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Background:Heart failure (HF) is a complex clinical syndrome characterized by the

inability to match cardiac output with metabolic needs. Research on regulatory

mechanism of fibrosis-related genes in patients with HF is very limited. In order to

understand the mechanism of fibrosis in the development and progression of HF,

fibrosis -related hub genes in HF are screened and verified.

Methods: RNA sequencing data was obtained from the Gene Expression

Omnibus (GEO) cohorts to identify differentially expressed genes (DEGs).

Thereafter, fibrosis-related genes were obtained from the GSEA database

and that associated with HF were screened out. Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis was

carried out to analyze the biological function of fibrosis-related DEGs. The

protein-protein interaction (PPI) network of hub genes was constructed via the

STRING database. Moreover, the diagnostic value of hub genes for HF was

confirmed using ROC curves and expression analysis. Finally, quantitative real

time PCR was used to detect the expression levels of mRNAs.

Results: A total of 3, 469 DEGs were identified closely related to HF, and 1,

187 fibrosis-related DEGs were obtained and analyzed for GO and KEGG

enrichment. The enrichment results of fibrosis-related DEGs were consistent

with that of DEGs. A total of 10 hub genes (PPARG, KRAS, JUN, IL10, TLR4,

STAT3, CXCL8, CCL2, IL6, IL1β) were selected via the PPI network. Receiver

operating characteristic curve analysis was estimated in the test cohort, and

6 genes (PPARG, KRAS, JUN, IL10, TLR4, STAT3) with AUC more than 0.7 were

identified as diagnosis genes. Moreover, miRNA-mRNA and TF-mRNA regulatory

networks were constructed. Finally, quantitative real time PCR revealed these

6 genes may be used as the potential diagnostic biomarkers of HF.

Conclusion: In this study, 10 fibrosis-related hub genes in theHFwere identified

and 6 of them were demonstrated as potential diagnostic biomarkers for HF.
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1 Introduction

Heart failure (HF) is a complex syndrome considered to be

the consequence of a series of cardiovascular diseases, including

coronary heart disease, valvular heart disease, cardiomyopathy,

hypertension, etc. It is usually caused by a cardiac structural

abnormality and/or systolic/diastolic dysfunction, which

ultimately leads to a decrease in cardiac output and/or an

elevation in intracardiac pressure. Its characteristic symptoms

include dyspnea, orthopedic breathing, and lower limb swelling,

and signs including increased jugular vein pressure and

pulmonary congestion (Ponikowski et al., 2016). Population

aging is currently a major demographic phenomenon and HF

is extremely common among the elderly population.

Approximately 24 million patients suffer from HF worldwide.

Despite the new standard quadruple therapy (angiotensin

receptor-neprilysin inhibitor (ARNI), β-blockers,
mineralocorticoid receptor antagonists (MRAs) and sodium-

glucose cotransporter 2 (SGLT2) inhibitor) and invasive

therapies (revascularisation, cardiac resynchronisation therapy

(CRT), implantable cardioverter defibrillators (ICDs), left

ventricular assist device (LVAD) and heart transplantation)

are beneficial and improve the prognosis of patients with HF

(Writing Committe et al., 2021), unfortunately, the mortality and

rehospitalizaion remain high and it costs patients to bear huge

financial burden (Virani et al., 2020). HF is a global public health

problem currently threatening human health, and has brought a

heavy burden to patients’ physical and mental health and life

quality.

Cardiac remodeling is typically associated with the

occurrence and development of HF, and one of its most

significant pathological features is myocardial fibrosis (MF).

MF is thought to contribute to cardiac systolic and diastolic

dysfunction and play a crucial role in elevating the risk of

arrhythmia (Kong et al., 2014). Since cardiomyocytes do not

have the capability to regenerate, it is mainly repaired byMF after

myocardial injury. MF is defined as excessive deposition of

extracellular matrix proteins in the cardiac interstitium,

proliferation of cardiac fibroblasts and repairment of scar

formation (Russo and Frangogiannis, 2016). MF can be

quantified by late gadolinium enhancement (LGE) in cardiac

magnetic resonance (CMR). A CMR study on hypertrophic

cardiomyopathy showed that the magnitude of LGE

progression is correlated to future implantation of ICDs,

deterioration of ejection fraction, and admission for HF

(Habib et al., 2021). In patients with chronic myocardial

infarction scheduled for primary preventive ICD implantation,

LGE identifies a subgroup with increased risk for life-threatening

arrhythmias and sudden cardiac death (Boye et al., 2011).

Mandawat et al. (2021) have found that the MF progression

in patients with non-ischemic dilated cardiomyopathy is

associated with increased hazards of all-cause mortality and

heart failure-related complications.

When designing anti-fibrosis treatment strategies for patients

with HF, it is essential to fully understand the mechanisms in

charge of the occurrence, progression and regression of MF. For

example, Eguchi et al. (2021) found that fibroblast-specific

deletion of GRK5 in mice led to decreased fibrosis and

cardiac hypertrophy after chronic angiotensin II infusion or

after ischemic injury compared to nontransgenic littermate

controls. It has been revealed that dhS1P increases collagen

synthesis in cardiac fibroblasts causing fibrosis through

dhS1P-JAK/STAT-TIMP1 signaling (Magaye et al., 2020). Das

et al. (2018) suggested that TRAF3IP2 can mediate TWEAK/

TWEAKR-induced pro-fibrotic responses in cultured cardiac

fibroblasts and the heart. Moreover, Li et al. (2020) Reported

that ULK1 overexpression could reverse the regulatory effect of

miRNA-1297 on MF. However, due to the complexity of

signaling pathways as well as the cell types involved in MF,

there is a lack of effective therapies to inhibit or reverse MF

nowadays (Park et al., 2019). Thus, screening for new and more

MF-related markers may provide new insights into the diagnosis

and treatment of HF, and this study aims to pursue potentially

differentially expressed mRNAs in HF patients with MF. It is

predicted that these mRNAs might be involved in the regulation

of HF and MF, with high diagnostic and could become a new

target for subsequent treatment.

2 Materials and methods

2.1 Data source

The gene expression profile GSE141910 on Illumina HiSeq

2500 (Homo sapiens) expression beadchip and GSE57338 on

[HuGene-1_1-st] Affymetrix Human Gene 1.1 ST Array

[transcript (gene) version] expression beadchip platform were

acquired from the Gene Expression Omnibus (GEO) of NCBI

(http://www.ncbi.nlm.nih.gov/gds/), respectively. Fibrosis-

related genes were obtained from the GSEA database.

GSE141910, comprised of left ventricular tissues 200 HF

samples and 166 control samples, and GSE57338, composed

of heart left ventricle tissues of 177 HF samples and 136 control

samples were used as training set and external validation set,

respectively.

2.2 Identification of differentially
expressed genes

DEGs with the threshold criterion of |log2FC| >0.25 and

adjusted p-value < 0.05 were screened using the limma

package of the R software program (Ritchie et al., 2015).

The expression heatmap and volcano plot of the DEGs were

created using the “pheatmap” and “ggplot2” packages via R

software.

Frontiers in Genetics frontiersin.org02

Tao et al. 10.3389/fgene.2022.1032572

http://www.ncbi.nlm.nih.gov/gds/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1032572


2.3 Gene ontology and kyoto
encyclopedia of genes and genomes
analysis

The intersection of DEGs and fibrosis-related genes was

carried out using the Venn Diagram package, and the fibrosis-

related DEGs were used for subsequent analysis. The R package

“ClusterProfiler” was used to implement the functional

annotation of Gene ontology (GO) enrichment analysis and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis of the DEGs and fibrosis-related DEGs (Yu et al., 2012a).

Adjusted p < 0.05 was considered statistically significant.

2.4 Protein-protein interaction network
construction

Herein, STRING was used to analyze the functional

connections and interactions between proteins. Then the

visualization of the PPI network was achieved based on

Cytoscape (https://cytoscape.org/, version 3.7.2), with the hub

genes screened by the cytoHubba plug-in of Cytoscape software.

2.5 MiRNA-hub gene-interaction analysis

MiRNet (https://www.mirnet.ca/), a convenient online database

that mainly focuses on miRNA-target interactions was used in the

current study to predict the miRNAs targeting hub genes (Fan and

Xia, 2018). In order to comprehensively and accurately excavate the

regulatory relationship between miRNAs and hub genes, the

miRNAs of hub genes were comprehensively predicted by

miRNet database. We construct the regulatory network by

Cytoscape based on the prediction of mRNA-miRNA.

2.6 Transcription factor-hub gene-
interaction analysis

NetworkAnalyst database (https://www.networkanalyst.ca/)

was used to predict the TFs that could regulate HF-associated

hub genes. Next, Pearson correlation analysis was implemented

to screen more stringent TFs of key genes, and TFs with

p-value<0.05 and the absolute value of correlation ≥0.4 were

regarded as potential TFs of key genes. Moreover, the TFs-hub

genes network was visualized by Cytoscape.

2.7 Receiver operating characteristic
curve analysis

Then ROC curve analysis was implemented to classify the

sensitivity and specificity of the hub genes for HF diagnosis. We

calculated the area under the curve (AUC) using the statistical

package “pROC” in R software (Robin et al., 2011). The boxplot

of hub genes expression was drawn using the “ggplot2” in R

package.

2.8 qPCR of hub genes

Finally, to investigate the roles of hub genes in HF,

quantitative real time PCR (RT-qPCR) was used to detect the

expression levels of mRNAs in plasma samples from HF patients

(n = 10) and healthy controls (n = 10), which obtained from

Changshu No.1 People’s Hospital. The clinical features of these

HF patients and healthy controls have shown in Table 1. Among

the 10 HF patients, 4 were heart failure after myocardial

infarction, 3 were ischemic cardiomyopathy, 2 were dilated

cardiomyopathy and 1 was hypertrophic cardiomyopathy.

Blood samples of HF patients were collected within 2 h after

admission to CCU or cardiology ward. All blood samples were

collected in EDTA anticoagulant tubes and stored in the central

laboratory −80°C refrigerator until thawed for analysis. Plasma

was isolated by a double-centrifugation protocol as previously

described (Tsui et al., 2014). Total RNA from plasma samples

were isolated using TRIzol cracking method. RNAs were eluted

with 14 of µl RNAse-free water and stored in Low DNA binding

Eppendorf tubes (Eppendorf) at−80°C. Next, total RNA was

reverse transcribed into complementary DNA (cDNA) using

the iScript™ cDNA Synthesis Kit (Bio-Rad, Hercules, CA,

United States) based on the manufacturer’s procedure.

Moreover, quantitative real time PCR was performed using

SYBR Green Premix Ex Taq™ (Takara, Japan) and the

Applied Biosystems 7500 Real-time PCR System (Applied

Biosystems, Inc., Carlsbad, CA, United States). Finally, the

relative expression level of each lncRNA was calculated using

the 2−ΔΔCt method, ΔΔCt = (CtRNA − Ctβ-actin) BC cells −

(CtRNA − Ctβ-actin) normal cells, and fold change = 2−ΔΔCt.

Primer sequences and annealing temperatures of quantitative

real time PCR could be found in Table 2.

3 Results

3.1 Identification of differentially
expressed genes in heart failure and
functional enrichment analysis

Using GSE141910, a total of 3,469 DEGswere identified between

200 heart failure samples and 166 healthy samples (Figures 1A,B,

Supplementary Table S1), among which 2,052 genes were

significantly upregulated, and 1,417 genes were significantly

downregulated in HF patients compared with healthy samples.

These DEGs were significantly enriched into 375 BPs, 15 CCs,

19MFs, 328 KEGGs (Supplementary Tables S2, S3). As shown in
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Figure 1C, theGOanalysis results for theDEGs indicated theseDEGs

were mainly involved in extracellular matrix organization,

extracellular structure organization in the biological process

category, collagen-containing extracellular matrix in the cellular

component category, and extracellular matrix structural

constituent in the molecular function category. Moreover, KEGG

pathway analysis revealed that these DEGs were mainly enriched in

pstein-barr virus infection, human T-cell leukemia virus 1 infection,

influenza A (Figure 1D).

3.2 Extraction the fibrosis-related
differentially expressed genes and
construction of the protein-protein
interaction network

A total of 8630 fibrosis-related genes were collected in the

genecard database. After intersecting 3469 DEGs and

8630 fibrosis-related genes, a total of 1187 fibrosis-related

DEGs were obtained (Figure 2A). Functional enrichment

analysis showed that these fibrosis-related DEGs were

significantly enriched into 1651 BPs, 88 CCs, 72 MFs,

317 KEGGs (Supplementary Tables S4, S5). As shown in

Figure 2B, the GO analysis indicated that fibrosis-related

DEGs were mainly associated with extracellular matrix

organization, extracellular structure organization in the

biological process category, collagen-containing extracellular

matrix in the cellular component category, and extracellular

matrix structural constituent in the molecular function

category. In addition, KEGG pathway analysis revealed that

fibrosis-related DEGs were mainly enriched in epstein-barr

virus infection, human T-cell leukemia virus 1 infection,

influenza A, which was consistent with the enrichment results

of DEGs (Figure 2C).

To further explore the protein interaction of fibrosis-related

DEGs, we used the STRING database to construct a PPI network

(Figure 2D). This network has a total of 1145 nodes and 1583 edges.

PPI network of the top 100 genes was shown in Figure 2E and the

top 10 genes with the highest degrees were selected and defined as

hub genes in HF, including KRAS, JUN, IL6, IL1β, IL10, CXCL8,
CCL2, TLR4, STAT3, and PPARG. The degrees of the node were

correlated with the tint of the color, from the blue to the red.

3.3 The ROC curve analysis and expression
analysis of hub genes in train set and
validation set

To get more robust key fibrosis-related genes in HF, we firstly

observed the expression levels of hub genes between the HF and

healthy samples in GSE141910. Interestingly, we found that the

expressions of IL6, KRAS, CCL2, IL10, TLR4, STAT3 and PPARG in

HF patients were down-regulated compared with healthy samples,

while the expressions of JUN, IL1β and CXCL8 were up-regulated in
HF samples compared with healthy samples (Figure 3A). Moreover,

ROC curves showed the except for IL6, IL1β, CXCL8 and CCL2,

whose AUC values were 0.559, 0.573, 0.508 and 0.645, the AUC of all

TABLE 1 The clinical characteristics of HF group and control group.

Parameter HF group (N = 10) Control
group (N = 10)

p value

Age, years 77.30 ± 6.45 67.70 ± 10.07 0.152

Gender (Male/Female) 9/1 8/2 0.531

BMI, kg/m2 22.16 ± 2.80 25.01 ± 2.87 0.982

LVEF, % 41.80 ± 12.69 25.01 ± 2.87 0.005

LVEDD, mm 56.70 ± 10.54 44.60 ± 4.38 0.003

BNP, pg/ml 609.00 (278.75,1103.00) 59.50 (30.75,83.00) <0.001
CRP, mg/l 10.85 ± 9.25 0.95 ± 0.95 0.008

BMI, body mass index; LVEF, left ventricular ejection fraction; LVEDD, left ventricular end-diastolic dimension.

TABLE 2 Primers used in Quantitative PCR.

Primers Sequence (5’→39)

IL10 Forward 5′-ATTCACCTTCCAGTGTCTCGG-3′
Reverse 5′-GACCTCAAGTGATCCACCCG-3′

JUN Forward 5′-CTCAGACAGTGCCCGAGATG-3′
Reverse 5′-TGTGCCACCTGTTCCCTGAG-3′

KRAS Forward 5′-CTGCTGCTGTGGATATCTCCA-3′
Reverse 5′-ATGTTCAAAGCATCAGCCACC-3′

PPARG Forward 5′-CACTACTGTTGACTTCTCCAGCATT-3′
Reverse 5′-CATGAGGGAGTTGGAAGGCT-3′

STAT3 Forward 5′-AGGCATGTCTCCTTGCGTGT-3′
Reverse 5′-ATGAACTGAATGAAGACGCCA-3′

TLR4 Forward 5′-CAAACGGCTGCTGAGGGT-3′
Reverse 5′-AATCTGGATGATGAAGTTACACCTC-3′

GAPDH Forward 5′-GTGAAGCAGGCGTCGGA-3′
Reverse 5′-CTCTCTTCCTCTTGTGCTCTTGC-3′
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other genes were greater than 0.7 (Figure 3B), indicating that IL10,

JUN, KRAS, PPARG, STAT3 andTLR4might be used as biomarkers

for distinguishing HF and non-HF samples. The thresholds of IL10,

JUN, KRAS, PPARG, STAT3, and TLR4 were 6.91, 13.44, 12.84,

11.75, 15.1, and 12.5, respectively. The included individuals were

assigned into low- and high-expressed group by the threshold of each

mark gene, which was presented in Table 3. Furthermore, we also

examined the expressions of IL10, JUN, KRAS, PPARG, STAT3 and

TLR4in external GSE57338 dataset. Excitingly, the expressions of

KRAS, IL10, TLR4, STAT3 and PPARG in HF patients were

significantly down-regulated, the expression of JUN was

significantly up-regulated in HF patients compared with healthy

samples (Figure 3C), which was consistent with the result of

GSE141910. After that, we examined the expressions of 6 hub

genes in GSE5406, GSE42955 and GSE116250 and the results

showed the same trend of gene expression in these datasets

compared with our verification results (Supplementary Figure S1).

Thus, IL10, JUN, KRAS, PPARG, STAT3 and

TLR4 might play key roles in HF, and were defined as the

ultimately hub genes.

FIGURE 1
Identification and functional enrichment analysis of DEGs between theHF samples and control samples in GSE141910 datasets. Volcano plot (A)
and heatmap (B) of DEGs. GO enrichment (C) and KEGG pathway enrichment results (D) of the DEGs. Green, downregulated; red, upregulated; grey,
not differential expressed. DEGs, differentially expressed genes.
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3.4 The potential regulatory mechanisms
of ultimately hub genes

To further explore the potential regulatory mechanisms

of ultimately hub genes, we firstly predicted potentially

regulating miRNAs of ultimately hub genes. The regulatory

relationships between the ultimately hub genes and their

potentially regulating miRNAs were established using

Cytoscape software. As shown in Figure 4A, we found that

148 miRNAs (ie, hsa-miR-17-5p) might regulate the

FIGURE 2
Functional enrichment analysis and exploring the interaction of fibrosis-related DEGs. Venn Diagram showed the intersection of DEGs and
fibrosis-related genes (A). GO enrichment (B) and KEGG pathway enrichment results (C). PPI network of the interaction of fibrosis-related DEGs (D).
PPI network of the top 100 genes and the top 10 genes with the highest degrees (E).
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expression of STAT3, 144 miRNAs (ie, hsa-miR-15a-5p)

might regulate the expression of JUN, 132miRNAs (ie,

hsa-miR-16-5p) might regulate the expression of KRAS,

43 miRNAs (ie, hsa-miR-1-3p) might regulate the

expression of TLR4, 34 miRNAs (ie, hsa-miR-215-5p)

might regulate the expression of PPARG, 19 miRNAs (ie,

hsa-miR-194-5p) might regulate the expression of IL10.

Moreover, we also investigated the potential regulatory

TFs of ultimately hub genes, and the interaction network

consisting of 8 TFs and 4 ultimately hub genes was

FIGURE 3
The ROC curve analysis and expression analysis of hub genes in train set and validation set. The expression of the hub genes between theHF and
normal group in GSE141910 (A). ROC curve evaluated the diagnostic value of hub genes for HF in GSE141910 (B). The expression of the hub genes
between the HF and normal group in GSE57338 (C).
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constructed. As illustrated in Figure 4B, we found that

NR3C1 might be a positively related TF of TLR4,

YY1 might be a positively related TF of TLR4 and STAT3,

CREB1 might be a positively related TF of STAT3,

FOXC1 might be a positively related TF of TLR4 and

KRAS, STAT1 might be a positively related TF of KRAS,

TFAP2C might be a positively related TF of IL 10, and

ESR1 might be a negatively related TF of IL10,

PRRX2 might be a negatively related TF of KRAS.

Therefore, we speculated that NR3C1, YY1, FOXC1,

CREB1, STAT1, TFAP2C, ESR1, and PRRX2 might

affected HF progression by regulating TLR4, STAT3,

KRAS, and IL10 and the correlation analysis of 4 hub

genes and their potential TFs was shown in Figure 4C.

TABLE 3 The distribution of HF and normal individuals between the
low- and high-expression group.

Gene Low-expression High-
expression

p value

HF Normal HF Normal

IL10 164 18 36 148 <0.001
JUN 30 87 170 79 <0.001
KRAS 165 69 35 97 <0.001
PPARG 141 26 59 140 <0.001
STAT3 172 48 28 118 <0.001
TLR4 160 63 40 103 <0.001

FIGURE 4
The potential regulatory mechanisms of ultimately hub genes. The regulatory relationships between the target genes and their miRNAs (A).
Green, downregulated; red, upregulated; Circle, hub gene; Triangle, miRNA. The interaction network consists of 4 hub genes and 8 TFs (B). Blue,
downregulated; red, upregulated; Circle, hub genes; Triangle, Transcription Factor. The correlation analysis of 4 hub genes and their potential
TFs (C).

Frontiers in Genetics frontiersin.org08

Tao et al. 10.3389/fgene.2022.1032572

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1032572


3.5 Validation of the mRNA expression of
ultimately hub genes between heart
failure and healthy samples by RT-qPCR

At last, we determined the expression levels of IL10, JUN,

KRAS, PPARG, STAT3 and TLR4 between HF and healthy

samples by RT-qPCR. Notably, we found that the expression

of JUN was significantly elevated, and the expressions of

PPARG, KRAS, IL10, TLR4 and STAT3 were significantly

down-regulated in HF plasma samples compared to

normal controls (Figure 5). Those results were consistent

with the RNA sequencing results in GSE141910 and

GSE57338.

4 Discussion

HF is a complex clinical syndrome with severe morbidity,

mortality, and rehospitalization rates worldwide requiring long-

term treatment management, which imposes a burden on

patients’ health and economy (Gerber et al., 2015). MF is one

of the typical pathological features of end-stage HF, and it is a

strong determinant of poor prognosis as well, predicting sudden

cardiac death and ventricular tachycardia independently

(Assomull et al., 2006). Due to the complexity of its

mechanism, early identification, timely inhibition and reversal

of MF remain to be studied. The effective targets to be developed

and their corresponding therapeutic drugs are currently the

FIGURE 5
Validation of the expression of 6 hub genes by quantitative real time PCR. The levels of IL-10 (A), JUN (B), KRAS (C), PPARG (D), STAT3 (E) and
TLR4 (F) in plasma samples from patients with HF and healthy controls were measured by qPCR. Results were shown as mean ± SD. * p < 0.05 ** p <
0.01 vs. control. GAPDH was used as housekeeping gene.
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research focuses and have extensive prospects in the future.

Hence, we explored the fibrosis-related biomarkers in HF to

provide a theoretical basis for understanding disease mechanisms

and clinical diagnosis, which may be therapeutic target of HF.

Based on this study, the fibrosis-related DEGs between HF

patients and normal control groups were found. Then, the PPI

network of these differentially expressed fibrosis-related genes

was constructed. According to the result of ROC, 6 hub genes

(PPARG, KRAS, JUN, IL10, TLR4, STAT3) related to fibrosis

with high specificity and sensitivity used to diagnose HF were

determined as biomarkers ultimately. Based on the fact that

myocardial tissue is difficult to obtain, which is contrary to tumor

tissue, we conducted RT-qPCR to detect the expression levels of

6 hub genes in HF patients. The results were consistent with the

RNA sequencing results in GSE141910 and GSE57338. Liquid

biopsy is a powerful technique that could non-invasive detect

biomarkers and monitors disease progression by collecting non

solid biological tissues, such as blood samples. At present, this

technology is widely used in tumor screening and early diagnosis

(Chen and Zhao, 2019), and it is also promising in the

cardiovascular field (Bayes-Genis and Lanfear, 2019). This

result also revealed the potential value and prospect of liquid

biopsy in the early diagnosis and progress monitoring of HF. In

addition, we have noticed that epigenetic changes in cell-free

DNA (cfDNA) are widespread in human diseases, including 5-

methylcytosine (5 mC), 5-hydroxymethylcytosine (5hmC) and

nucleo-some positioning (NP) (Yu et al., 2020). Due to the

abundant genetic and epigenetic information carried in

cfDNA, it can be detected by liquid biopsy and may

revolutionize the traditional screening and treatment of

various human disorders (Diaz and Bardelli, 2014).

In our interaction network, there are totally consisting of

8 TFs and 4 ultimately hub genes and we found that TLR4,

STAT3, KRAS, and IL10 might be regulated by NR3C1, YY1,

FOXC1, CREB1, STAT1, TFAP2C, ESR1, and PRRX2. TLR4, as

one of the Toll-like receptors, is a member of the interleukin-1

receptor family and is an important regulator of inflammation.

Activation of TLR4 leads to the progression of cardiac

hypertrophy and injury (Katare et al., 2020). Liu et al. (2015)

concluded that the expression and pro-inflammatory function of

TLR4 are up-regulated after myocardial infarction, which

exacerbates HF in rats. Zhang et al. (2019) found FOXC1 up-

regulates the expression of toll-like receptors in myocardial

ischemia. In addition, it has been revealed that NR3C1 can

affect the expression of TLR4 while the research on

interaction between YY1 and TLR4 was limited (van Dokkum

et al., 2022). STAT3, a transcription factor, plays a protective role

in the cardiovascular diseases and the deletion of STAT3 in

cardiomyocytes makes the heart more vulnerable to chronic

pathological lesion (Kurdi et al., 2018). Animal research data

by Deshpande et al. (2018) showed that activation of STAT3 has a

protective effect on acute HF. YY1 also has been found to be an

activator of STAT3 while interaction between STAT3 and

CREB1 is not clear (Tsui et al., 2014; Chen et al., 2019).

KRAS is one of the most common oncogenes in human

beings and has been widely reported in tumor-related studies

in the past decades, but is very limited in the cardiovascular field.

Fish et al. (2020) demonstrated that active KRAS expression in

the endothelium is sufficient to cause vascular malformations.

KRAS gene mutations in Noonan syndrome have been reported

to be associated with a high incidence of congenital heart defects

(Pierpont and Digilio, 2018). KRAS gene mutation is associated

with HF, and there is a lack of research on gene deletion and

activation. Our results show that KRAS is down-regulated in HF,

which has potential diagnostic value and may be regulated by

FOXC1, PPRX2 and STAT1, but the potential mechanism is still

unclear. IL-10 is an anti-inflammatory cytokine and regulates

inflammatory responses of mononuclear phagocytes. Studies

have shown that IL-10 exerts its protective effect through its

anti-inflammatory activity. In patients with metabolic syndrome,

a higher level of IL-10 is associated with a lower incidence of

coronary artery disease (Barcelos et al., 2019). Kaur et al. found in

the rat model that membrane-bound IL-10 protein and mRNA

levels decreased 4, 8, and 16 weeks after myocardial infarction,

which illustrates the relationship between the decrease in IL-10

and the decline in cardiac function (Cuadros et al., 2006).

However, there are few studies between IL10 and TFAP2C or

ESR1 at present and further experimental verification is required.

The other two hub gene are PPARG (PPARγ) and JUN (c-JUN),

which are out of interactive network. PPARG is a member of the

peroxisome proliferator-activated receptor family, which is enriched

in the adipose tissue and extra-adipose tissues, such as the heart and

the vascular wall. Legchenko et al. (2018) reported that deletion of

PPARG in cardiomyocytes brings about biventricular systolic

dysfunction as well as intramyocellular lipid accumulation in

animal models. And PPARG agonists were proven to have the

ability to recover heart function in animal models of HF after

myocardial infarction (Yu et al., 2012b). JUN is a member of the

AP-1 transcription factor family and participates in the development

of the embryonic heart (Eferl et al., 1999). JUN N-terminal kinase

(JNK) plays an important role in myocardial hypertrophy and

cardiac ischemia/reperfusion injury (Shvedova et al., 2018).

Petrich et al. (2004) have revealed a marked stiffening of JNK-

activated animal hearts, mainly associated with the remodeling of

specific extracellular matrix components. Another animal study

showed that inhibiting JUN signaling prevents cardiac

hypertrophy (Sundaresan et al., 2012). The expression of these

two hub genes is consistent with the trend of our results, PPARG

was down-regulated while JUN was up-regulated in HF, which may

be key genes and therapeutic target in HF. In summary, the TF-

mediated network may be vital for HF development, the genes

involved in the network might have the promising potential for

HF diagnosis and therapy.

Increasing evidence has suggested that multi-omics driven

discoveries and incorporation of additional clinical features may

be more helpful in the clinical diagnosis and treatment of HF (Zhang
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et al., 2020; Tayanloo-Beik et al., 2021; Wu et al., 2021).

Unfortunately, the current lack of multi-omics data in public

databases and the very few available clinical data limit the

analysis. Therefore, further exploration of more accurate markers

based on multi-omics data and clinical information is necessary.

Notably, we found that the expression of JUN was significantly

elevated, and the expressions of PPARG, KRAS, IL10, TLR4 and

STAT3 were significantly down-regulated in HF samples compared

to normal controls in GSE141910, GSE57338 and our clinical

samples. Thus, we speculated that PPARG, KRAS, IL10,

TLR4 and STAT3 might play key roles in the clinical diagnosis

and treatment of HF. In addition, a growing number of studies have

suggested that combining multi-omics data may be more useful for

clinical diagnosis (Yu et al., 2019; Haas et al., 2021; Wu et al., 2021).

For example, Hass et al. showed a possible use of distinct molecules

like succinic acid as an (early) biomarker and interventional target in

HF through using multi-omics data (Haas et al., 2021). Specifically,

methylation variation associated with the development of aortic

atheroma is detectable in peripheral blood leucocytes prior to the

development of vascular lesions (Lund et al., 2004). Different patterns

of DNA methylation in peripheral blood are associated with risk of

ischemic heart disease and coronary events (Baccarelli et al., 2010;

Error in End Matter, 2018). Hence, we will further focus on the

methylation levels of KRAS, IL10, TLR4 and STAT3, and further

determine the risk of heart failure and patient stratification by the

combination of methylation and transcriptional expression in the

future.

In conclusion, we conducted an integrated analysis using both

bioinformatics data and literature-based knowledge database to

explore the hub genes of MF in HF. The miRNet database and

NetworkAnalyst database were used to construct and analyze the

target gene-miRNA regulatory network and target gene-TF

regulatory network of 6 hub genes. In this study, we identified

6 characteristic genes related to fibrosis, and further explored that

these biomarkersmay provide new diagnostic and therapeutic targets

for HF patients and provide new insights into the pathogenesis ofMF

in HF patients. Next, we will expand the sample size and further

reveal the potential mechanisms of these 6 hub genes through in vitro

and in vivo experiments.
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