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Modern plant breeding programs collect several data types such as weather, images,
and secondary or associated traits besides the main trait (e.g., grain yield). Genomic
data is high-dimensional and often over-crowds smaller data types when naively
combined to explain the response variable. There is a need to develop methods able
to effectively combine different data types of differing sizes to improve predictions.
Additionally, in the face of changing climate conditions, there is a need to develop
methods able to effectively combine weather information with genotype data to
predict the performance of lines better. In this work, we develop a novel three-stage
classifier to predict multi-class traits by combining three data types—genomic,
weather, and secondary trait. The method addressed various challenges in this
problem, such as confounding, differing sizes of data types, and threshold
optimization. The method was examined in different settings, including binary
and multi-class responses, various penalization schemes, and class balances.
Then, our method was compared to standard machine learning methods such as
random forests and support vector machines using various classification accuracy
metrics and using model size to evaluate the sparsity of the model. The results
showed that our method performed similarly to or better than machine learning
methods across various settings. More importantly, the classifiers obtained were
highly sparse, allowing for a straightforward interpretation of relationships between
the response and the selected predictors.
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1 Introduction

Modern plant breeding programs are collecting an increasing amount of data of various
types from several sources such as multiple secondary phenotypic traits (other than the main
trait of interest), high-throughput phenotyping data, weather data, hyper-spectral images, and
different types of -omics data such as genomics, transcriptomics, proteomics, metabolomics,
etc. It is believed that many secondary phenotypic traits are often positively associated with the
main trait, a fact that most prediction models for genomic selection (GS) do not take advantage
of. Given the availability of different data mentioned above, an important question is how these
various data types could be integrated to improve prediction. Integrating different data types
becomes a complex challenge when the data types have very different dimensions. In the case of
GS, the high-dimensional nature of the genomic data is well known. Genomic data are often
found to be in the form of Single Nucleotide Polymorphisms (SNPs), which can range from the
thousands to millions. On the other hand, data types such as secondary traits can be fewer than
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20. Naive concatenation of various data types into existing GS models
could lead to poor results because of the differing sizes. Genomic
variables would out-compete all other variable types in terms of
explaining the variation in the response due to their sheer
numbers. A key challenge in such scenarios is to build models that
are able to access the unique information presented in each data type
to improve the prediction capabilities.

Early attempts at integration of data types for GS show promising
results (Schrag et al., 2018). Lopez-Cruz et al. (2020) proposed the
concept of a penalized selection index, where the selection index (SI)
was linear combinations of high-dimensional secondary traits that
maximized the correlation between the primary trait and the
secondary traits. The SI was used in a G-BLUP model as a
covariate or using bivariate methods with SI and main trait as the
two responses. Arouisse et al. (2021) examined the possibility of other
dimensionality reduction methods such as penalized regression and
random forests to reduce the dimension of the secondary trait set and
used them in bivariate or multivariate settings. Sandhu et al. (2021)
explored the possibility of including all secondary traits along with the
main trait in multivariate GS methods and hence their approach was
optimal in the presence of a small number of secondary traits.

Another underdeveloped area of research involves developing
models for non-Gaussian phenotypic traits. Crop yield, a
continuous trait (can be modeled with a Gaussian distribution), is
often the most important trait that plant breeding programs want to
improve. Some other continuous traits that breeders focus on include
quality (shape, size, and other aesthetic qualities), time to maturity,
plant height, and seed weight. Sometimes, breeders are also interested
in improving categorical phenotypic traits such as resistance to
drought or salinity, susceptibility to disease, and days to maturity
or flowering. While extensive literature covers the prediction of
continuous traits, there is limited literature developing GS models
for classification.

Since the seminal work of (Meuwissen et al., 2001), genomic
selection (GS) models harnessed the genomic marker information
combined with observed phenotypic data to improve the prediction of
unobserved phenotypic values. Most of the GSmethods proposed over
the last 2 decades were developed for continuous phenotypic traits,
which were assumed to be normally distributed (Kizilkaya et al., 2014;
Montesinos-López et al., 2015a; Montesinos-López et al., 2017; Silveira
et al., 2019). However, several crops have categorical traits that have
agronomic importance (Iwata et al., 2013; Martínez-García et al., 2017;
Sousa et al., 2019). These categorical traits could be binary or
multicategory in nature. Some examples of such traits include
resistance to disease, resistance to salinity, degree of infection, fruit
quality, fruit external appearance, fruit size, and the number of
reproductive nodes.

When the number of categories in the response is large, and the
data follows an approximately normal distribution, treating the
response as normal may be reasonable. However, if the number of
categories is small and has a well-defined ordering among them, the
normality approximation leads to biased estimates of the mean and the
variance components (Stroup, 2012; Stroup et al., 2018). Generalized
linear mixed models (GLMMs) were proposed as the most suitable
alternative to model the response variable according to the appropriate
distribution it arose from.

Unfortunately, GLMMs are not directly implementable in GS due
to the high dimensionality of the genomic data, where the number of
predictors is far greater than the number of observations. Bayesian

GLMM approaches were proposed to address the high-dimensionality
problem and the multicollinearity issue prevalent in genomic data.
Some popular methods include BayesA (Meuwissen et al., 2001),
BayesB (Meuwissen et al., 2001), Bayes Cπ (Habier et al., 2011),
Bayesian ridge regression and Bayesian LASSO (Park and Casella,
2008). Wang et al. (2013) extended the Bayes A, Bayes B, and Bayes Cπ
using threshold models (Gianola, 1982) to estimate categorical traits in
animal breeding. Following this idea, Montesinos-López et al. (2015a)
extended the genomic best linear unbiased predictor (GBLUP) model
(Burgueño et al., 2012; Jarquín et al., 2014) for ordered categorical data
using a probit link function. They also introduced a logit link based
model for categorical traits that included interaction effects
(Montesinos-López et al., 2015b; Montesinos-López et al., 2017).
While some of the models above were developed to predict ordinal
categorical traits based on genomic information, none of the models
had provisions to integrate multi-type data to improve prediction.

High-dimensional prediction is the most prevalent challenge in
the GS problem and has been an active area of research. Feature
selection is a common strategy to reduce the dimensionality to
perform such predictions. Feature selection also helps remove
irrelevant features and improve the interpretability of the final
model. Variable selection methods such as forward selection,
backward selection, and best-subset selection were popular but
performed poorly in high-dimensional data (James et al., 2013).
Penalization methods such as ridge regression (Hoerl and Kennard,
1970), LASSO (Tibshirani, 1996), elastic net (Zou and Hastie, 2005),
and their variants were proposed for feature selection and work in
high-dimensional data as well. We describes some of the relevant
advancements of these penalization methods next.

Ghosal et al. (2009) proposed a novel method called forward
iterative regression and shrinkage technique (FIRST) that combined
forward selection with penalization methods such as LASSO to predict
a continuous response. FIRST effectively combined two categories of
feature selection methods. Turnbull et al. (2013) proposed a new
method called selection technique in orthogonalized regression
models (STORM), that acted as an extension to FIRST. Their
method was developed especially for the case of highly correlated
predictors. Both FIRST and STORM had lower errors than the
traditional LASSO, especially when the predictors were correlated
with each other. More importantly, their methods also led to a smaller
final model than LASSO, allowing for greater interpretability of the
relationships between the predictors and the response. FIRST and
STORM methods could be very useful methods for GS because they
work well in the presence of correlated predictors, which is a common
issue with genomic data.

FIRST and STORM methods were developed for a continuous
response and were regression methods. Ghosal et al. (2016) proposed a
penalized forward selection for the support vector classification
method (CLASSIC) which was a forward selection based SVM for
high-dimensional classification. Their models led to lower error rates
than traditional SVM along with providing significantly leaner
models. The method also has low memory requirements from a
computational perspective. While FIRST, STORM and CLASSIC
dealt with high-dimensional predictions, they did not provide
solutions for combining data types.

Jarquin et al. (2022) (in review) combined the idea of sparse
prediction and classification from these papers and applied them to
the context of combining two data types for GS. They incorporated
secondary traits, which represented a low-dimensional data set, and
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genomic information, which was a high-dimensional component.
Their method used a penalized forward selection based logistic
regression inspired by high-dimensional prediction models such as
the FIRST, STORM, and CLASSIC. They showed that their method
provided sparse models with favorable classification accuracy
compared to standard ML methods such as RF, SVM, boosting,
and linear discriminant analysis (LDA). Model sparsity refers to
the number of variables used for the classification task and hence
the smaller the model size, the greater the sparsity. Greater sparsity in
the final models allows for easier interpretation of relationships
between predictors and response, as well as determining important
variables.

Additionally, global climate change and extreme environmental
changes are an inescapable reality of the day, presenting an escalating
challenge to food production worldwide. Resilience and adaptability
among crops are essential to ensure food security. Resilience refers to
the stability of the yield in the face of extreme weather conditions,
while adaptability refers to how crops react to changes in
environments (Macholdt et al., 2020). Understanding the impact of
environmental covariates on the phenotypic outcome will help select
crops that are better suited across environments and select the best-
performing varieties for specific environments. In this work, a Finlay-
Wilkinson (FW) regression (Finlay and Wilkinson, 1963) based
approach was used to find the optimal window where the weather
had the greatest impact on the phenotypic traits of interest. Similar
approaches to finding optimal windows of time for weather
information have been the subject of recent research (Li et al.,
2018; Millet et al., 2019; Guo et al., 2020; Costa-Neto et al., 2021;
Li et al., 2021). However, these studies did not focus on integrating
data types for GS.

To summarize, this paper focused on three challenges to improve
GS: integrating multiple data types, optimizing weather data to
improve forecasting, and developing methods for high-dimensional
forecasting for categorical phenotypic traits. We developed a three-
stage method to integrate three data types (secondary traits, weather
data, and genomic data) of differing dimensionality to predict a binary
categorical phenotypic trait. The main goal of our method is to
integrate genomic, weather, and secondary trait information to
classify a trait of interest which can be modeled as a binary
variable. Binary variables have two classes, such as diseased or not,
fraud or not, resistant or not, etc. The practical implication of our
method is that plant breeders can collect different data types with
significantly different dimensions and have a way to combine them for
the purpose of predicting traits that have two possible outcomes. We
also employed techniques to extend this method for multi-class
categorical traits (traits that express as more than two classes).
Furthermore, FW regression was implemented as a pre-processing
step to the three-stage method, to identify optimal time windows to
optimize the weather data and improve the interpretability of the effect
of weather on the main trait. This enables plant breeders to include
weather information that influences the trait of interest instead of all
available weather information. It has a practical implication by
learning which growing stages impact the prediction. Finally, the
performance of the proposed methods was compared to two standard
machine learning (ML) methods - random forests (RF) and support
vector machines (SVM).

The rest of the paper is organized as follows. First, we present a
short overview of relevant literature that motivated our proposed
three-stage method. Our proposed method for binary traits was

presented in the Materials and Methods section. Next, we describe
details about the strategy that allows our method to handle multi-class
traits as well as a description of how FW regression was implemented.
This section ends with a discussion of the metrics used to evaluate the
classification ability of the methods for binary as well as multi-class
traits. The details of the real data set used to demonstrate our methods
were described next. Then, we present the results of the method and
compare them to other standard methods in terms of their
performance and finally conclude with a discussion and future
directions.

2 Materials and methods

Penalized approaches (Hoerl and Kennard, 1970; Tibshirani, 1996;
Zou and Hastie, 2005; James et al., 2013) for regression and
classification are common in the presence of high-dimensional
data. However, a classical penalized logistic regression approach
does not work in our context because it does not allow for
variables of certain data types to be considered for the model
building before others. Combining data types of disparate sizes
invites the risk of the “crowding-out” issue discussed earlier.
Outnumbering often leads to out-competing, resulting in the
lower-dimensional data being disregarded in the final model. In a
naive concatenation approach, it is plausible that none of the
secondary traits or weather variables are retained in the final
model. In order to avoid this, a forward selection approach was
considered, whereby we included variables one at a time. Forward
selection also allowed control of the order in which data types are
considered. By first considering low-dimensional data types, this
method ensured that the classifier used all information available to
explain the variability in the primary trait before allowing higher-
dimensional data types to explain the variation in the response.

Another issue was that the genomic and weather variables also
impacted the secondary traits. Before considering all the variables in
the model building, the effect of genomic and weather variables had to
be removed from the secondary traits and their true intrinsic effects
had to be obtained. Isolating the intrinsic effect of the secondary traits
also ensured that the potential effect of genomic or weather variables
was not mistakenly ascribed to the secondary traits. Separating the
effects also allowed for a simpler and cleaner interpretation of variable
importance and relationships between the response and the
explanatory variables.

In the first stage of the modeling, we computed the intrinsic effect of
the secondary traits devoid of the weather and genomic effects. In order to
remove the genomic and weather effects, the weather variables were first
regressed on each of the secondary traits to obtain the residuals. Then, the
genomic variables were regressed on the secondary traits to obtain
another set of residuals. In the second stage of the modeling, we used
a training data set to build a logistic regression classifier combined with a
penalized forward-selection scheme to include phenotypic residuals into
the model before allowing weather variables and finally allowing genomic
variables. Through the iterative process of the forward selection scheme,
only the most influential predictor was selected to enter the model at each
step. The third and final stage of the proposed method concentrated on
improving the classification through a threshold search process.
Traditionally, a threshold of p = .5 is used to categorize the
predicted probabilities obtained from a logistic classifier, where
an observation with a probability greater than .5 is classified as a
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1 and below .5 as a 0. However, when the number of 1s and 0s in the
binary response are significantly different, often referred to as class
imbalance, the threshold of .5 may lead to poor classification
accuracy. Hence, we used an optimization data set to determine
the optimal threshold to improve classification accuracy in this
third stage of modeling. Finally, the coefficients obtained from the
second stage of modeling and the optimal threshold obtained from
the third modeling stage were used to predict the class assignment
in the test data set and the corresponding results were used to
evaluate the model’s performance.

2.1 Three-stage method for binary
classification

In this section, we build on the overview presented above by
describing all the pertinent details to implement the proposed method
for GS. Let the binary main trait of interest be represented by yi, the two
sets of residual for the secondary traits be denoted by
ûi � (ûiW1, ûiW2, . . . , ûiWP, ûiV1, ûiV2, . . . , ûiVP), the weather covariates
be denoted by wi = (wi1, wi2, . . . , wiQ), and the genomic variables be
denoted by vi = (vi1, vi2, . . . , viR), where i = 1, 2, . . . , n. Without loss of
generality, let us assume that E(U) = E(W) = E(V) = 0 and Var(U) = IP,
Var(W) = IQ, and Var(v) = IR, whereU = (u1, u2, . . . , un),V = (v1, v2, . . . ,
vn), andW = (w1, w2, . . . , wn). Essentially, we replaced the variables with
their standardized versions.

The first stage of the method involved evaluating the two sets of
residuals of the secondary traits by removing the effects of weather and
genomic covariates. A penalized regression model was used to
compute the residuals of each uip, where p = 1, 2, . . . , P and i = 1,
2, . . . , n. First, we regressed the weather variables on each of the
secondary traits uip and obtained the residuals ûiWp � uip − wT

i b̂p,
where b̂p � (b̂p1, b̂p2, . . . , b̂pQ) were the corresponding regression
coefficients and wT

i was the vector of weather covariates associated
ith observation. The regression coefficients were estimated by
minimizing the penalized sum of squares:

∑n
i�1

uip − wT
i bp( )2 + λ∑Q

q�1
pen |bpq|( ), (1)

where the penalty function can be any of the standard penalty
functions such as the LASSO, adaptive LASSO, or ridge regression
penalties. Ridge regression uses a L2-penalty with the residual sum of
squares (RSS) loss function to shrink the coefficients associated with
predictors towards zero. However, due to the nature of the L2-
penalty, regularization is performed, but none of the coefficients are
set exactly to zero. LASSO model, on the other hand, uses a L1-
penalty with the RSS to shrink the coefficients and sets some
coefficients to exactly zero, effectively performing feature
selection. Elastic net is a compromise between ridge regression
and LASSO and uses a linear combination of both L1 and L2
penalties. Thus, an elastic net has the advantages of
regularization and feature selection. Adaptive LASSO (Zou,
2006) was proposed as an alternative to LASSO in the presence
of high multicollinearity among explanatory variables, which is
seen commonly in genomic data sets. We compared the various
penalty functions, including the raw residuals with zero penalty, to
determine which yielded the best results. The entire process was
repeated by regressing the set of genomic variables on each of the

secondary traits to obtain the residuals ûiVp � uip − vTi d̂p, where
d̂p � (d̂p1, d̂p2, . . . , d̂pR) were the corresponding regression
coefficients and vTi was the vector of genomic variables
associated ith observation.

After obtaining the intrinsic effect of the secondary traits,
represented by the two sets of residuals obtained in step one, we
moved on to the second stage of the method. Here, the penalized
forward selection was implemented to ensure that the secondary trait
residuals were entered first into the model, followed by the weather
covariates, and finally followed by the genomic variables. This
approach ensured that higher-dimensional data types did not
crowd out the smaller-dimensional data types and improved how
the variables included in the model explained the variability in the
response. We used a logistic classifier as the model structure for its
simplicity and ease of interpretability. The probability mass function
(PMF) of the C-class multinomial logistic classifier for class c is
given by:

P Yi � c|Θ( ) � e∑T

t�1θctzit

1 + ∑C−1
c′�1e

∑T

t�1θc′tzit
, (2)

whereΘ = (αcW1, . . . , αcWP, αcV1, . . . , αcVP, βc1, . . . , βcQ, γc1, . . . , γcR) is
a C × T matrix of coefficients associated with the predictors and zi �
(zi1, zi2, . . . , ziT) � (ûiW1, . . . , ûiWP, ûiV1, . . . , ûiVP, w1, . . . , wQ,
v1, . . . , vR) represents the vector of all predictor values for observation
i. Here, T = 2P + Q + R. The classification for a new test observation is
given by:

ĉ � argmax
c

P Y n+1( ) � c|Θ̂( ), (3)

where Θ̂ is the set of coefficient estimates obtained from the Newton-
Raphson estimation method with a LASSO penalty.

2.1.1 Newton-Raphson (NR) method
Using the PMF function defined in Eq. 2, the log-likelihood

function required for the NR method is given by:

f θct|S( ) � ∑
i:yi�c

log
e∑T

t�1θctzit

1 +∑C−1
c′�1e

∑T

t�1θc′tzit
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ + ∑

i:yi≠c
log

e∑T

t�1θctzit

1 +∑C−1
c′�1e

∑T

t�1θc′tzit
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(4)

where S = {(y1, z1), . . ., (yn, zn)} denoted the set of observations with yi
representing the response and zi representing the vector of predictors
associated with the ith observation. In the presence of penalty terms
for each of the data types, a modified version of Eq. 4 can be
maximized as:

f θct|S( ) − λ1|αcp| − λ2|βcq| − λ3|γcr|, (5)

where the λ’s are the penalty values. Here, we used a LASSO-based
penalization which ensured that several coefficients were set to zero,
making the model more sparse. Sparsity allowed for greater
interpretability of the final model because there were only a few
predictors with non-zero coefficients. Using the second-order
Taylor series approximation, the coefficients were updated in the
(k+1)th NR iteration as follows:

θk+1ct L( ) � θkct − s
f′ θkct( ) +max λ1, λ2, λ3, 0( )

f″ θkct( ) (6)
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θk+1ct R( ) � θkct − s
f′ θkct( ) −max λ1, λ2, λ3, 0( )

f″ θkct( ) , (7)

where s is the step size, also known as the learning rate. More
specifically, the NR iteration updates for each of the different data
types were given by the following equations:

αk+1cp L( ) � αkcp − s
f′ θkct( ) + λ1

f″ θkct( ) αk+1cp R( ) � αkcp − s
f′ θkct( ) − λ1

f″ θkct( )
βk+1cq L( ) � βkcq − s

f′ θkct( ) + λ2

f″ θkct( ) βk+1cq R( ) � βkcq − s
f′ θkct( ) − λ2

f″ θkct( )
γk+1cr L( ) � γkcr − s

f′ θkct( ) + λ3

f″ θkct( ) βk+1cq R( ) � βkcq − s
f′ θkct( ) − λ3

f″ θkct( ) .

Here, L and R represented the left- and right-derivatives of Eq. 5
with respect to θct. Following the optimization solution provided in
Wu et al. (2009), if θk+1ct (L)< 0, then we set θk+1ct � θk+1ct (L) and if
θk+1ct (L)> 0, we set θk+1ct � θk+1ct (R). If either θk+1ct (L) � 0 or
θk+1ct (R) � 0, then we set θk+1ct � 0. The iteration process continued
until the convergence criteria were met.

2.1.2 Algorithm
The likelihood associated with the logistic regression was

intractable, and hence NR iterative methods were used to obtain
the coefficients associated with the predictors. In this section, we
presented the algorithm used to initialize and update the coefficients in
each iteration of the NR method as well as the stopping criterion. The
algorithm was by setting θct = 0 for all c and t. Suppose we denote the
kth penalized log-likelihood from Eq. 5 as PLLm(c, t).

1. Update each θct using the NR update rules from Eqs 6, 7. Continue
iterations until:

|PLLm c, t( ) − PLLm+1 c, t( )|≤ ϵ|PLLm+1 c, t( ) + 1|, and (8)
PLLm c, t( )≤PLLm+1 c, t( ). (9)

2. The NR updates start with a step size s = 1. If the θm+1
ct does not

satisfy Eq. 8 or Eq. 9, we repeat the procedure using s = 1/2, 1/22, 1/
23, . . . , 1/210. If the PLL does not improve with changing s, we set
θm+1
ct � θmct .

3. Stop the iteration process when no variable is selected.

In the proposed algorithm, there were five hyperparameters that
need to be tuned, {s, ϵ, λ1, λ2, λ3}. We started with step size s = 1 as a
reasonable value for the parameter and varied it by halving it
successively until the convergence criteria were met. The ϵ value
was set to be 10–3 for the secondary traits, 10–5 for the weather
traits, and 10–8 for the genomic variables traits. The choice of these
ϵ′s was another way to give more importance to the data types with
smaller dimensions as well as ensure greater sparsity of the final model
and hence, can be varied to suit the objectives of the problem. We did
not observe any changes in predictive power by increasing the ϵ′s to
10–8 for all the data types. A cross-validation grid-search was used to
find the optimal values of λ′s by testing various combinations of the λ′s
ranging from 1 to 10. For each combination of λ′s, we estimated the
predictor coefficients and then evaluated the models using various
classification metrics. The optimal combination corresponded to the
one with the best classification metrics.

2.2 FW regression to optimize weather
information

One of the primary objectives of this work was to find the most
sparse models that had the best classification performance. While the
relationships between the selected secondary trait variables and the
response or the genomic variables and the response were easy to
interpret, the relationship between the weather covariates and the
response was more challenging to understand. Data on four weather
variables were collected daily over the entire growing season of
100 days, yielding 400 weather covariates. The variables were
maximum temperature (Tmax), minimum temperature (Tmin),
wind speed (WS), and rainfall (Precip). Weather covariates that led
to the best classifier were selected without regard for the interpretation
of the individual covariates chosen. For instance, suppose the three
weather covariates chosen were WS at day 45, Tmax at day 18, and
Tmin at day 72. There is no insight into what these individual days
mean for a breeder or a farmer and how to determine the practical
significance of these covariates.

An alternate approach could be to select windows of time when the
selected set of weather covariates have the most impact on the main
trait. For instance, suppose we select day 18 to day 25 as the window of
time in the season. Then, we could include all daily weather covariates
for those days in our three-stage model to understand the impact of
the window on the response. Such windows of time allow for greater
interpretability of the impact of weather conditions during the
growing season on the final plant production. Further, extreme
weather conditions in the identified windows of time could help
forecast potential losses, and farmers could take actions to mitigate
losses, if possible.

Plant breeding programs often collect data on several weather
variables such as wind speed, humidity, daylight hours, temperature,
etc. When several weather variables are present, a different optimal
time window can be obtained for each one of them. However,
including a separate set of covariates for each optimal time window
in our model increases the model size. Weather variables can be
combined to form a single environmental index as an alternative. In
this work, we proposed using principal component analysis (PCA) to
combine the weather variables and extracted the first principal
component as a singular environmental index. PCA method
ensured that information across the different weather variables was
combined. The first PC corresponds to the linear combination of
variables that explains the maximum variability present in the weather
data. When daily weather data is available, PCA can be performed
daily. All the weather variables for a day were combined to form the
first PC for that day. This process was repeated to obtain the first
PCs every day in the growing season. Following this, the average of
PCs was computed within each time window to represent the
environmental effect of the time window. Normalization of the
weather variables is necessary before PCA is applied to ensure that
all variables are on a similar scale and did not disproportionately skew
the PC calculations.

Suppose the main trait can be expressed as follows:

yij � μ + Gi + Ej + eij, (10)
where yij represented the value of the main trait for genotype i in
environment j and eij represented the random error, i = 1, 2, . . . , t and
j = 1, 2, . . . , k, where t was the number of genotypes and k was the
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number of environments. Then, the environmental means for the jth
environment is represented by:

�y.j � μ + 1
t
∑t
i�1

Gi. (11)

The time window mean of weather variables is represented as
follows:

�w b,e( )
pj � 1

e − b( ) ∑
e

d�b
wpjd, (12)

where, wpjd denoted the value of the pth weather variable in jth
environment on day d and �w(b,e)

pj was the mean of the weather
variables in the time window. Then, b represented the beginning
day of the time window, and e represented the ending day. Here,
wpjd could also be the first PC of the linear combination of all the
weather variables available for the day d. Finally, the linear
association between the environmental means and the mean of
the time window was defined as the R-squared value when simple
linear regression is performed between �y.j and �w(b,e)

pj . For simple
linear regression, the R-squared value is simply the square of the
correlation between the variables. Hence, the R-squared was
computed as:

ρ b,e( )
pj( )2 � cor �y.j, �w

b,e( )
pj( )( )2, (13)

where, ρ(b,e)pj represented the correlation between the environmental
mean of the jth environment and the mean of the (b, e)-th time
window for the pth weather variable. R-squared values range between
0 and 1, with 1 indicating perfect linear association and 0 indicating no
linear association. Hence, the optimal window corresponds to the
window with the highest R-squared found using the method described
above.

We found the optimal time window for the weather variables as a
pre-processing step. Hence, we included all the weather variables
within the optimal time window and did not perform any feature
selection for this data type in the modeling stage. We set λ2 = 0 in the
penalized likelihood function Eq. 5 and obtained the following
reduced penalized likelihood function:

f θct|S( ) − λ1|αcp| − λ3|γcr|. (14)
The rest of the three-stage method remained the same as in section
2.1. The NR updating algorithm also remained identical. Here too,
we used a cross-validation grid search to find the optimal values of
λ1 and λ3.

2.3 Extending our method for multi-class
classification

Predicting a response with two classes is known as a binary
classification problem. Some popular supervised learning methods
for binary classification include logistic regression, naive Bayes,
decision trees, random forests, support vector machines, and
neural networks (Kotsiantis et al., 2006; James et al., 2013).
These methods also handle multi-class problems in one of two
ways. The first approach involves modifying the relevant
algorithm to extend to multi-class settings, and the second
involves deconstructing the multi-class problem into a set of

binary classification problems, known as binarization strategies
(Galar et al., 2011).

Binarization strategies are prevalent because they allow simpler
ways to form decision boundaries separating the two classes.
Binarization allows for a greater choice of classification algorithms
because almost every classification algorithm such as logistic
regression, SVM, neural networks, etc. was introduced initially for
binary classification. It has also been established that the performance
of a single multi-class classifier is no better than an aggregation of a set
of binary classifiers (Sánchez-Marono et al., 2010; Galar et al., 2011).
There are two major ways to perform binarization: one-vs-one (OVO)
and one-vs-all (OVA) (Lorena et al., 2008; Sánchez-Marono et al.,
2010; Galar et al., 2011; Abramovich et al., 2021).

The OVO method has better predictive ability than the OVA in
general (Rifkin and Klautau, 2004; Pawara et al., 2020). The
performance of the OVA approach is similar to OVO when the
base classifier is well-tuned (Rifkin and Klautau, 2004). However,
the performance of OVA suffers in the presence of class imbalance
(Galar et al., 2011). On the other hand, the main advantage of OVA is
that the number of binary classifiers required is in the order of K while
the number of binary classifiers for OVO is in the order of K2. Thus,
the number of classifiers required for OVO increases exponentially as
a function of the number of classes in the response. For example, for a
response with ten classes, OVO requires 45 classifiers, whereas OVA
requires only ten classifiers.

In this study, we extended our methods to deal with a categorical
response with three classes by opting for the OVA binarization. Since
the number of classes was three, both OVO and OVA required the
same number of binary classifiers - three. The objective of our
proposed method was a multi-class classification for an ordinal
categorical response with any number of classes. Hence, we chose
the OVA approach because of computational frugality as well as
generalizability. Further details about OVO and OVA can be found
in section 2 of the Supplementary Material.

For a K class response variable, the OVA approach creates K
binary classification problems. Suppose we have a response with three
classes. Then, for the first binary classifier, OVA sets all the response
values of class 1 as 1 and the other two classes as 0. In the second
binary classifier, class 2 is set as 1 and rest as 0, and the third classifier
has class 3 set as 1 and rest as 0. For each binary sub-problem, any
classifier can be used for the classification task. In this study, we used a
modification of the three-stage method developed earlier as the
classifier of choice. The proposed method was a penalized logistic
regression with forward selection. The output from this classifier was a
vector of probabilities that an observation belonged to class 1. While
many standard classifiers output probabilities like logistic regression,
some classifiers such as neural networks output a non-probability
based score. A softmax activation function can be used to convert the
scores to a probability when using other classifiers (Pawara et al.,
2020).

Using the OVA approach for a three-class problem, we obtained a set
of three probabilities for each observation corresponding to the
probability that the observation belonged to each of the three classes.
The predicted class was simply the class with the highest probability for
each observation, referred to as the maximum probability approach.

2.3.1 Reason for not using optimal threshold step
For three-class classification, we obtained three probabilities for

each observation coming from the three binary classifiers. Class
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assignments depended only on comparing these probabilities and
picking the class with the maximum probability. Thus, unlike
traditional binary classification, the class assignment was
independent of any threshold. Hence, we dropped the threshold
search step from the method proposed in the binary classification
algorithm and used the rest of the method as the classifier for multi-
class classification.

We tried to improve the classification by searching for optimal
thresholds between class 1 vs rest and class 3 vs rest. The idea was to
partition the probability space into three regions corresponding to the
three classes, based on these two thresholds. However, the approach had
poor forecasting performance, especially for class 2. A possible reason was
that three completely separate classifiers were used, each with its own set
of coefficients associated with the predictors leading to three sets of linear
predictors that had significant overlaps in the predictor space. Thus, this
approach was not feasible, and the best performance was observed when
using the maximum probability approach.

2.4 Classification metrics

Binary classification metrics can be modified to make them
suitable for multi-class problems. For multi-class classification, the
performance was assessed using the following metrics: overall
accuracy, macro true positivity rate (TPR), and macro true
negativity rate (TNR). Overall accuracy is a metric that remains the
same between binary and multi-class problems. It is defined as the
total number of correctly classified observations out of the total
number of observations in the data set. In binary classification,
TPR and TNR are easily defined because there is one positive and
one negative class. However, these metrics need to be modified when
there are multiple classes. Instead, TPR and TNR can be computed for
each class, and then the weighted mean could be found to compute the
weighted macro TPR and weighted macro TNR. The weights are
determined by the proportions of each class in the training data set.

Using the sample multi-class confusion matrix in Figure 1, TPR and
TNR for class k can be defined as:

TPRk � TP

TP + FN
(15)

TNRk � TN

TN + FP
, (16)

where TP was the number of true positives, TN was the number of true
negatives, FP was the number of false positives, and FN was the
number of false negatives. Then, the weighted macro TPR (mTPR)
and TNR (mTNR) for K classes are given by:

mTPR � w1 × TPR1 + w2 × TPR2 +/ + wK × TPRK

K
(17)

mTNR � w1 × TNR1 + w2 × TNR2 +/ + wK × TNRK

K
, (18)

where, TPRk refers to the TPR for the kth class, wk denotes the
proportion of observations in class k in the training data, and
w1+/ + wK = 1.

2.5 Data

We used a chickpea data set to evaluate the performance of the
proposed model and contrast it with standard machine learning
methods such as random forest (RF) and support vector machines
(SVM). The data set contained phenotypic, weather, and genomic SNP
data. The phenotypic and weather data were collected at four
locations, namely International Center for Agricultural Research in
the Dry Areas (ICARDA) - Amlaha, International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT) - Patancheru,
Junagadh Agricultural University (JAU) - Junagadh, and Rajasthan
Agricultural Research Institute (RARI)—Durgapura, over two
seasons, 2014–15 and 2015–16. Genotypic information was
available for n = 749 lines and the corresponding phenotypic

FIGURE 1
A representative confusion matrix representing the true class vs. predicted class for “class 2” in a multiclass classification: true positive (TP), false positive
(FP), true negative (TN), and false negative (FN).
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information was available for all the lines across the eight
environments (location by year combinations).

Over 15 phenotypic variables were collected across the eight
environments. However, only seven of those were available in all eight
environments. We selected only these as the primary and secondary
phenotypic traits for the analysis. The seven phenotypic variables were
days to flowering (DF), plant height (PLHT), basal primary branch (BPB),
basal secondary branch (BPB), days to maturity (DM), pods per plant
(PPP), and 100 seed weight (100-SDW). This work focused on days to
maturity (DM) as the primary trait of interest. The rest of the six traits
form the secondary trait data type.

The second data type in this study was the weather data collected
daily over the entire growing season of 100 days. Depending on the
location, the growing season was between October and April. Several
weather variables were collected at each location; however, only four
variables were commonly present across the four locations for each
day. The variables were maximum temperature, minimum
temperature, wind speed, and rainfall. Since the four weather traits
were collected daily over 100 days, there were a total of 400 weather
variables that form the weather data type.

Genomic Single nucleotide polymorphisms (SNP) data was
available for the 749 lines. We randomly selected 10,000 markers
for each line to form the genomic data type. To summarize, there were
six secondary traits, 400 weather traits, and 10,000 SNPs as the final set
of predictor variables. We considered a three-class DM variable as the
response for the multi-class classification demonstration and also
implemented the proposed three-stage method for a binary trait,
whose implementation and results can be found in section 3 of the
Supplementary section.

2.6 Multi-class trait implementation

For the multi-class implementation, we created a three-class
categorical response using the DM trait that was continuous. The
DM trait was discretized into three levels corresponding to low,

average, and high days to maturity. For the continuous trait DM,
all observations in the bottom 25th percentile were denoted as class
1 and top 25th percentile as class 3. We also found a 25th percentile
centered around the mean of the continuous trait and denoted that as
class 2. The discretization of the continuous response is depicted in
Figure 2.

The performance of the multi-class methods was evaluated using
three different class-balance settings: 33-34-33, 40-40-20, and 10-80-
10. 33-33-33 refers to the balanced class setting, while 10-80-10 refers
to the extreme imbalance setting where 80% of the observations are in
class 2% and 10% in each of the other two classes. We randomly
sampled 280 observations to create the datasets with different class
ratios. For each class ratio, 20 replications were created and averaged
the performance across the replications to avoid sampling bias.

We decomposed the multi-class problem into a set of binary
classification problems using the OVA approach. As discussed earlier,
threshold searching methods were not employed due to this OVA
approach. Thus, the 280 observations were split into a train and test set
in the ratio of 200/80. The training data set was used for the penalized
logistic regression modeling step, and the test data set was used to
evaluate the performance of the models.

FIGURE 2
Visualization depicting the process of discretizing a continuous trait (Days to Maturity—DM) into a multi-class trait. All observations in red are denoted as
class 1, green as class 2, and blue as class 3.

TABLE 1 Summary of models assessed in this paper for a multi-class categorical
trait.

Model Notation λ1 λ2 λ3

G + E + P MC0 0 0 0

PenG + PenE + P MC1 0 varying varying

PenG + PenE + PenP MC2 varying varying varying

PenG + FWE + P MT1 0 0 varying

PenG + FWE + PenP MT2 varying 0 varying

Support Vector Machines SVM – – –

Random Forest RF – – –
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The penalization effect was evaluated with the help of a baseline
model G + E + P that did not have a penalty applied to any of the
data types denoted by MC0. Here, G refers to the genomic data, E
refers to the weather data, and P refers to the secondary trait data.
We evaluated the cases where all the secondary traits PenG + PenE +
P and penalized the secondary traits PenG + PenE + PenP were
included, where Pen refers to penalized versions of the data types.
These models are denoted as MC1 and MC2, respectively. The
optimal time window was applied to optimize the weather data and
evaluated the following models PenG + FWE + P (MT1) and PenG +
FWE + PenP (MT2), where FWE refers to the optimized weather
data. Finally, these models were compared to the RF and SVM
machine learning models. Table 1 summarizes all the model
settings that were evaluated in this paper, along with the model
notations.

3 Results

In our research, we focused on several aspects of developing
models to improve breeding and aid the selection process. The
focus was to integrate three different data types with differing
dimensions for the purpose of predicting phenotypes that can be
categorized. In addition, we wanted to see whether a subset of the
weather information is sufficient to achieve the same prediction
accuracy as we can reach with the full set of weather information.

First, the proposed models were evaluated in terms of overall
accuracy, and we also included TPR and TNR. Seven classification
models (MC0, MC1, MC2, MT1, MT2, SVM, RF) were evaluated and
compared. We wanted to see whether the penalization-based methods
and methods that incorporate the reduced amount of weather
information can outperform machine learning techniques. Also, we
wanted to determine whether the model performance is influenced by

the rate of the imbalance in the data. All the proposed models showed
similar performance to ML models for the balanced class and the
medium imbalance settings (40–40–20). All the models had an overall
accuracy of ~.55 in both these settings. The penalization-based models
(MC0, MC1, and MC2) had similar overall accuracy to the optimal
time window based models (MT1 and MT2) for these two settings.
However, in the extreme imbalance class of 10-80-10, MT1 and
MT2 had significantly worse accuracy of .57 and .59 instead of the
.80 accuracies for the penalization-based and ML models. It is
important to note that both the ML models and the penalization
models ended up predicting all observations as class 2 for the 10-80-
10 case and hence resulted in an accuracy of 80%, matching the
proportion of class 2 in that setting. Weighted macro TPR and TNR
metrics provide better insight into a model’s predictive ability in the
presence of imbalance, and hence we looked at these metrics next.
Across the board, the standard error associated with the average of the
overall accuracy, mTPR, and mTNR were in the order of 10–3 to 10–4

and hence are not presented here. Overall accuracy results for all the
models can be seen in Figure 3.

For the balanced class setting, the weighted macro TPR values
for the proposed models were around .78, while the ML models had
values around .58. This represents a 20% higher TPR value for our
proposed models. On the other hand, macro TNR values for the
proposed models were similar to the ML methods in the balanced
case. We saw similar trends for the medium imbalance case as well.
However, in the extreme imbalance case, the ML methods
outperformed the proposed methods in terms of the weighted
macro TPR metric. In contrast, MT1 and MT2 had ~25% higher
macro TNR than the penalization based and ML models. These
results can be viewed in Figure 4 and Figure 5. The proposed
models had similar or better performance in the balanced and
medium imbalanced class settings for both the mTPR and mTNR
metrics. In the extremely imbalanced class, there was a tie between

FIGURE 3
Bar plot comparing the seven different classification models based on overall classification accuracy averaged over the 20 replications within each class
balance setting for the Days to Maturity (DM) trait with three classes. The seven models and their notations are as follows: G + E + P (MC0), PenG + PenE + P
(MC1), PenG + PenE + PenP (MC2), PenG + FWE + P (MT1), PenG + FWE + PenP (MT2), support vector machine (SVM), and random forest (RF).
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the proposed methods being better in terms of mTNR and ML
being better in terms of mTPR.

Model interpretability was one of the primary objectives of this
study along with the evaluation of themodel’s predictive power. Model
interpretability can be assessed by evaluating the complexity of the
model used. Generally, including more predictors into the model
results in a more complex model that can lead to difficulty in
interpretability. Our methods showed a tremendous improvement

over the ML methods in model sizes. Across all class balance settings,
our method had close to 90% fewer predictors in the final models
compared to the ML models. The penalized methods had smaller
model sizes between the penalization-based and the optimal window-
based approaches. This complements what we observed with the
binary trait results (presented in the supplementary materials).
MC1 and MC2 had the smallest models consistently across the
class settings. Just as with the binary trait, the penalization-based

FIGURE 4
Bar plot comparing the seven different classification models based on the weighted macro true positivity rate (TPR) averaged over the 20 replications
within each class balance setting for the Days to Maturity (DM) trait with three classes. The seven models and their notations are as follows: G + E + P (MC0),
PenG+ PenE + P (MC1), PenG+ PenE + PenP (MC2), PenG+ FWE+ P (MT1), PenG+ FWE+PenP (MT2), support vectormachine (SVM), and random forest (RF).

FIGURE 5
Bar plot comparing the seven different classification models based on the weighted macro true negativity rate (TNR) averaged over the 20 replications
within each class balance setting for the Days to Maturity (DM) trait with three classes. The seven models and their notations are as follows: G + E + P (MC0),
PenG+ PenE + P (MC1), PenG+ PenE + PenP (MC2), PenG+ FWE+ P (MT1), PenG+ FWE+PenP (MT2), support vectormachine (SVM), and random forest (RF).
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methods MC0, MC1, and MC2 did not include any genomic variables
in the final model, while MT1 andMT2 did. Refer to Figure 6 as well as
Supplementary Figures S9, S10 (in supplementary materials) for
visualizations corresponding to the model size comparisons. All the
metric comparisons between the seven models are presented in
Table 2.

4 Discussion

One of the recent challenges in plant breeding and especially in
terms of accelerating genetic gain is how to utilize all the data that are
collected.With high-throughput technologies, information is collected
on the molecular level, on the different environments including
weather information, and factors that describe the different
management practices. This system of diverse information has the
potential to connect the different genotypes in different environments
and explain how they might be related and ultimately benefit the
prediction of traits of interest.

This paper proposed a novel three-stage classification method to
improve multi-class classification when combining multi-type data.
More specifically, we developed a classification method for binary and
multi-class responses using secondary trait data, weather covariates,
and marker information. We used the one-versus-all (OVA)
binarization approach (Galar et al., 2011; Abramovich et al., 2021)
to decompose the multi-class problem into a set of binary classification
problems and aggregated the results using a maximum probability
approach (each observation). The method was evaluated in different
settings, including various penalization schemes and class balances,
and compared with standard machine learning methods. Various

metrics (Acc, mTPR, mTNR) were used to evaluate classification
accuracy and model size to evaluate the sparsity of the model.
Overall, our model showed excellent promise in predictive ability.
Our proposed models matched or outperformed ML methods across
almost all settings and metrics. Most importantly, the classifiers
obtained through our models were highly sparse. Specifically,
MC1 and MC2 models used fewer than 80 predictors to obtain
similar performance to ML methods. This greatly increases the
ability for manual dissection of the relationships between
individual predictors and the multi-class trait.

The improved performance of the proposed model, as
compared to the ML methods, can be attributed to the manner
in which the stages of the proposed method were constructed. First,
by isolating the intrinsic effect of the secondary traits, we reduced
the confounding effects. Reducing confounding helped separate the
effect of each data type on the response as well as helped improve
the independence between data types. It is well known that
collinearity and high-correlated predictors significantly harm
prediction and classification efforts. Secondly, by controlling the
order in which data types entered the model, we gave the secondary
traits the best chance of being selected in the final model. This
process ensured that weather and genomic variables were not
selected unless they significantly enhanced the model and
ensured that the secondary traits were not ignored just because
of their low dimensionality. We further exacerbated this effect by
the choice of ϵ′s for each data type. Secondary traits are sometimes
collected during the early- or mid-season, and hence our model
allows breeders to estimate the end-season main trait better based
on this information. Finally, penalization in conjunction with
forward selection played a fundamental role in reducing model

FIGURE 6
Bar plot comparing the proposed models to random forest based on model size averaged over the 20 replications within each class balance setting for
the Days to Maturity (DM) trait with three classes. The six models and their notations are as follows: G + E + P (MC0), PenG + PenE + P (MC1), PenG + PenE +
PenP (MC2), PenG + FWE + P (MT1), PenG + FWE + PenP (MT2), and random forest (RF).

Frontiers in Genetics frontiersin.org11

Manthena et al. 10.3389/fgene.2022.1032691

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1032691


sizes, thereby allowing breeders to make data-driven decisions
based on the relationships at play. The main advantage of our
method for plant breeders is that they can leverage genomic,
weather, and secondary trait data to classify the trait of interest.
We showed a method for incorporating different data types that
they can potentially collect in a way that enables them to select lines
for advancements more efficiently.

One of the key strengths of the proposed method is its modular
nature. In the first stage, we used ridge-based penalized regression
to extract the intrinsic effect of the secondary traits devoid of
weather and genomic effects. The ridge penalty can be substituted
for any other penalties such as LASSO, adaptive LASSO, elastic net,
adaptive elastic net, etc. The choice of penalty depends on the data
set at hand, its unique characteristics, and the study’s objectives. In
the second stage of the method, we used a penalized forward-
selection based logistic regression for the model building. We used
a LASSO-based penalty in this stage for the feature selection
advantages offered by LASSO. LASSO can again be substituted
for one of the other penalty functions based on the application.
Logistic regression was selected due to its simplicity and

interpretability. If interpretability is not one of the concerns,
this could be switched out for one of the other, more complex
classification methods available, including the machine learning
algorithms. The high degree of modularity lends flexibility to the
model. We believe that it will allow the method to have a wide range
of applicability to any problem that involves combining data types
of different sizes.

There are several immediate extensions that we can foresee. In
this work, we considered 10,000 randomly selected SNPs as the
genomic data type. Surprisingly none of these SNPs were selected
in the final models based on the proposed method, which could be
a result of the random selection process of these SNPs from a much
larger pool of available SNPs. Alternatively, it could also be
attributed to measures employed to keep model sizes as small
as possible such as the choice of penalties and ϵ values in the
stopping criteria of the NR method. Given that secondary traits
and weather covariates explained a large proportion of the
response, computational resources are wasted to evaluate the
genomic data type’s impact. Variable screening methods (Fan
and Fan, 2008; Fan and Lv, 2008; Wang, 2009; Hao and Zhang,
2014; Liu et al., 2015) are fast and crude methods to reduce the
dimensionality of ultra-high dimensional data to high
dimensional data. These could be employed as a pre-processing
tool to reduce the dimensionality of the genomic data and reduce
the computational burden of the method. We also anticipate
significant gains in run times when the method is combined
with variable screening. In this research, the performance was
evaluated of the proposed method using metrics such as TPR and
TNR to address the class-imbalance present. Balancing the class
imbalance, prior to modeling, through techniques such as
oversampling, under-sampling, and SMOTE (Chawla et al.,
2002) can also be explored to improve the proposed three-stage
method.

There is limited literature (Schrag et al., 2018; Akdemir et al.,
2020; Lopez-Cruz et al., 2020; Arouisse et al., 2021; Sandhu et al.,
2021) on combining data types to improve genomic selection. With
the advances in modern plant breeding and access to an increasing
number of data sources, it is essential to develop statistical
approaches that will allow breeders to leverage all available data
to improve selection strategies and accelerate breeding programs.
Second, most of the focus over the past 2 decades has been on
developing models for continuous traits that are normally
distributed. Recently, there has been an increasing focus on
non-Gaussian distributed traits. Our work simultaneously
targets both these two gaps in the literature. Along with
proposing approaches to combine data types, our methods rely
on penalization and forward selection to reduce the model size.
Breeders can use the methods to predict the categorical traits in
their programs and more importantly, understand the impact of
individual predictors on these categorical traits.

Finally, while we presented this method in an agronomic setting,
the three-stage model proposed can be implemented in any problem
involving combining data types of differing sizes. For example, we
believe that it could be very useful in the area of precision medicine
where themain trait is a risk of disease or reaction to a medication. The
secondary traits could be other physiological measurements from the
subjects, the medium-dimensional data could be the lifestyle and
behavioral characteristics, and the high-dimensional data type
could be the genomic marker information.

TABLE 2 Summary of results for the seven different models across the three
different class-balance settings. The performance was measured using overall
accuracy (Acc), weighted macro true positivity rate (mTPR), weighted macro true
negativity rate (mTNR), and model size (MDS). The seven models and their
notations are as follows: G + E + P (MC0), PenG + PenE + P (MC1), PenG + PenE +
PenP (MC2), PenG + FWE + P (MT1), PenG + FWE + PenP (MT2), support vector
machine (SVM), and random forest (RF).

Balance Model Acc mTPR mTNR MDS

33—34—33 MC0 .57 .78 .78 240.5

MC1 .57 .78 .79 83.8

MC2 .57 .79 .79 28.5

MT1 .56 .78 .78 476.9

MT2 .55 .78 .78 459.9

SVM .55 .55 .77 –

RF .58 .58 .79 3191.6

40—40—20 MC0 .55 .76 .72 238.8

MC1 .56 .76 .73 60.3

MC2 .56 .76 .73 45.2

MT1 .56 .77 .76 460.3

MT2 .55 .77 .74 458.6

SVM .54 .54 .73 –

RF .56 .56 .74 3443.8

10—80—10 MC0 .80 .67 .21 253.2

MC1 .80 .67 .21 24.3

MC2 .80 .67 .21 48.7

MT1 .59 .70 .54 475.9

MT2 .57 .70 .53 468.4

SVM .80 .80 .23 –

RF .80 .80 .32 1013.4
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