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The tumor heterogeneity of the transcriptional profiles is independent of

genetic variation. Several studies have successfully identified esophageal

squamous cell carcinoma (ESCC) subtypes based on the somatic mutation

profile and copy number variations on the genome. However, transcriptome-

based classification is limited. In this study, we classified 141 patients with ESCC

into three subtypes (Subtype 1, Subtype 2, and Subtype 3) via tumor sample

gene expression profiling. Differential gene expression (DGE) analysis of paired

tumor and normal samples for each subtype revealed significant difference

among subtypes. Moreover, the degree of change in the expression levels of

most genes gradually increased from Subtype 1 to Subtype 3. Gene set

enrichment analysis (GSEA) identified the representative pathways in each

subtype: Subtype 1, abnormal Wnt signaling pathway activation; Subtype 2,

inhibition of glycogen metabolism; and Subtype 3, downregulation of

neutrophil degranulation process. Weighted gene co-expression network

analysis (WGCNA) was used to elucidate the finer regulation of biological

pathways and discover hub genes. Subsequently, nine hub genes (CORO1A,

CD180, SASH3, CD52, CD300A, CD14, DUSP1, KIF14, andMCM2) were validated

to be associated with survival in ESCC based on the RNA sequencing (RNA-seq)

data fromTheCancer Genome Atlas (TCGA) database. The clustering analysis of

ESCC granted better understanding of the molecular characteristics of ESCC

and led to the discover of new potential therapeutic targets that may contribute

to the clinical treatment of ESCC.
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1 Introduction

In 2020, esophageal carcinoma (EC) was the seventh most

common cancer worldwide with 604,000 new cases, contributing

3.1% of the total new cancer cases, and was ranked sixth in

mortality worldwide (544,000 deaths) (Sung et al., 2021).

Esophageal squamous cell carcinoma (ESCC) and esophageal

adenocarcinoma (EAC) are the two main EC subtypes (Siewert

and Ott, 2007; Della Guardia et al., 2022), with ESCC counting

for approximately 90% of EC cases worldwide (Smyth et al.,

2017). The development of next-generation sequencing

technologies has yielded a deeper understanding of ESCC

genomic features via sequencing and analysis the genomes

and transcriptomes of millions of patients with ESCC. The

analyses revealed that ESCC has extensive inter- and intra-

tumor heterogeneity (Hu et al., 2009; Lin et al., 2018).

Regarding tumor heterogeneity, several studies (Liu et al.,

2016; Cancer Genome Atlas Research Network et al., 2017) have

identified ESCC subtypes based on the somatic mutation profile

and copy number variation on the genome. However, recent

single-cell RNA sequencing (RNA-seq) studies have

demonstrated that cancer cell state heterogeneity is largely

independent of genetic variation (Halbritter et al., 2019; Guo

et al., 2020; LaFave et al., 2020; Marjanovic et al., 2020). The

transcriptional landscape is reprogrammed with cancer

progression, metastasis, and therapy resistance (Hanahan and

Weinberg, 2011; Quintanal-Villalonga et al., 2020). Therefore,

identifying ESCC subtypes based on the gene expression profile

of the tumor sample can reveal some molecular features that

cannot be detected in genome-based classification. There are

many successful applications for identifying tumor subtypes

based on the gene expression profile, including that for colon

cancer (Marisa et al., 2013; Guinney et al., 2015), non-small cell

lung cancer (Chen et al., 2017) and uterine leiomyosarcoma (An

et al., 2017). These transcriptional profile-based classification

studies revealed clinically valuable targets. Attempts have also

been made to classify ESCC based on its gene expression profile.

Wang et al. (Wang et al., 2019) have classified Asian patients with

ESCC into two subtypes; the selected genes were clustered and

only genes with large standard deviations in the ESCC cohort

were selected. Nevertheless, classification based on selected genes

may bias the result, neglecting genes that are less varied but that

are important in overall regulation. Therefore, it is necessary to

characterize ESCC subtypes considering an unbiased

transcriptome level.

In this study, we classified 141 patients with ESCC into three

subtypes based on the gene expression profile of the patients’

tumor samples. The differences in individual gene expression

level changes among the three subtypes were identified with

differential gene expression (DGE) analysis. Gene set enrichment

analysis (GSEA) and weighted gene co-expression network

analysis (WGCNA) were used to explore how the gene

expression levels co-varied together. Via this analysis series,

we clearly described the molecular characteristics of each

subtype. We discovered important genes and the biological

pathways that may affect ESCC prognosis. Our study provides

an in-depth understanding of ESCC molecular features and

demonstrates potential targets for ESCC clinical treatment.

2 Materials and methods

2.1 Data collection and quality control

The raw microarray gene expression data from 141 ESCC

patient tumors and the paired normal samples across seven

datasets were obtained from the Gene Expression Omnibus

(GEO). The dataset inclusion criteria were: 1) gene expression

data from paired tumor and normal tissue samples were

available; 2) the patients had not undergone previous

treatment. The following datasets were included in this study:

GSE17351, GSE20347, GSE23400, GSE38129, GSE77861,

GSE161533, and GSE100942 (Table 1) (Hu et al., 2010; Lee

et al., 2010; Su et al., 2011; Hu et al., 2015; Erkizan et al., 2017;

Ming et al., 2018). Among the seven datasets, the samples in

GSE77861 were obtained from African American patients and

samples in the remaining six datasets were from Asian patients.

The Affymetrix microarray data were robust multiarray

averaging (RMA) normalized (background processing,

log2 transformation, quantile scaling, and probe expression

measurement) in the R package affy (Gautier et al., 2004).

Then, all available biological and technical covariates except

for the diagnostic group were regressed from each individual

expression dataset. After the above preprocessing had been

performed on each dataset, all seven datasets were merged.

The batch effect was corrected with the ComBat function of

the R sva package (Leek et al., 2012). Outliers were identified with

the principal component analysis (PCA) in the R package

FactoMineR.

The RNA-seq data of tumor tissue samples from patients

with ESCC were downloaded from The Cancer Genome Atlas

(TCGA) database using the R package TCGAbiolinks (Colaprico

et al., 2016). The screening and elimination yielded the gene

expression profiling data of tumor tissues from 80 patients. The

TPM (transcripts per million) data that normalized gene length

and sequencing depth were used for subsequent analysis.

2.2 Clustering

The function hclust was used to hierarchical clustering the

141 ESCC tumor samples through gene expression profiling. We

used the Euclidean method to calculate the Euclidean distance

between samples and the ward.D method to cluster the

141 samples. The parameters of the clustering based on the

K-means method were centers = 3, nstart = 25.
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2.3 Differential gene expression analysis

For each subtype, DGE analysis was performed between

paired tumor and normal samples, using the R package limma

(Ritchie et al., 2015). The differential expression genes (DEGs)

were identified as adj.P.Val cutoff <0.05 (Benjamini Hochberg

false discovery rate (FDR) correction) (Ge et al., 2021)

(FDR <0.05) and |log2 fold change (log2FC)| > 1.

2.4 Gene set enrichment analysis and
immune cell infiltration analysis

GSEA (Subramanian et al., 2005) was performed with

the function gseGO in the R package clusterProfiler (Yu

et al., 2012) based on the Gene Ontology (GO) database.

GSEA was performed on the three ESCC subtypes and the

log2FC of each gene was used as the basis for the gene

ranking. Significantly enriched pathways (FDR <0.05) were
available.

The gene expression profile data of the 141 ESCC tumor

samples were combined for immune cell infiltration analysis

using single-sample GSEA (ssGSEA) in R package GSVA

(Hanzelmann et al., 2013). The immune cell marker genes

constituted the background gene set for the immune

infiltration analysis (Charoentong et al., 2017).

2.5Weighted gene co-expression network
analysis

Network analysis was performed with theWGCNA package

(Langfelder and Horvath, 2008) in R. Approximate scale-free

topology (R2 > 0.85) was achieved using a soft threshold power

of 7. The network was constructed using all 13,515 gene

expression profiling data from the 141 paired ESCC tumor

and normal samples. The other network construction

parameters were maxBlockSize = 5,000, minModuleSize =

30, TOMType = “unsigned”, reassignThreshold = 0, and

mergeCutHeight = 0.25.

2.6 Enrichment analysis

GO enrichment analysis was performed with the function

enrichGO in the R package clusterProfiler based on the GO

database. The significantly enriched pathways had FDR <0.05.
Cell type enrichment analysis was performed based on the

marker genes (Xu et al., 2021) of different cell types. Significantly

enriched cell types were obtained with p < 0.05 (Fisher’s exact

test).

2.7 Survival analysis

Survival analysis was performed with the RNA-seq data of

80 ESCC tumor tissue samples from TCGA database. Survival

analysis and survival curve plotting were performed using the R

packages survival and survminer, respectively. For each gene

among the 80 samples, samples with expression levels higher

than the median value were defined as the high-expression group

and those below the median value were defined as the low-

expression group.

3 Results

3.1 Characteristics of the mRNA
microarray data and analysis pipeline

The analysis pipeline is depicted in Figure 1. After strict data

preprocessing, the seven ESCC mRNA microarray datasets were

merged, and batch effects were corrected using the function

ComBat. PCA was performed with batches as groups before and

after batch correction. There was a large distance between the

datasets before batch correction (Supplementary Figure S1A),

and the data distribution was uniform after batch correction

(Supplementary Figure S1B). The boxplots of samples grouped

by batch before and after batch correction also reflected this

change (Supplementary Figures S1C, D). The results suggested

that the batch effects among the seven datasets were eliminated.

We used the combined dataset for subsequent analysis.

TABLE 1 Information of the GEO datasets involved in this study.

GEO accession Platforms Sample size Race PMID

GSE17351 GPL570 10 Japanese 20042640

GSE20347 GPL571 34 Chinese 20955586

GSE23400 GPL96 106 Chinese 21385931

GSE38129 GPL571 60 Chinese 26409826

GDE77861 GPL570 14 African American 28629367

GSE161533 GPL570 56 Chinese —

GSE100942 GPL570 8 Chinese 29290801
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When PCA was performed based on tumor and normal

grouping, three normal samples which were abnormally grouped

with the tumor samples (Supplementary Figure S1E). Therefore,

we removed these three samples, which included the match

normal (GSM573851, GSM573889, and GSM573852) and

tumor samples (GSM573904, GSM573942, and GSM573905).

The remaining 282 samples were divided into tumor and normal

groups (Supplementary Figure S1F), a distinct transcriptomic

pattern was indicated between the two groups.

The 13,515-gene expression profile data of the 141 paired ESCC

tumor and normal samples were included in the study. The ESCC

subtypes were identified using the gene expression profiles of the

141 ESCC tumor samples. The analyses mainly included: 1)

hierarchical clustering of the 141 ESCC tumor sample; 2) DGE

analysis of paired tumor and normal samples of each subtype to

determine gene expression level changes; 3) GSEA andWGCNA to

identify biological pathway regulation and discover hub genes; 4)

survival analysis of the genes found in 3) based on the RNA-seq data

from 80 ESCC tumor samples in the TCGA database; 5) validation

of the subtypes found in 1) using the TCGA RNA-seq data.

3.2 The results of clustering

Hierarchical clustering of the 141 ESCC tumor sample

transcriptome profiles revealed a total of three subtypes,

FIGURE 1
The pipeline of this analysis.
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which we designated Subtype 1 (34 samples), Subtype 2

(67 samples), and Subtype 3 (40 samples). Subtype 1 was

under an independent branch of the clustering tree and

Subtypes 2 and 3 were two subgroups under the same branch

(Figure 2A).

To further confirm that we have eliminated batch effects, we

recolored the hierarchical clustering tree using batch as color

label. The result showed that the samples from each study were

distributed across the three subtypes (Supplementary Figure

S2A). So, the subtypes are not driven by different studies.

To explore whether our subtyping is sensitive to the

clustering method, we re-clustered the 141 samples into three

subtypes (named as K-means_Subtype1, K-means_Subtype2,

and K-means_Subtype3) using the K-means method. The

FIGURE 2
Clustering tree of the 141 ESCC tumor samples and an overview of differential gene expression (DGE) analysis. (A) The hierarchical clustering
tree diagram of 141 ESCC tumor samples constructed by the gene expression profile. The 141 ESCC tumor samples were clustered into three
subtypes (Subtype 1, Subtype 2, and Subtype 3), with sample sizes of 34, 67, and 40 for Subtype 1 to Subtype 3, respectively. (B) The log2 fold-change
(log2FC) of the genes (TP63, MYC, CCND1, VEGFA, KEAP1, FAT1, RB1, and SNAI2) with amplification mutations on ESCC genome are increased
gradually from Subtype 1 to Subtype 3. (C) The log2FC of ESCC genomic insertion or deletionmutant genes (CUL3, ZNF750, KDM6A, NFE2L2, FBXW7,
TGFBR2 CASP3, and SLC35E2) decreased gradually from Subtype 1 to Subtype 3. (D)Comparison of log2FC of all the 13515 genes between subtypes.
Among three subtypes, the degree of change in the expression levels of most genes is: Subtype 3 > Subtype 2 > Subtype 1. (E) Venn diagram shows
overlaps of differential expression genes (DEGs) (FDR <0.05, |log2FC| > 1) among three subtypes. The numbers of DEGs include both up- and down-
regulated genes in tumor tissue compared to normal tissue.
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result showed that the three subtypes clustered by the K-means

method were consistent with the subtypes obtained by the

hierarchical clustering in more than 80% of the samples

(Figure 2A, Supplementary Figure S2B). So, it can be

concluded that the subtypes we obtained are not sensitive to

the clustering method.

3.3 Results of differential gene expression
analysis

DGE analysis was performed on the paired tumor and

normal samples for each subtype. We first focused on the

most commonly mutated genes in ESCC. The log2FC of these

genes exhibited a tendency change from Subtype 1 to Subtype 3.

For example, the log2FC of genes in the ESCC genome with

amplification mutations, such as MYC, TP63, CCND1, VEGFA,

and SNAI2 (Song et al., 2014; Liu et al., 2016; Sawada et al., 2016;

Cancer Genome Atlas Research Network et al., 2017), increased

gradually from Subtype 1 to Subtype 3 (Figure 2B). The log2FC of

ESCC genomic insertion or deletion mutant genes [CUL3,

ZNF750, KDM6A, NFE2L2, and SLC35E2 (Song et al., 2014;

Liu et al., 2016; Sawada et al., 2016; Cancer Genome Atlas

Research Network et al., 2017)] decreased gradually from

Subtype 1 to Subtype 3 (Figure 2C). Viewing of the total

13,515 genes, the degree of change in the expression levels of

most genes gradually increased from Subtype 1 to Subtype 3

(Figure 2D).

The DEG numbers were greatly different across the three

subtypes. Under the thresholds (FDR <0.05; log2FC ≥ |1|),

Subtypes 1, 2, and 3 had 83, 376, and 743 total DEGs,

respectively (Supplementary Figure S3). The dramatic increase

in the DEG number from Subtype 1 to Subtype 3 suggested

striking differences among the subtypes even if they were

identified as the same cancer type. Further exploration of the

relationship between the DEGs of the three subtypes revealed

that the Subtype 2 DEGs included all Subtype 1 DEGs, while the

Subtype 3 DEGs did not completely encompass the Subtypes

1 and 2 DEGs (Figure 2E). Eighteen DEGs were specific to

Subtype 1 or 2 rather than Subtype 3 (Figure 2E,

Supplementary Figure S4A). The 16 upregulated DEGs among

these 18 genes are enriched in the immune-related pathways

(Supplementary Figure S4B).

3.4 Results of gene set enrichment
analysis and single-sample GSEA

In this study, we used GSEA to determine whether a set of genes

involved in a biological pathway demonstrated statistically significant

differences between tumor and normal status (Subramanian et al., 2005).

GSEA of each subtype enabled the discovery of how various biological

pathways were regulated in each subtype. The biological pathways

commonly upregulated in the three subtypes were those for

chromosomal DNA replication, endodermal cell differentiation, and

collagen fibril organization (Figure 3A) (Supplementary Material S1).

The commonly downregulated biological pathways included those for

fatty acid oxidation metabolism, and keratinocyte differentiation

(Figure 3A) (Supplementary Material S1). The shared biological

pathway regulation among the three subtypes was consistent with the

findings of previous ESCC studies. (Su et al., 2011; Erkizan et al., 2017).

There were representative enriched pathways in tumor

samples of each subtype. Subtype 1 was characterized by

significant Wnt signaling pathway upregulation (FDR <0.05)
(Figure 3B). Glycogen metabolism downregulation was the

hallmark of Subtype 2 (Figure 3C). Subtype 3 featured

markedly inhibited neutrophil-mediated immunological

pathways (FDR <0.05), in which downregulated neutrophil

degranulation was the primary manifestation (Figure 3D).

The degree of immune cell infiltration in tumor samples from

the three subtypes was assessed with ssGSEA. The results

revealed fewer infiltrating T cells in Subtype 1 tumor samples

as compared to those of Subtypes 2 and 3 and less neutrophil

infiltration in Subtype 3 tumor tissues as compared with that of

Subtypes 1 and 2 (Supplementary Figure S5).

3.5 Enrichment results of modules that
constructed by weighted gene co-
expression network analysis

We performed WGCNA to characterize the involved

biological pathways more specifically. The genes regulated in

the same pattern were clustered in one co-expression module

based on the correlation coefficient weighted value. This

approach fully accounted for the genes that change little but

that may be important in overall regulation. All gene expression

profiles of the 141 paired ESCC tumor and normal samples were

considered in the co-expression network construction, which

included a total of 14 modules, including module 0 (genes with

irregular expression) (Supplementary Material S2).

The correlations between the modules and tumor are

depicted in Figure 4A. Seven (modules 1, 3, 7, 8, 10, 11, and

13) and six (modules 0, 2, 4, 5, 9, and 12) modules were positively

and negatively correlated with tumor, respectively (FDR <0.05).
From Subtype 1 to Subtype 3, eight modules (module 0, 1, 2, 5, 7,

9, 10, and 11) demonstrated a gradually stronger correlation

between modules and subtypes, and five modules (module 3, 4, 8,

12, and 13) presented stronger correlations from Subtype 1 to

Subtype 2 and weakened correlations from Subtype 2 to Subtype

3. Module 6 was highly distinctive, demonstrating no significant

correlation with Subtype 1 or 2, but demonstrating a remarkable

negative correlation (r = −0.26, p = 1E-05) with Subtype 3.

Module 6 were enriched in a broad range of immune-related

pathways. The biological pathways enriched in module

6 included B cell activation, T cell differentiation, lymphocyte
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differentiation and calcium homeostasis (FDR <0.05)
(Figure 5A). The cell type enrichment analysis revealed that

B cells and dendritic cells were enriched in module 6 (FDR <0.05)
(Figure 4B).

Based on the above results, modules 0, 1, and 3 of neutrophil

enrichment were the modules of interest (Figure 4B). In modules

1 and 3 (both were positively correlated with the three subtypes),

the neutrophil degranulation process was among the top

FIGURE 3
GSEA results of three subtypes. (A) Ten up-regulated and ten down-regulated biological pathways were selected from the shared enriched
pathways in three subtypes tumor samples. (B) Top 15 biological pathways that specific up- and down-regulated in Subtype 1 tumor samples. Wnt
signaling pathway was significantly up-regulated in Subtype 1. (C) Top 15 biological pathways that specific up- and down-regulated in Subtype
2 tumor samples. Glycogen metabolism biological pathway was significantly down-regulated in Subtype 2. (D) Top 15 biological pathways that
specific up- and down-regulated in Subtype 3 tumor samples. Neutrophil-mediated immunological pathways were down-regulated in Subtype 3.
(FDR <0.05).
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30 enriched pathways (Figures 5B, C) (FDR <0.05). In addition,

module 1 enriches cell cycle-related biological processes, and

module 3 also enriches other immune-related biological

pathways. The neutrophil chemotaxis pathway was enriched

in module 0 (FDR <0.05) (Supplementary Material S3), which

was negatively correlated with the three subtypes (correlation

between module 0 and Subtype 3: r = −0.93, p = 1E-127).

Endothelial cells were enriched in modules 2 and 9 (p ≤ 0.05)

(Figure 4B), both of which were negatively correlated with tumor. The

negative correlation increased gradually from Subtype 1 to Subtype 3.

Biological pathways such as cellular rhythm, response to radiation, and

response to oxidative stress were enriched in module 9 (Figure 5D)

while, the muscle contraction and myofibril assembly biological

pathways were enriched in module 2 (Supplementary Figure S6).

We were able to conclude that endothelial cell contractility and

responsiveness to external stimuli are affected in ESCC.

3.6 Results of survival analysis

Based on the above module enrichment results, we performed

survival analysis of nine genes (CORO1A, CD180, SASH3, CD52,

CD300A,CD14,DUSP1,KIF14, andMCM2) from the hub genes in

these modules of interest and the genes involved in biological

pathways that are important in tumor progression. We validated

these genes by TCGA dataset survival analysis. The high levels of

seven genes (CORO1A, CD180, SASH3, CD52, CD300A, CD14,

and DUSP1) were related with poor survival in ESCC (Figures

6A–G) and KIF14 and MCM2 expression levels were positively

correlated with better survival (Figures 6H, I) (p < 0.05). CORO1A,

CD180, SASH3, and CD52 were located in module 6, CD300A and

CD14 were involved in module 3, module 9 contained DUSP1,

module 1 contained KIF14, and MCM2 (Table 2).

3.7 Expression levels of the survival-
related genes in the three subtypes

The expression levels of the nine survival-related genes in the

three subtypes may indicate the survival of subtypes to a certain

extent. The gene expression levels of four genes (CD180, SASH3,

CD300A, and CD14) inversely associated with survival were

significantly higher in Subtype 2 or 3 than in Subtype 1 (Figures

7B, C, E, F). The four genes are involved in the immune-related

pathways. So, tumor immunity may be an important factor

affecting survival time in Subtype 2 or 3.

Compared with Subtypes 2 and 3, DUSP1 that negatively

correlated with survival, has higher expression in Subtype 1

(Figure 7G), while KIF14 and MCM2, which are positively

correlated with survival, have lower expression in Subtype 1

FIGURE 4
Overview of the modules constructed by WGCNA. (A) Correlations of modules to tumor. Modules 1, 3, 7, 8, 10,11, and 13 are positive correlated
with tumor and modules 0, 2, 4, 5, 9, and 12 are negative correlated with tumor. Module 6 was negatively correlated with Subtype 3 only. (B)
Enrichment of various cells in different modules (module0, 1, 2, 3, 6, 7, and 9), the p values (Fisher’s exact test) are shown. B cells were enriched in
modules 1, 3, and 6, the endothelial cells were enriched in modules 2 and 9.
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(Figures 7H, I). Therefore, the biological pathways that respond

to various cellular stress conditions and the DNA replication

pathways play important roles in Subtype 1.

3.8 Validation of the generality of
esophageal squamous cell carcinoma
subtypes

To explore the generality of our classification, we clustered

80 ESCC tumor samples in the TCGA database and compared the

obtained three subtypes with the three subtypes obtained by the

141 ESCC samples above. The 80 ESCC samples were clustered

into three subtypes, named as TCGA_Subtype1 (24 samples),

TCGA_Subtype2 (3 samples), TCGA_Subtype3 (53 samples)

(Figure 8A). These three TCGA_Subtypes correspond one-to-

one with the positions of the three Subtypes obtained by

141 ESCC samples on the clustering tree (Figure 1A, Figure 8A).

Through the correlation analysis between 80 TCGA ESCC

samples and 141 GEO ESCC samples, it was found that the

average correlation between subtypes located at the same

position on the clustering tree is significantly higher than the

average correlation between subtypes in different positions

(Figures 8B–D). For example, the average correlation value

FIGURE 5
Enrichment of biological pathways in modules. (A–D) The top 30 pathways that enriched in module 6, module 1, module 3, and module 9,
respectively. (A,C) Immune-related processes were enriched in modules 6 and 3. (B) Cell proliferation-related processes were enriched in module 1.
(D) Cellular responses to external stimuli were enriched in module 9. (FDR <0.05).
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between TCGA_Subtype3 and Subtype 3 is significantly higher

than that TCGA_Subtype3 and Subtype 1 or Subtype 2

(Figure 8D). Therefore, our classification of ESCC into three

subtypes by gene expression profiling is of general significance.

The survival analysis revealed no significant differences in survival

between TCGA_Subtypes (Figure 8E). This means that the three

ESCC subtypes we found may not have differences in survival.

4 Discussion

In this study, we integrated the gene expression profiles from

different studies to a comparable level by correcting batch effects.

In total, the gene expression profiles of paired tumor and normal

samples from 141 patients with ESCC were included in this

study. The 141 patients were divided into three subtypes based on

FIGURE 6
Survival analysis using the RNA-seq data from TCGA database. (A–I) Kaplan–Meier curves showing that the expression levels of these nine
genes (CORO1A, CD180, SASH3, CD52, CD300A, CD14, DUSP1, KIF14, and MCM2) were significantly associated with survival of patients with ESCC.
(A–G) Seven genes (CORO1A, CD180, SASH3, CD52, CD300A, CD14, andDUSP1) were negatively correlatedwith survival. (H,I) Two genes (KIF14 and
MCM2) were positively correlated with survival. (p < 0.05).
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their tumor sample gene expression profiles. Then, detailed

characteristics of the three subtypes were described. The

results of DGE analysis revealed that subtypes are different to

each other. Next, we identified typical phenotype in each subtype;

Wnt signaling pathway activation in Subtype 1, downregulation

of glycogen metabolism in Subtype 2 and immunosuppression in

Subtype 3. WGCNA revealed finer regulation of biological

pathways in the three subtypes and revealed hub genes with

important regulatory status. Moreover, we validated several hub

genes were survival-related based on RNA-seq data from TCGA

database. By comparing the survival-related-gene expression

level in three subtypes, we suggested that the genes involved

in immune-related biological processes or cell proliferation-

related processes were responsible for the survival of these

subtypes. Finally, in the RNA-seq dataset from TCGA

database we verified that the three ESCC subtypes we found

were of general significance.

The striking differences among the three ESCC subtypes

were manifested in several aspects. For example, the degree of

change in the expression levels of most genes between tumor and

match normal tissue gradually increased from Subtype 1 to

Subtype 3, especially genes with copy number variation

(CNV) in ESCC genome. One potential explanation for this

phenomenon is the increased overall tumor mutational burden

(TMB, the total number of mutations in cancer cell DNA).

Several studies have reported that copy number variations on

ESCC genome were consistent with changes in gene expression

levels (Hu et al., 2009; Shi et al., 2013). Liu et al. (2016) have

found that subgroups of ESCC have significantly different

somatic mutational burdens, such as subgroup1

(0.75 mutations per Mb) in their study, which showed fewest

somatic mutational burden compared with subgroups1a

(11.85 mutations per Mb) and subgroup2 (3.71 mutations per

Mb). This is consistent with our conjecture that the three

subtypes we identified appear to have differences in TMB. A

high TMB is associated with poor prognosis (Owada-Ozaki et al.,

2018; Hwang et al., 2019; Cui et al., 2020), and TMB has been

demonstrated as a selection biomarker of immune checkpoint

blockade (ICB) cancer therapy (Chan et al., 2019). In addition,

some biological processes also exhibit progressively stronger

association from Subtype 1 to Subtype 3, such as upregulation

of the cell proliferation and dysfunction of endothelial cells in the

results of co-expression modules. The progressively severe

endothelial cell dysfunction from Subtype 1 to Subtype

3 means aggravated hypoxic environment and accelerated

angiogenesis. Endothelial cells line the vascular systems and

play important roles in tumorigenesis. The tumor

microenvironment suffers from hypoxia, which will

continuously stimulate blood vessel formation (Potente et al.,

2011; Jing et al., 2019). These rapidly growing blood vessels are

naturally differentiated from normal blood vessels, and tumor

endothelial cells (TECs) exhibit different cell proliferation and

migration ability compared with normal endothelial cells (NECs)

(Hida et al., 2016). Accordingly, it is effective to subtyping ESCC

TABLE 2 The profile of the genes that correlated with survival of ESCC patients.

Gene Module Correlation with survival Gene ontology enrichment

CORO1A Module6 negative lymphocyte proliferation

cellular calcium ion homeostasis

leukocyte proliferation

CD180 Module6 negative B cell activation

B cell proliferation

SASH3 Module6 negative B cell activation; lymphocyte differentiation

CD52 Module6 negative cellular calcium ion homeostasis

calcium ion homeostasis

positive regulation of cytosolic calcium ion concentration

CD300A Module3 negative neutrophil activation involved in immune response

neutrophil degranulation

CD14 Module3 negative neutrophil activation involved in immune response

neutrophil degranulation

cellular response to molecule of bacterial origin

DUSP1 Module9 negative response to radiation

response to oxidative stress

KIF14 Module1 positive cell cycle G2/M phase transition

regulation of cell cycle phase transition

MCM2 Module1 positive DNA replication

DNA-dependent DNA replication
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FIGURE 7
Expression levels of the nine survival-related genes in the three subtypes. (A–I) The expression level of the nine survival-related genes in the
three subtypes. Expression levels of these seven (CD180, SASH3, CD300A, CD14, DUSP1, KIF14, and MCM2) survival-related genes are significantly
different among these three subtypes. (p < 0.05).
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FIGURE 8
Validation of the generality of our ESCC Subtypes based on the RNA-seq data from TCGA database. (A) The hierarchical clustering tree of the
80 ESCC samples based on the RNA-seq data from TCGA database. The three subtypes are designated as: TCGA_Subtype1 (24 samples),
TCGA_Subtype2 (3 samples), and TCGA_Subtype3 (53 samples). (B) The violin plot of the average correlation values between TCGA_Subtype1 and
Subtypes (Subtype 1, Subtype 2 and Subtype 3). The average correlation values of TCGA_Subtype1 and Subtype 1 are significantly higher than
TCGA_Subtype1 with Subtype 2/Subtype 3. (C) The violin plot of the average correlation values between TCGA_Subtype2 and Subtypes. The average

(Continued )
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from the perspective of transcriptome, which helps us to

understand the molecular characteristics of ESCC more deeply

and provide reference for precise treatment.

Subtype 1 was associated with the activation ofWnt signaling

pathway, which will be a promising treatment target in ESCC. As

an important pathway, Wnt signaling pathway activation has

repeatedly been demonstrated in ESCC (Song et al., 2014; Sawada

et al., 2016). Besides, Wnt signaling was reported to be inversely

correlated with T cell infiltration in colorectal cancer, (Grasso

et al., 2018), as we also found a lower T cell infiltration in subtype

1 than in other subtypes. TheWnt signaling pathway activation is

associated with tumorigenesis and progression (Nusse and

Varmus, 1992; Zhan et al., 2017; You et al., 2019); tumor

proliferation and progression were inhibited by suppressing

this pathway (Lee et al., 2012; You et al., 2019; Yu et al., 2021).

Significantly reduced glycogen metabolism in Subtype 2 may

lead to glycogen accumulation in tumor tissue. Glycogen

accumulation in tumor tissue is a distinguishing feature in

various cancers and which promotes tumor development and

maintenance (Iida et al., 2012; Maruggi et al., 2019; Xie et al.,

2021). Accelerating glycogen metabolism can play a role in

suppressing tumors, several enzymes involved in glycogen

metabolism exert tumor-suppressive effects, including the

glycogen debranching enzyme AGL and the kinase PhK β-
subunit (PHKB) (Guin et al., 2016; Richmond et al., 2018;

Yang et al., 2019; Liu et al., 2021). So, promoting glycogen

metabolism may be a way to inhibit Subtype 2 ESCC.

Subtype 3 is characterized by immunosuppression, including

downregulation of neutrophil degranulation and B/T cell related

immune pathway. Assuming the downregulation of neutrophil

degranulation was caused by the reduced total number of tumor-

infiltrating neutrophils, we performed the immune cell

infiltration analysis. The result confirmed decreased of

neutrophils infiltration in subtype 3 compared to subtype 1 or

2, which possibly lead to downregulation of neutrophil

degranulation. Similar down-stream pathways were identified

in gene co-expression network. We found the downregulation of

neutrophil chemotaxis in Subtype 3 based on the enrichment

result of module 0. In view of the crucial role of neutrophils in the

pathogenesis of cancer (Mantovani et al., 2011) and its position

in the regulation of innate and adaptive immunity (Scapini et al.,

2000; Tecchio et al., 2013; Uribe-Querol and Rosales, 2015;

Jaillon et al., 2020), the reduction of infiltrating neutrophils

may also be part of the reason why B- and T-cell immune-

related processes are affected in subtype 3. Actually, several

single-cell studies have demonstrated an immunosuppressive

microenvironment in ESCC (Zheng et al., 2020; Dinh et al.,

2021). Therefore, Subtype 3 is an immunosuppressive ESCC

subtype, which also makes it most likely to benefit from

immunotherapy. Wang et al. (2019) have found one immune-

activate ESCC subtype by comparing two ESCC subtypes they

have identified, this is significantly different from our Subtype 3.

The difference may arise due to differences in analytical methods.

They characterize the subtypes by making comparisons between

the subtypes and we characterize the subtypes by comparing the

tumor tissue to the normal tissue.

These nine survival-related genes are in key regulatory

positions in the gene expression of the three subtypes; they

are of great significance for the tumorigenesis and

progression. Six of the nine survival-related genes (CORO1A,

CD180, SASH3, CD52, CD300A, and CD14) were involved in the

immune pathways, and were all were negatively correlated with

survival, which is consistent with our understanding of the

duality of immunity in tumors: immune has dual roles of

suppressing and promoting cancer (Schreiber et al., 2011).

CD180 and SASH3 are involved in the B cell-related immune

pathway. The SASH3-encoded protein acts as a signaling protein

in lymphocytes, and high SASH3 expression was associated with

poor survival in cellular renal cell carcinoma (Yin et al., 2020).

CD52 and CORO1A are involved in regulating calcium

homeostasis in immune cells. Calcium homeostasis is

important for regulating the activation and function of

macrophages, dendritic cells, and T cells (Zophel et al., 2020).

CD300A and CD14 are involved in neutrophil degranulation.

CD14 is a key molecule in innate immunity activation, patients

with bladder cancer with high CD14 levels may develop a

proliferative tumor microenvironment (Cheah et al., 2015).

The inhibitory receptor protein CD300A is found on

leukocytes and is involved in the immune response signaling

pathways; the interaction between CD300A and

phosphatidylserine can inhibit the killing effect of natural

killer (NK) cells on tumor cells (Lankry et al., 2013). In

addition to these six survival-related genes involved in

immune-related processes, the remaining three survival-related

genes are involved in other biological processes. The mechanism

of DUSP1 in organisms is highly complex: it is a transcriptional

target of tumor suppressor p53 (Li et al., 2003) and also responds

to various cellular stress conditions (Keyse and Emslie, 1992). In

invasive ovarian cancer, DUSP1 expression was significantly

associated with shorter progression-free survival (p = 0.019)

FIGURE 8 (Continued)
correlation values of TCGA_Subtype2 and Subtype 2 are significantly higher than TCGA_Subtype2 with Subtype 1/Subtype 3. (D) The violin plot
of the average correlation values between TCGA_Subtype3 and Subtypes. The average correlation values of TCGA_Subtype3 and Subtype 3 are
significantly higher than TCGA_Subtype3 Subtype 1/Subtype 2. (E) Survival analysis between TCGA_Subtypes. Kaplan–Meier curves showing there is
no significant difference between TCGA_Subtypes in survival.
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(Denkert et al., 2002). KIF14 and MCM2 are involved in

numerous biological pathways, including G2–M transition,

mitotic nuclear division, and DNA replication. MCM2 has a

coregulatory role in ESCC progression and may have core roles

during the pathogenesis of ESCC (Wang et al., 2018). MCMs

increase genome duplication robustness by restraining the speed

at which eukaryotic cells replicate their DNA, where a minor

reduction in MCM levels destabilizes the genome and

predisposes to increased incidence of tumor formation

(Sedlackova et al., 2020). Genes can influence the overall

performance of transcriptional profile through different

regulatory strategies (Wang et al., 2021). The roles of these

nine survival-related genes in ESCC need further explorations

andmay become potential targets for ESCC therapy in the future.

There are some limitations of this study. The clinical

information of these 141 ESCC samples was not

comprehensive enough to interpret existing findings in

combination with more clinical information. In addition, the

genes with prognostic value have not been validated in other

independent cohorts. Finally, due to the limited laboratory

conditions, some of our results have not been verified in cell

experiments.

In conclusion, we have identified three subtypes of ESCC by

large-scale gene expression profiling of tumor tissues. Through

in-depth exploration of these three subtypes, we have

characterized the three subtypes from multiple perspectives

and discovered some new potential targets that may be

effective in the treatment of ESCC. Taken together, our results

suggest that distinct ESCC subtypes defined using transcriptomes

may exhibit better responses to specific targeted therapies.

Actually, the effectiveness of these targets needs further

exploration and verification. Our findings have deepened our

understanding of the molecular characteristics of ESCC and

provided some references for future clinical treatment research.
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