primarily pathogenic to non-human

primates, but became the dominant human-pathogenic malaria

species in some endemic areas (Sutherland, 2016). The zoonotic

animal-host reservoir renders P. knowlesi resilient. Different

transmission dynamics between humans and animal hosts can

mediate the duration of a transmission cycle. If the number of

transmission cycles per year differs among human and non-human

primate hosts, this discrepancy can be compensated by modeling

overlapping generations by relapses.

We also discussed the differences of frequency and prevalence of

parasite haplotypes. The former is the relative abundance of a

haplotype in the parasite population, the latter the likelihood that

the haplotype occurs in an infection. Studying the haplotype

frequency distribution over time is the aim of evolutionary

genetics. From a clinical or epidemiological point of view,

prevalence is more relevant. The latter is determined by the

haplotype frequency distribution and the distribution of super-

or co-infections. This was already emphasized in the context of

seasonalmalaria transmission in (Schneider, 2021) for P. falciparum.

It was shown that the prevalence of a haplotype always exceeds its

frequency. This changes if relapses/recrudescence occur and was

exemplified here by the hypothetical dynamics of drug-resistance

evolution.

The applications of the framework introduced here are

manifold. For instance, in the context of drug resistance, the

framework allows to investigate the evolution of multi-drug

resistance determined by several loci and changing drug-

treatment policies. Also patterns of selection, e.g., genetic

hitchhiking, can be studied using this framework. The illustrated

applications were only under the simplest assumptions, e.g., of no

intra-host competition and super- but no co-infections.

Intra-host competition plays an important role in the spread of

HRP2/3 gene deletions associated with false-negative malaria rapid

diagnostic tests (RDTs) (Gamboa et al., 2010). Namely, if the

treatment guidelines require to verify suspected infections by

RDTs before treatment with artemisinin combination therapies

(ACTs), as recommended by the WHO (World Health

Organization, 2017), false-negative results can lead to delayed

treatment. Similarly intra-host competition seems relevant when

considering selection onmerozoite surface proteins (Goh et al., 2021).

Intra-host dynamics enter themodel via the definition of fitness.

It is not necessary to define an evolutionary-genetic model which

captures two timescales, the evolutionary dynamics in terms of

generations of transmission cycles, and the timescale of an infectious

episode in the same model, as it was done, e.g., in (Kim et al., 2014).

Rather, the framework can be used in a multi-scale model, which

takes input from a separate intra-host model.

Similarly, the framework does not require tomodel themosquito

dynamics explicitly. They rather enter via the distribution of super-

and co-infections. Considering only super-infections has the

conceptional advantage, that it is a well-defined model. It is

frequently used in statistical approaches to estimate haplotype

frequency distributions and MOI (cf. e.g. Hill and Babiker, 1995;

Stephens et al., 2001; Li et al., 2007;Hastings and Smith, 2008;Wigger

et al., 2013; Schneider, 2018; Hashemi and Schneider, 2021). Ignoring

co-infections is justified if the distribution of haplotypes in the

mosquitoes is uncorrelated or when considering only few loci.

However, if one aims to include genetic relatedness, it is

important to specify a model for co-infections. This becomes

increasingly popular as more high-quality genomic data is

becoming available in malaria, which has enough resolution to

study genetic relatedness (cf. Nkhoma et al., 2012; Wong et al.,

2018; Zhu et al., 2019; Nkhoma et al., 2020; Dia and Cheeseman,

2021; Neafsey et al., 2021).

Although the framework is very general, it also has several

limitations. First, it ignores mutations. This is not a strong

restriction, because in many applications one is interested in

de novo mutations which occur at discrete time points. This is

captured by the model, by introducing new haplotypes

(i.e., extending the model) at certain times. However, constant

mutation rates, e.g., to study mutation-selection balance, can be

easily introduced. Another limitation is the deterministic nature

of the framework. When aiming to study stochastic effects such

as genetic drift, it is rather straightforward to develop a stochastic

version of the framework. Third, the model ignores mitotic

recombination during merozoite production inside the host.

This plays an important role in some applications, particularly

in the structural rearrangement of Var genes (Claessens et al.,

2014). These hypervariable genes are responsible to

generate important antigen profiles for parasite-host

interactions (Warimwe et al., 2009). In any case the

framework introduced here allows studying manifold

evolutionary-genetic aspects of malaria. Importantly, it allows

us to specify benchmark scenarios. More empirical evidence is

required to refine relevant parametrizations of the framework.
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