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Many causes define injuries in professional soccer players. In recent years,

the study of genetics in association with injuries has been of great interest.

The purpose of this study was to examine the relationship between muscle

injury-related genes, injury risk and injury etiology in professional soccer

players. In a cross-sectional cohort study, one hundred and twenty-two

male professional football players were recruited. AMPD1 (rs17602729), ACE

(rs4646994), ACTN3 (rs1815739),CKM (rs8111989) andMLCK (rs2849757 and

rs2700352) polymorphisms were genotyped by using Single Nucleotide

Primer Extension (SNPE). The combined influence of the six

polymorphisms studied was calculated using a total genotype score

(TGS). A genotype score (GS) of 2 was assigned to the “protective”

genotype for injuries, a GS of 1 was assigned to the heterozygous

genotype while a GS of 0 was assigned to the “worst” genotype. Injury

characteristics and etiology during the 2021/2022 season were classified

following a Consensus Statement for injuries recording. The distribution of

allelic frequencies in the AMPD1 and MLCK c.37885C>A polymorphisms

were different between non-injured and injured soccer players (p <
0.001 and p = 0.003, respectively). The mean total genotype score (TGS)

in non-injured soccer players (57.18 ± 14.43 arbitrary units [a.u.]) was

different from that of injured soccer players (51.71 ± 12.82 a.u., p =

0.034). There was a TGS cut-off point (45.83 a.u.) to discriminate non-

injured from injured soccer players. Players with a TGS beyond this cut-off

had an odds ratio of 1.91 (95%CI: 1.14–2.91; p = 0.022) to suffer an injury

when compared with players with lower TGS. In conclusion, TGS analysis in

muscle injury-related genes presented a relationship with professional

soccer players at increased risk of injury. Future studies will help to

develop this TGS as a potential tool to predict injury risk and perform

prevention methodology in this cohort of football players.
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Introduction

Variations in the desoxyribonucleic acid (DNA) sequence

have been associated with athletic performance (Pitsiladis

et al., 2013), cardiovascular response to training (Zarebska

et al., 2014; Varillas-Delgado et al., 2021) and soccer-related

phenotypes, such as sprinting and power (Eynon et al., 2013;

Murtagh et al., 2020), and jumping capacity (Massidda et al.,

2012; Massidda et al., 2014). This genetic information can be

used to create individualized training programs based on a

player’s genetic predispositions, which may represent a

revolution in current methods of training. Recently, an

association has been shown between a few single nucleotide

polymorphisms and the susceptibility to develop

musculoskeletal injuries and anterior cruciate ligament

rupture in professional soccer players (Pruna et al., 2013;

Massidda, Bachis, et al., 2015a; Massidda, Eynon, et al.,

2015b; Massidda et al., 2019; Massidda et al., 2020). The

identification of genetic variants that predispose athletes to

a higher/lower risk of injury is of interest to coaches,

physiologists and the medical community, and will help

them to optimize the detection of sports talents (Varillas-

Delgado et al., 2022a).

Injury etiology is related to the kind of sport model. In this

regard, the presence of allelic differences in candidate genes

related to sports performance (Sessa et al., 2011) has been

reported in power sports (sprinters, short-distance swimmers,

and volleyball) and intermittent sports (soccer, basketball, and

hockey). As a result, the genes with the highest scientific

background related to the sporting ability of athletes,

namely angiotensin-converting enzyme (ACE), α-actinin-3
(ACTN3), nitric oxide synthase 3 (NOS3) and peroxisome

proliferator-activator receptor alpha (PPPARα), are

associated with performance in these modalities. However,

further studies are needed to increase our knowledge

(Zilberman-Schapira et al., 2012) because studies showing

predisposition to injury are imperfect due the examination

of one or a few candidate genes/polymorphisms on injury risk.

Therefore, it would be interesting to extend this knowledge

through the study of the combined influence of several genes/

polymorphisms on injury risk in the same pool of athletes

(Pitsiladis et al., 2016). In this sense, the knowledge of several

DNA variants associated to injury may help to identify

individuals with a greater predisposition to injury (Varillas-

Delgado et al., 2021b).

In recent years, several genetic variants have been

associated with an increased risk of sports-related injury or

phenotypes that predispose athletes to injury. Among others,

the adenosine monophosphate deaminase isoform 1 (AMPD1)

(rs17602729), ACE (rs4646994), ACTN3 (rs1815739), muscle-

specific creatine kinase (CKM) (rs8111989) and creatine

kinase light chain (MLCK; rs2849757 and rs2700352) are

within the genes with the strongest scientific support (Lippi

et al., 2010) to be linked to injury predisposition.

Previous research has shown that carriers of the T allele in the

polymorphism of AMPD1 c.34C>T (rs17602729) have reduced

VO2max values and a lower response to endurance training

(Lucia et al., 2009; Thomaes et al., 2011). The TT genotype is

associated with metabolic myopathy, and exercise-induced

muscle symptoms such as early fatigue, cramps and/or

myalgia which are related to the risk of injury, especially in

soccer (McCabe and Collins 2018). Also, some muscle-related

metabolic diseases are related in individuals with the TT

genotype (Gross 1997; Feng et al., 2017).

Thanks to recent advances in molecular biology and

statistical genetics, it is possible to search for chromosomal

regions containing genes predisposing to hypertension and to

directly link specific mutations in candidate genes. Some of

these markers are closely linked to genes of the renin-

angiotensin system (Peters 1995). The most studied gene

with the strongest association with hypertension is the ACE

I/D polymorphism (rs4646994). Individuals with DD or ID

genotypes are associated with the risk of hypertension in

adulthood, compared with genotype II (Yan et al., 2018).

This genetic variant in the ACE gene I/D has been recently

associated with susceptibility to inflammation and muscle

damage after exercise, showing that athletes with the II

genotype are more susceptible to developing muscle injuries

in professional soccer players (Massidda, Miyamoto-Mikami,

Kumagai, Ikeda, Shimasaki, Yoshimura, Cugia, Piras, Scorcu,

Kikuchi, Calò and Fuku 2020).

The ACTN3 gene encodes the α-actinin-3, a highly

conserved component of the contractile machinery of fast

skeletal muscle fibers in mammals. The polymorphism

c.1729C>T (rs1815739) affect the expression of α-actinin-
3 in humans. Individuals with the CC genotype express

functional α-actinin-3 and thig genotype is more frequent

in athletes of power-oriented sports. On the contrary, the TT

genotype (premature stop codon) is associated with complete

α-actinin-3 deficiency, and athletes with this genotype are

habitually more prone to muscle injury and exercise-induced

muscle damage (Clarkson et al., 2005a; Clos et al., 2019;

Massidda, Voisin, Culigioni, Piras, Cugia, Yan, Eynon and

Calò 2019). The TT genotype reduces the diameter of fast

fibers, increases the activity of multiple enzymes in the aerobic

metabolic pathway and increases the activity of the aerobic

metabolic pathway (Lippi et al., 2010). ACTN3 has been

related to susceptibility of injury in soccer, showing that the
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CC genotype reduces the incidence and severity of injuries

with respect to the TT genotype in soccer players

(Massidda, Voisin, Culigioni, Piras, Cugia, Yan, Eynon and

Calò 2019).

A polymorphism in the 3′ non-coding region of CKM

c.*800A>G (rs8111989) plays a vital role in the homeostatic

energy of muscle cells and is responsible for the rapid

regeneration of adenosine triphosphate (ATP) during

intensive muscle contraction (Eider et al., 2015). Within this

polymorphism, it has been found that the G allele reduces skeletal

muscle activity during long-term efforts, with a lower

concentration of creatine kinase (CK) (Zhou et al., 2006;

Fedotovskaia et al., 2012).

MLCK gene polymorphisms c.37885C>A (rs28497577)

and c.49C>T (rs2700352) alter the phosphorylation of

regulatory light chains (RLC) and regulate the ability to

produce force and resist tension during voluntary muscle

contractions. Previous investigations have studied these

polymorphisms under the hypothesis that they may

predispose athletes to higher values of muscle damage

during sports competitions (Del Coso et al., 2016;

Mascarenhas et al., 2017) (Del Coso et al., 2016;

Mascarenhas et al., 2017), showing that the C allele of

c.37885C>A polymorphism (Del Coso, Valero, Lara,

Salinero, Gallo-Salazar and Areces 2016) and T allele of

c.49C>T (Clarkson et al., 2005) could predispose to higher

values of muscle damage during exercise.

A recent study has shown that the sum of the influence of

these genotypes has already been used to detect the likelihood of

injury in other samples of athletes (Varillas-Delgado et al., 2022a)

and we hypothesized that the characteristics of the injuries would

show similarities with those found in elite endurance athletes

with a high relevance of the AMPD1 gene polymorphism in the

risk of injuries etiology.

Therefore, this study aimed to examine, for the first time, the

relationship between muscle injuries-related genes, risk and

etiology of injuries in professional soccer players, and to

demonstrate the feasibility of a total genotype score that

correlates significantly with soccer injuries.

Materials and methods

Participants

This longitudinal cohort study analyzed 122 Spanish male

professional soccer players in five clubs from LaLiga Santander

and LaLiga Smartbank in Spain whose characteristics are

presented in Table 1.

The following inclusion criteria were established for

participants: a) professional soccer players with a contract

with the first team of the football club; b) who participated in

training and matches throughout the season at the same soccer

club; c) performed regular exercise training of >1 h per day, >
5 days per week for the prior 6 months and; d) Spanish Caucasian

descent for ≥3 generations (Varillas Delgado et al., 2019), and the
exclusion criteria were: (a) contact injuries in the season; (b)

incapacitating injuries for soccer training or matches in the

previous 6 months to the onset of the study and; (c)

professional female soccer players.

All players agreed to participate in the study by giving their

written informed consent. The study protocol was approved by

the research ethics committee of the Francisco de Vitoria

University (UFV 32/2020) and the confidentiality of the

participants was ensured, complying with the Declaration of

Helsinki 1964 (latest update 2013).

DNA sample collecting and genotype

The samples were collected during the 2021/2022 season in

the months of March-May with SARSTED swabs by buccal

smear and kept refrigerated until genotyping.

DNA extraction from the swabs was carried out in

VIVOLabs laboratory (Madrid, Spain) by automatic extraction

in QIACube equipment (QIAGEN, Venlo, Holland), yielding a

DNA concentration of 25–40 ng/ml, which was kept in a solution

in a volume of 100 μL at −20°C until genotyping.

ACE I/D (rs4646994), ACTN3 c.1729C>T (rs1815739),

AMPD1 c.34C>T (rs17602729), CKM c.*800A>G (rs8111989)

TABLE 1 Professional soccer players’ demographic characteristics.

Total Non-injured Injured p-value

Age, mean (SD) 23.43 (5.12) 22.96 (5.01) 23.76 (5.31) 0.405

Weight, mean (SD) 68.57 (7.26) 68.31 (6.25) 69.05 (7.96) 0.796

Height, mean (SD) 170.5 (5.68) 171.74 (5.28) 169.99 (6.08) 0.674

BMI, mean (SD) 23.42 (1.90) 22.95 (1.84) 24.32 (2.06) 0.156

Position Goalkeepers, n (%) 14 (11.5) 10 (19.6) 4 (5.6) 0.074

Defenders, n (%) 39 (32.0) 16 (31.4) 23 (32.4)

Midfielders, n (%) 33 (27.0) 14 (27.5) 19 (26.8)

Forwards, n (%) 36 (29.5) 11 (21.6) 25 (35.2)
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and MLCK c.37885C>A (rs28497577) and c.49C>T (rs2700352)

polymorphisms were genotyped by using Single Nucleotide

Primer Extension (SNPE) with the SNaPshot Multiplex Kit

(Thermo Fisher Scientific, MA, United States), with analysis

of the reaction result by capillary electrophoresis fragments, in

an ABI3500 unit (Applied Biosystems, CA, United States) with

bioinformatic analysis performed by GeneMapper 5.0 software

(Applied Biosystems, CA, United States). Genomic location of

each polymorphism is present in Table 2.

Injury collection

Baseline data were collected at the start of the season.

Individual player exposure in training and matches was

meticulously recorded by the clubs as part of their routines to

estimate player load across the season. This research included the

recording of all players with injuries and characteristics of all

non-contact injuries reported by the medical services of the clubs

during the 2021/2022 season. To be included in the analysis, the

injury has to be the result of soccer exposure during either

training or competition. Injuries caused due to a collision

with another player or with an object were excluded from the

investigation as they are potentially unaffected by the player’s

genotype. The soccer injury doctor of each club recorded data on

a paper player injury questionnaire. The questionnaire was

completed when a soccer player required the attention of a

doctor, and the results were sent to the head of medical

services. The medical staff was informed that a recordable

injury was defined as “any physical complaint suffered by a

player as a result of a soccer match or training session, regardless

of medical care or time lost from soccer activities”. Injuries

collection followed the international consensus statement on

procedures for epidemiological studies of soccer injuries

recommended by the Fédération Internationale de Football

Association (FIFA) and the Union of European Football

Associations (UEFA) (Hägglund et al., 2005; Fuller et al.,

2006; Bahr et al., 2020) including the etiological elements of

the sports injury; 1) Rupture of muscle fibers 2) Onset of the

injury (acute or gradual) and 3) Place of injury; if it occurred in a

match or training session. Soccer injuries were classified using an

adapted version of the Orchard Sports Injury Classification (Rae

and Orchard 2007).

Polygenic potential for muscle injuries

The combined influence of the six polymorphisms studied

was calculated using a total genotype score (TGS) following the

procedure presented by Williams and Folland (Williams and

Folland 2008). A genotype score (GS) of 2 was assigned to the

“protective” genotype for injuries, a GS of 1 was assigned to the

heterozygous genotype while a GS of 0 was assigned to the

“worst” genotype (Varillas-Delgado, et al., 2022a). The GS scores

for the six polymorphisms in the professional soccer players

cohort are shown in Table 3. The score of GS of all genotypes was

transformed to a 0–100 arbitrary units (a.u) scale to facilitate

interpretation, namely the total genotype score (TGS), as follows:

TGS � (GSAMPD1+GSACE+GSACTN3+GSCKM+GSMLCK37885

+GSMLCK49) × 100/12

As previously indicated (Williams and Folland 2008), a TGS

of 100 a.u. represents a “perfect protective” profile and a TGS of

0 a.u. would be the “worst protective” possible profile for muscle

injuries when all GSs have a score of 0 a.u. Finally, the TGS

distribution between non-injury and injury characteristics was

assessed.

The experimental model followed in this research is shown in

Figure 1.

Statistical analysis

Statistical analysis was performed using the Statistical

Package for the Social Sciences (SPSS), v.21.0 for Windows

TABLE 2 Genomic location and minor allele frequency (MAF) for selected genes in muscle injuries.

Symbol Gene dbSNP Genomic location MAF soccer players MAF (IBS)* HWE FIS

ACE Angiotensin-converting enzyme rs4646994 17q23.3 33.6% (I) 36.7% (I)** p = 0.893 0.14

ACTN3 alpha-actinin-3 rs1815739 11q13.2 44.7% (T) 43.9% (T) p = 0.842 −0.02

AMPD1 Adenosine monophosphate deaminase 1 rs17602729 1p13.2 20.8% (T) 14.0% (T) p = 0.251 −0.48

CKM Muscle-specific creatine kinase rs8111989 19q13.32 33.2% (G) 26.6% (G) p = 0.163 −0.25

MLCK Myosin Light Chain Kinase rs28497577 3q21.1 13.9% (A) 10.3% (A) p = 0.621 −0.35

MLCK Myosin Light Chain Kinase rs2700352 3q21.1 22.1% (T) 20.1% (T) p = 0.689 −0.10

Overall SNPs p = 0.576 −0.18

IBS, Iberian population in Spain *(Yates et al., 2020) **(Fiuza-Luces et al., 2011); FIS, inbreeding coefficient; HWE, Hardy-Weinberg equilibrium; MAF, minor allele frequency; SNP, single

nucleotide polymorphism.

Frontiers in Genetics frontiersin.org04

Maestro et al. 10.3389/fgene.2022.1035899

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1035899


(IBM Corp. Released 2012. IBM SPSS Statistics for Windows,

Version 21.0. Armonk, NY: IBM Corp. United States).

Disequilibria of SNPs were estimated by using the Hardy-

Weinberg Equilibrium (HWE) followed by the approach

proposed by Weir and Cockerham (Weir and Hill 2002). The

probability of having an optimal genotype for these

polymorphisms between injured and non-injured was calculated

using the χ2 test with a fixed α error of 0.05. The genotypic

frequencies of the polymorphisms were compared between injury

etiologies, using a χ2 test with fixed α 0.05. The ability of TGS to

correctly distinguish injuries (0 = no, 1 = yes) and etiology; 1)

musculoskeletal injuries (0 = no, 1 = yes), 2) place (0 = training, 1 =

match) 3) and severity >28 days (0 = no, 1 = yes) was assessed using

a receiver operating characteristic (ROC) curve (Zweig and

Campbell 1993). Thus, the area under the ROC curve (AUC)

was calculated with confidence intervals of 95% (95%CI). Finally,

TABLE 3 Genotyping frequency in the professional soccer players.

Symbol Gene Polymorphism dbSNP Genotype score
(Varillas Delgado
et al., 2020b)

Professional football
players

ACE Angiotensin-converting enzyme I/D rs4646994 2 = DD 57 (46.8%)

1 = ID 48 (39.3%)

0 = II 17 (13.9%)

ACTN3 alpha-actinin-3 c.1729C>T rs1815739 2 = CC 36 (29.5%)

1 = CT 63 (51.6%)

0 = TT 23 (18.9%)

AMPD1 Adenosine monophosphate deaminase 1 c.34C>T rs17602729 2 = CC 86 (70.5%)

1 = CT 24 (19.7%)

0 = TT 12 (9.8%)

CKM Muscle-specific creatine kinase c.*800A>G rs8111989 2 = GG 15 (12.3%)

1 = GA 51 (41.8%)

0 = AA 56 (45.9%)

MLCK Myosin Light Chain Kinase c.37885C>A rs28497577 2 = AA 8 (6.6%)

1 = CA 18 (14.8%)

0 = CC 96 (78.6%)

Myosin Light Chain Kinase c.49T>C rs2700352 2 = CC 74 (60.7%)

1 = CT 42 (34.4%)

0 = TT 6 (4.9%)

FIGURE 1
Experimental model.
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a binary logistic regression model was used to study the relationship

between the TGS and etiology of soccer injuries.

Results

The polymorphisms analyzed met the HWE (all p > 0.05;

Table 2).

The characteristics of the injuries recorded and analyzed

during the 2021/2022 season are presented in Table 4.

Injuries

Of the 122 professional soccer players, 71 players had a non-

contact injury during the season (58.2%) for a total of

121 injuries. The remaining 51 players (41.8%) did not

present any injury throughout the 2021–2022 season.

When adding the genotype scores of all polymorphisms, the

mean value of the TGS in the non-injured players was 57.18 a.u.

(±14.43 a.u.), statistical kurtosis: 0.32 (±0.24). The TGS value for

the group of injured players was 51.71 a.u. (±12.82 a.u.),

statistical kurtosis: 0.38 (±0.32). The TGS values between the

non-injured and injured professional soccer players were

statistically significant (p = 0.034).

ROC analysis showed significant discriminatory

accuracy of TGS in the identification of injuries in

professional soccer players (AUC = 0.612; 95%CI:

0.513–0.711; p = 0.028) (sensitivity = 0.640, specificity =

0.475) (Figure 2). The corresponding TGS value at this

point was 45.83 a.u. Binary logistic regression analysis

showed that subjects with a TGS lower than 45.83 a.u. had

an odds ratio (OR) of 1.91 (95%CI: 1.14–2.91; p = 0.022) of

injury during the season, compared to those with a TGS above

this value.

TABLE 4 Injury characteristics in professional soccer players during
the 2021/2022 season.

Frequency

Onset Acute 107 (88.4%)

Repetitive/overuse 14 (11.6%)

Place Training 60 (49.6%)

Match 61 (50.4%)

Tissue affected Bone 2 (1.7%)

Joints and ligaments 51 (42.1%)

Muscles and tendons 66 (54.5%)

Skin 0 (0.0%)

Nervous system 1 (0.8%)

Other 1 (0.8%)

Severity Slight 26 (21.5%)

Mild 13 (10.7%)

Moderate 56 (46.3%)

Severe 26 (21.5%)

Type Fracture 0 (0.0%)

Other bone injuries 2 (1.7%)

Luxation/subluxation 4 (3.3%)

Ligamentous distension 29 (24.0%)

Ligamentous tear 4 (3.3%)

Meniscus injury 4 (3.3%)

Chondral injury 2 (1.7%)

Synovitis 1 (0.8%)

Fasciitis 1 (0.8%)

Muscle tear 54 (44.6%)

Muscle contracture 8 (6.6%)

Tendon strain 6 (5.0%)

Tendon rupture 2 (1.7%)

Bursitis 1 (0.8%)

Tendinitis 1 (0.8%)

Hematoma-contusion 0 (0.0%)

Abrasion 0 (0.0%)

Incised wound 0 (0.0%)

Concussion 0 (0.0%)

Dental injuries 0 (0.0%)

Nerve injury 1 (0.8%)

Other injuries 1 (0.8%)

Recurrency No 105 (86.8%)

Yes 16 (113.2%)

FIGURE 2
Receiver operating characteristic curve (ROC) summarizing
the ability of the total genotype score (TGS) to distinguish potential
non-injured players from injured players in muscle performance
profile, AUC, area under the curve.
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Genotype distribution of muscle performance genes in the

non-injured professional soccer players group, when

compared with the injured players, was statistically

significant for AMPD1 polymorphism (p < 0.001), showing

a higher frequency in the “optimal” genotype in non-injured

players (GG 88.2%) than the injured players (GG 57.7%), and

the injured players, showing a higher frequency of the “worse”

genotype (TT 15.5%) than the non-injured players (TT 2.0%)

(Table 5). Also, statistical differences were found for MLCK

c.37885C>A polymorphism (p = 0.003), showing a higher

frequency of the “optimal” genotype in non-injured players

(AA 15.7%) than in injured players (AA 0.0%), as well as

injured players showing a higher frequency of the “worse”

genotype (CC 84.5%) than non-injured players (CC 70.6%)

(Table 5). No differences were shown in the other muscle

performance polymorphisms between non-injured and

injured players (Table 5).

Musculoskeletal injuries

Seventy-one players had 121 non-contact injuries during the

season of which 54 (44.6%) were musculoskeletal injuries.

In the genotype scores of all polymorphisms, the mean value

of players with non-musculoskeletal injured has a TGS of

TABLE 5 Genotype distribution in non-injured and injured professional soccer players for muscle injuries polymorphisms.

Symbol Gene Polymorphism dbSNP Genotype score
(Varillas
Delgado et al.,
2020a)

Non-injured
professional soccer
players

Injured
professional
soccer
players

p-value

ACE Angiotensin-converting
enzyme

I/D rs4646994 2 = DD 27 (52.9%) 30 (42.3%) 0.311

1 = ID 16 (31.4%) 32 (45.0%)

0 = II 8 (15.7%) 9 (12.7%)

ACTN3 alpha-actinin-3 c.1747C>T rs1815739 2 = CC 15 (29.4%) 21 (29.6%) 0.250

1 = CT 23 (45.1%) 40 (56.3%)

0 = TT 13 (25.5%) 10 (14.1%)

AMPD1 Adenosine
monophosphate
deaminase 1

c.34C>T rs17602729 2 = CC 45 (88.2%) ↑ 41 (57.7%) ↓ <0.001
1 = CT 5 (9.8%) ↓ 19 (26.8%) ↑
0 = TT 1 (2.0%) ↓ 11 (15.5%) ↑

CKM Muscle-specific creatine
kinase

c.*800A>G rs8111989 2 = GG 8 (15.7%) 7 (9.9%) 0.387

1 = GA 23 (45.1%) 28 (39.4%)

0 = AA 20 (39.2%) 36 (50.7%)

MLCK Myosin Light Chain
Kinase

c.37885C>A rs28497577 2 = AA 8 (15.7%) ↑ 0 (0.0%) ↓ 0.003

1 = CA 7 (13.7%) 11 (15.5%)

0 = CC 36 (70.6%) ↓ 60 (84.5%) ↑
Myosin Light Chain
Kinase

c.49T>C rs2700352 2 = CC 31 (60.8%) 43 (60.6%) 0.906

1 = CT 18 (35.3%) 24 (33.8%)

0 = TT 2 (3.9%) 4 (5.6%)

FIGURE 3
Receiver operating characteristic curve (ROC) summarizing
the ability of the total genotype score (TGS) to distinguish potential
musculoskeletal non-injured players frommusculoskeletal injured
players in muscle performance profile, AUC, area under the
curve.
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51.11 a.u. (±11.32 a.u.), statistical kurtosis: 0.41 (±0.31). The

value for the group of musculoskeletal injured players was

46.75 a.u. (±12.14 a.u.), statistical kurtosis: 0.28 (±0.29). The

TGS values between non-musculoskeletal injured and injured

professional soccer players were statistically significant (p =

0.047).

ROC analysis did not show significant discriminatory

accuracy of TGS in the identification of musculoskeletal

injuries in professional soccer players (AUC = 0.570; 95%CI:

0.463–0.677; p = 0.189) (sensitivity = 0.373, specificity = 0.426)

(Figure 3). The corresponding TGS value at this point was

54.16 a.u. Binary logistic regression analysis showed that

subjects with a TGS lower than 54.16 a.u. had an odds ratio

(OR) of 1.25 (95%CI: 0.60–2.59; p = 0.555) of musculoskeletal

injury during the season, compared to those with a TGS above

this value.

However, the genotype distribution of muscle

performance genes in players in the non-musculoskeletal

injury group, when compared to musculoskeletal injured

players, was statistically significant for the AMPD1

polymorphism (p = 0.004), showing a higher frequency in

the “optimal” genotype in non-musculoskeletal injured

players (GG 53.7%) than the musculoskeletal injured

players (GG 25.9%), with musculoskeletal injured players

having a higher frequency of the “worse” genotype (TT

31.5%) than non-musculoskeletal injured players (TT

13.4%) (Table 6). Regarding the CKM polymorphism,

differences were observed in the GA genotype, with a

higher frequency in players with a musculoskeletal injury

(GA 42.3%) than in players without a musculoskeletal

injury (GA 25.4%) (Table 6). No differences were shown in

the other muscle performance polymorphisms between non-

injured and injured players (Table 6).

Place of injury

Of the 121 non-contact injuries analyzed, 61 (50.4%)

occurred in matches, compared to 60 (49.6%) in training.

In the analysis of the genotype scores of all polymorphisms,

the mean value of players injured during a match had a TGS of

50.27 a.u. (±11.48 a.u.), statistical kurtosis: 0.28 (±0.31). The

value for injuries occurring in training was 48.05 a.u.

(±14.66 a.u.), statistical kurtosis: 0.43 (±0.37). The TGS values

between match and training injuries were not statistically

significant (p = 0.356).

ROC analysis did not show significant discriminatory

accuracy of TGS in the identification of place of injuries in

TABLE 6 Genotype distribution in professional soccer players with non-musculoskeletal and musculoskeletal injuries for muscle injuries polygenic
profile.

Symbol Gene Polymorphism dbSNP Genotype
score
(Varillas
Delgado
et al., 2020a)

Non-musculoskeletal
injured professional
soccer players

Musculoskeletal
injured professional
soccer players

p-value

ACE Angiotensin-
converting enzyme

I/D rs4646994 2 = DD 24 (35.8%) 17 (31.5%) 0.583

1 = ID 34 (50.7%) 26 (48.1%)

0 = II 9 (13.5%) 11 (20.4%)

ACTN3 alpha-actinin-3 c.1747C>T rs1815739 2 = CC 21 (31.3%) 18 (33.3%) 0.972

1 = CT 36 (53.7%) 28 (51.9%)

0 = TT 10 (14.95) 8 (14.8%)

AMPD1 Adenosine
monophosphate
deaminase 1

c.34C>T rs17602729 2 = CC 36 (53.7%) ↑ 14 (25.9%) ↓ 0.004

1 = CT 22 (32.8%) 23 (42.6%)

0 = TT 9 (13.4%) ↓ 17 (31.5%) ↑
CKM Muscle-specific

creatine kinase
c.*800A>G rs8111989 2 = GG 7 (10.4%) 5 (9.3%) 0.131

1 = GA 17 (25.4%) ↓ 23 (42.3%) ↑
0 = AA 43 (64.2%) 26 (48.1%)

MLCK Myosin Light Chain
Kinase

c.37885C>A rs28497577 2 = AA 0 (0.0%) 0 (0.0%) 0.475

1 = CA 16 (23.9%) 10 (18.5%)

0 = CC 51 (76.1%) 44 (81.5%)

Myosin Light Chain
Kinase

c.49T>C rs2700352 2 = CC 44 (65.6%) 33 (61.1%) 0.471

1 = CT 18 (26.9%) 19 (35.2%)

0 = TT 5 (7.5%) 2 (3.7%)
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professional soccer players (AUC = 0.475; 95%CI:

0.370–0.580; p = 0.635) (sensitivity = 0.450, specificity =

0.344) (Figure 4). The corresponding TGS value at this

point was 54.16 a.u. Binary logistic regression analysis

showed that subjects with a TGS lower than 54.16 a.u.

had an odds ratio (OR) of 1.58 (95%CI: 0.89–2.36; p =

0.236) of match injuries, compared to those with a TGS

above this value.

Genotype distribution of muscle performance genes in

players with match injuries, when compared to players

with training injuries was statistically significant for the

MLCK c.37885C>A polymorphism (p = 0.009), showing a

higher frequency of “worse” genotype (CC 88.3%) in training

injured players than in match injured players (CC 68.9%),

while in the CA genotype, differences between frequencies

were found, with a higher frequency in matches injured

players (CA 31.1%) than in training injured players (CA

11.7%) (Table 7). Regarding the CKM polymorphism,

differences were observed in the GG genotype, with a

higher frequency in players with training injuries (GG

15.0%) than in players with match injuries (GG 4.9%)

(Table 7). No differences were shown in the other muscle

performance polymorphisms between non-injured and

injured players (Table 7).

FIGURE 4
Receiver operating characteristic curve (ROC) summarizing
the ability of the total genotype score (TGS) to distinguish potential
match injured players from training injured players in muscle
performance profile, AUC, area under the curve.

TABLE 7 Genotype distribution in professional soccer players with matches and training injuries for muscle injuries polygenic profile.

Symbol Gene Polymorphism dbSNP Genotype score
(Varillas
Delgado et al.,
2020b)

Training injured
professional
soccer players

Match injured
professional
soccer players

p-value

ACE Angiotensin-converting
enzyme

I/D rs4646994 2 = DD 21 (35.0%) 20 (32.8%) 0.959

1 = ID 29 (48.3%) 31 (50.8%)

0 = II 10 (16.7%) 10 (16.4%)

ACTN3 alpha-actinin-3 c.1747C>T rs1815739 2 = CC 16 (26.7%) 23 (37.7%) 0.291

1 = CT 36 (60.0%) 28 (45.9%)

0 = TT 8 (13.3%) 10 (16.4%)

AMPD1 Adenosine
monophosphate
deaminase 1

c.34C>T rs17602729 2 = CC 25 (41.7%) 25 (41.0%) 0.119

1 = CT 18 (30.0%) 27 (44.3%)

0 = TT 17 (28.3%) 9 (14.8%)

CKM Muscle-specific creatine
kinase

c.*800A>G rs8111989 2 = GG 9 (15.0%) ↑ 3 (4.9%) ↓ 0.178

1 = GA 19 (31.7%) 21 (34.4%)

0 = AA 32 (53.3%) 37 (60.7%)

MLCK Myosin Light Chain
Kinase

c.37885C>A rs28497577 2 = AA 0 (0.0%) 0 (0.0%) 0.009

1 = CA 7 (11.7%) ↓ 19 (31.1%) ↑
0 = CC 53 (88.3%) ↑ 42 (68.9%) ↓

Myosin Light Chain
Kinase

c.49T>C rs2700352 2 = CC 38 (63.3%) 39 (63.9%) 0.916

1 = CT 19 (31.7%) 18 (29.5%)

0 = TT 3 (5.0%) 4 (6.6%)
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Severity of injury

Of the 121 non-contact injuries analyzed, 26 (21.5%) were

severe (>28 days), while 95 injuries (78.5%) were non-severe

(<28 days).

In the analysis of the genotype scores of all polymorphisms,

the mean value of players with severe injuries had a TGS of

49.67 a.u. (±12.35 a.u.), statistical kurtosis: 0.33 (±0.26). The

value for non-severe injuries was 49.03 a.u. (±13.41 a.u.),

statistical kurtosis: 0.30 (±0.29). The TGS values between non-

severe and severe injuries were not statistically significant (p =

0.826).

ROC analysis did not show significant discriminatory

accuracy of TGS in the identification of severity of injuries in

professional soccer players (AUC = 0.505; 95%CI: 0.384–0.626;

p = 0.942) (sensitivity = 0.411, specificity = 0.346) (Figure 5). The

corresponding TGS value at this point was 54.16 a.u. Binary

logistic regression analysis showed that subjects with a TGS lower

than 54.16 a.u. had an odds ratio (OR) of 1.31 (95%CI: 0.45–3.63;

p = 0.553) of severe injuries, compared to those with a TGS above

this value.

The genetic distribution in the muscle performance genes

when compared between players who had a severe injury and

those who had a non-severe injury, showed no differences in the

FIGURE 5
Receiver operating characteristic curve (ROC) summarizing
the ability of the total genotype score (TGS) to distinguish potential
non-severely injured players from severely injured players in
muscle performance profile, AUC, area under the curve.

TABLE 8 Genotype distribution in professional soccer players with non-severe and severe injuries for muscle injuries polygenic profile.

Symbol Gene Polymorphism dbSNP Genotype score
(Varillas
Delgado et al.,
2020a)

Non-severely
injured professional
soccer players

Severely injured
professional
soccer players

p-value

ACE Angiotensin-converting
enzyme

I/D rs4646994 2 = DD 32 (33.7%) 9 (34.6%) 0.366

1 = ID 45 (47.4%) 15 (57.7%)

0 = II 18 (18.9%) 2 (7.7%)

ACTN3 alpha-actinin-3 c.1747C>T rs1815739 2 = CC 32 (33.7%) 7 (26.9%) 0.149

1 = CT 52 (54.7%) 12 (46.2%)

0 = TT 11 (11.6%) ↓ 7 (26.9%) ↑
AMPD1 Adenosine

monophosphate
deaminase 1

c.34C>T rs17602729 2 = CC 36 (37.9%) 14 (53.8%) 0.333

1 = CT 37 (38.9%) 8 (30.8%)

0 = TT 22 (23.2%) 4 (15.4%)

CKM Muscle-specific creatine
kinase

c.*800A>G rs8111989 2 = GG 11 (11.6%) 12 (46.2%) 0.091

1 = GA 27 (28.4%) ↓ 13 (50.0%) ↑
0 = AA 57 (60.0%) 1 (3.8%)

MLCK Myosin Light Chain
Kinase

c.37885C>A rs28497577 2 = AA 0 (0.0%) 0 (0.0%) 0.752

1 = CA 21 (22.1%) 5 (19.2%)

0 = CC 74 (77.9%) 21 (80.8%)

Myosin Light Chain
Kinase

c.49T>C rs2700352 2 = CC 62 (65.3%) 15 (57.7%) 0.585

1 = CT 27 (28.4%) 10 (38.5%)

0 = TT 6 (6.3%) 1 (3.8%)
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polymorphisms studied. However, in the ACTN3 gene, it was

observed that the TT genotype showed a higher frequency in

players with severe injuries (TT 26.9%) than in non-severe

injuries (TT 11.6%) (Table 8). Regarding the CKM

polymorphism, differences were observed in the GA genotype,

with a higher frequency in players with a severe injury (GA

50.0%) than in players with a non-severe injury (GA 28.4%)

(Table 8).

Discussion

Although the influence of several polymorphisms on

exercise performance and the likelihood of injury have been

analyzed in several previous investigations, to the authors’

knowledge, this is the first to investigate the association

between muscle injury-related genes and the likelihood of

injury in professional soccer players. The purpose of this

study was to examine the relationship between muscle

injury-related genes, injury risk and injury etiology in

professional soccer players. The main finding in this study

is the correlation between TGS scores and different injury

characteristics, with the C allele of the AMPD1 polymorphism

suggesting some type of injury prevention-related benefit, and

especially to protect against musculoskeletal injury.

The main outcome of this research indicates that injury

incidence was similar in professional soccer players with the

ACE, ACTN3, CKM and MLCK c.49T>C polymorphisms

(Table 5). However, players with different AMPD1 and

MLCK c.37885C>A genotypes showed injury incidence with

different characteristics: (a) players with the TT genotype of

the AMPD1 gene had a higher frequency of injuries, with a

higher frequency of musculoskeletal injuries compared to the

CC genotype; (b) players with the CC genotype of the MLCK

c.37885C>A polymorphism had a higher frequency of injuries,

especially during training. The CA genotype showed a higher

frequency of injuries in matches, while the AA genotype

suggests some injury-related benefit throughout the season;

(c) the GA genotype of the CKM gene showed a higher

frequency of musculoskeletal injuries in professional soccer

players, as well as in the severity of injuries occurring in the

season. Players with the GG genotype had a higher frequency

of injuries in training than in matches and; (d) players with the

TT genotype of the ACTN3 gene had a higher frequency of

severe injuries. Collectively, this information suggests that

AMPD1, CKM, MLCK c.37885C>A and ACTN3 genotypes

affect the likelihood of non-contact injuries during the soccer

season. Furthermore, having the CC genotype at the AMPD1

polymorphism is somewhat protective against injuries, and

especially musculoskeletal injuries, as occurs with the AA

genotype at the MLCK c.37885C>A polymorphism, with

the CC genotype recording more frequent injuries in

training than the CA genotype, while higher frequencies of

severe injuries occurred in TT players at the ACTN3 gene,

while the GA genotype of the CKM gene had a higher

frequency of musculoskeletal injuries.

Injuries are a common problem in soccer and are influenced

by both player’s intrinsic factors and environmental variables.

Among others, training methods and injury prevention

programs may condition injury risk and they may be a

confounding factor for this study. However, we selected a

homogeneous sample of professional soccer players while the

clubs involved in this study had similar training methodologies

and comparable competitive load throughout the season. For

example, all clubs included strength training with external

loads >1 time per week, proprioceptive training, and

multicomponent programs (balance, core stability, and

functional strength and mobility) to prevent injury. Despite

the similar characteristics of training and competition load for

all the players involved in this study, only 16.6% suffered a non-

contact injury. The current investigation reflects that genetics

may constitute an important contributing factor for a player’s

predisposition to injury. Additionally, through the assessment of

a TGS that includes only 6 SNPs, players with a higher

predisposition to injury can be identified and placed into a

special program to reduce their nature-associated susceptibility

to injury. The knowledge provided by this research with genetic

data could constitute a new tool to predict a higher risk of injury

in professional soccer players alongside established training

methodologies.

Although excellent muscle performance in sports is

facilitated by an optimal polygenic profile (Egorova et al.,

2014; Mohr et al., 2016; Jacob et al., 2019; Pickering et al., 2019;

McAuley et al., 2021a), the methodological rigor and evidence

in genetic association research in soccer still has room for

improvement (McAuley, Hughes, Tsaprouni, Varley, Suraci,

Roos, Herbert and Kelly 2021a). This analysis indicates that

the combined influence of these five key genes is strong enough

to discriminate the risk of soccer injuries. Previous research

has focused on several genes and their influence in the

response to physical training and predisposition to soccer-

related injuries, especially in ACTN3 (Coelho et al., 2018; Clos,

Pruna, Lundblad, Artells and Esquirol Caussa 2019; Massidda,

Voisin, Culigioni, Piras, Cugia, Yan, Eynon and Calò 2019;

Clos et al., 2021) and ACE polymorphisms (Massidda,

Miyamoto-Mikami, Kumagai, Ikeda, Shimasaki, Yoshimura,

Cugia, Piras, Scorcu, Kikuchi, Calò and Fuku 2020; McAuley

et al., 2021b; Wei 2021). Identification of genetic markers

associated with the regulation of energy metabolism in skeletal

muscles can help sports physicians and coaches develop

personalized strategies to adapt the training protocols

according to this professional soccer player’s genetic profile

presented (Varillas-Delgado et al., 2022b).

AMPD1 is an important regulator of energy metabolism in

the muscle fiber that shifts the equilibrium of the reaction of

the purine nucleotide cycle towards adenosine triphosphate
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production by converting adenosine monophosphate into

inosine monophosphate (Maciejewska-Skrendo et al., 2019).

Individuals with the TT genotype have diminished exercise

capacity and cardiorespiratory responses to exercise (Rico-

Sanz et al., 2003; Varillas Delgado et al., 2020). Moreover,

carriers of the T allele have a limited training response of

ventilatory phenotypes during maximal exercise (Rico-Sanz,

Rankinen, Joanisse, Leon, Skinner, Wilmore, Rao and

Bouchard 2003; Rubio et al., 2005; Gineviciene et al., 2014)

and a reduced submaximal aerobic capacity (Lucia et al., 2009;

Gineviciene, Jakaitiene, Pranculis, Milasius, Tubelis and Utkus

2014), showing an inability to catalyze the purine nucleotide

cycle reaction, preventing the muscle cells from having energy

for their function, leading to their death, which is the cause of

the injury, especially musculoskeletal injury, discovered in this

research. This study shows that the AMPD1 gene is a relevant

factor for soccer injuries, especially the ones with a

musculoskeletal nature. These data are similar to those

recently published on injuries in elite endurance athletes

(Varillas-Delgado et al., 2022b). Collectively, this

information suggests that optimal muscle function -through

optimal genotype in key genes associated to muscle function-

influences injury in professional soccer players. These results

are valuable for future studies to demonstrate a cause of

muscle performance and injuries that could lead to

knowledge in this field of sports injuries.

CKM plays an important role in energy provision during

high-intensity muscle contraction. The main outcomes of this

research indicate that injury incidence was similar in soccer

players, with data like those presented in our study (Table 5).

The GA genotype is associated with a greater propensity for

fiber rupture and injury severity than GG or AA players, which

could lead to the conclusion that the GG and AA genotypes

may offer a protective role. This may be of particular interest

for soccer practitioners to prevent muscle tears and their

severity during professional soccer practice as this type of

injury is the most common at the elite level (López-Valenciano

et al., 2020).

MLCK plays a critical role in the regulation of smooth

muscle contraction (Stull et al., 2011; Sun et al., 2020). In this

gene, two polymorphisms have been associated with post-

exercise strength loss (Shen et al., 2015; Del Coso, Valero, Lara,

Salinero, Gallo-Salazar and Areces 2016), showing that

heterozygotes CA for c.37885C>A might present higher

exercise-induced muscle damage after an endurance

competition than CC counterparts (Clarkson et al., 2005a).

These data are in agreement with those presented in this

research in which the CA genotype is associated with a

higher incidence of injuries in matches, where the muscle

works at a maximum level, in continuous endurance efforts,

while the CC genotype is shown to have a higher incidence of

injuries from repetitive endurance efforts that occur during

the course of a professional soccer match (Table 7). In turn, it

was observed that the AA genotype has a protective benefit

against injuries in professional soccer players, with the CC

genotype prevalent in 84.5% of injuries compared to 70.6% of

players with the AA genotype (Table 5). These results

show that optimal muscle contraction and reduced

strength loss during exercise are associated with the AA

and CA genotypes, with the A allele showing an association

with strength preservation during sporting efforts; data that

will be confirmed in further studies in this same cohort of

athletes.

There is some evidence that genetic variation in the ACE

gene might be associated with many heritable traits, including

physical performance (Moran et al., 2006) and injuries in

professional soccer players (Massidda, Miyamoto-Mikami,

Kumagai, Ikeda, Shimasaki, Yoshimura, Cugia, Piras,

Scorcu, Kikuchi, Calò and Fuku 2020). Specifically, there is

an increased frequency of injuries in the I allele in Italian

professional soccer players, which could influence the

susceptibility to develope muscle injuries among soccer

players. The D allele has been associated with elite sprint

performance (Myerson et al., 1999), and with an improvement

of explosive strength, especially in countermovement jump

(CMJ) and sprint tests (Melián Ortiz et al., 2021). However, in

this study, ACE genotypes have not been related to the risk of

injury or to the aspects of etiology analyzed. The ACE gene has

been studied as a marker associated with soccer player status

by genetic scoring using the TGS, along with other genes, such

as ACTN3 (Egorova, Borisova, Mustafina, Arkhipova,

Gabbasov, Druzhevskaya, Astratenkova and Ahmetov 2014).

In this case, the D allele has been shown to be a predictor of

elite soccer player status (McAuley, Hughes, Tsaprouni,

Varley, Suraci, Roos, Herbert and Kelly 2021b); data that

should be corroborated by future studies to confirm this

gene as a predictor of elite athlete status.

The c.1729C>T polymorphism of the ACTN3 gene is a

highly conserved component of the contractile machinery in

fast skeletal muscle fibers in mammals (Lippi et al., 2010;

Eynon, Hanson, Lucia, Houweling, Garton, North and

Bishop 2013), with the CC genotype present among elite

power athletes, whereas the TT genotype, associated with

complete ACTN3 deficiency, is more prevalent among elite

endurance athletes, such as marathon runners and cyclists

(Yang et al., 2003). The ACTN3 gene has been extensively

studied and associated with injuries in elite athletes (Del

Coso et al., 2019; Zouhal et al., 2021) in athletics (Moreno

et al., 2020; Gutiérrez-Hellín et al., 2021), ballerinas (Kim

et al., 2014) and especially in soccer (Coelho, Pimenta, Rosse,

de Castro, Becker, de Oliveira, Carvalho and Garcia 2018;

Clos, Pruna, Lundblad, Artells and Esquirol Caussa 2019;

Massidda, Voisin, Culigioni, Piras, Cugia, Yan, Eynon and

Calò 2019; Rodas et al., 2021). Although these studies suggest

that the TT genotype (erroneously referred to as the XX

genotype (Dunnen et al., 2016)) is associated with an
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increased risk of injury, there is still conflicting data, and this

gene has not been shown to have a direct link to sports

injuries. With the data presented in this study, the authors

conclude that the cause of injuries in soccer players is due

more to the inability of muscle cells to produce energy

because of the c.34C>T polymorphism of the AMPD1 gene

that causes cell death than to the composition of muscle fibers

has recently been demonstrated (Varillas-Delgadoet al

2022a). However, it has been shown that the TT genotype

is associated in professional soccer players with greater injury

severity as previously presented in the study by Massidda

et al. (Massidda, Voisin, Culigioni, Piras, Cugia, Yan, Eynon

and Calò 2019). Although other studies do not show the

association of the TT genotype with the severity of these

injuries in professional soccer players (Clos, Pruna,

Lundblad, Artells and Esquirol Caussa 2019), further

studies of injuries in this cohort of athletes are needed to

confirm the results found. Finally, this study does not

demonstrate the influence of the ACTN3 gene on the risk

of injury in professional soccer players.

This information on the six polymorphisms implicated

in muscular performance shows that the likelihood of

sustaining an injury in professional soccer players was

higher in the TGS <45.83 a.u. group than in

their >45.83 a.u. counterparts. However, in the

probability of suffering musculoskeletal injuries, site of

injury and severity, no discriminatory point was found in

the TGS at which a cut-off point could be defined in these

etiological characteristics of injuries in soccer players. The

study of a single polymorphism with an injury phenotype

should be avoided in the field of genetics in the future (Yang,

MacArthur, Gulbin, Hahn, Beggs, Easteal and North 2003;

Pickering and Kiely 2017; McAuley, Hughes, Tsaprouni,

Varley, Suraci, Roos, Herbert and Kelly 2021b), and studies

such as the one presented in this investigation using TGS

should be implemented. The design of specific programs to

prevent muscle damage and injury in soccer players using

this genetic profile merits further investigation.

This model presents some limitations: a) although we have

already manifested that the training routines and competition

load of the clubs recruited for this investigation was

comparable, it is still possible that the intrinsic

characteristics of other training aspects as tactical exercises

or the game style used by the teams had influenced the

results of this study; b) the sample size of the group of

professional soccer players was limited, but the cohort

presented in this study is a representative sample; c)

numerous genetic variants that have not been included in

the model are likely to appear in the foreseeable future, that

can also explain individual variations in the potential for

attaining professional soccer performance and injuries, and;

d) more longitudinal studies of large cohorts of professional

soccer players including women players are necessary before the

evidence linking the genetics and epidemiology of injuries can

be established, and it is still premature to use genetic testing

among professional soccer players to effectively predict the risk

of injury.

Further studymay help to develop this as a potential tool to help

predict injury risk in these soccer players. In fact, the genes with a

positive association withmuscle performance and protection against

injuries were the AMPD1 andMLCK c.37885C>A polymorphisms.

AMPD1 also showed protection against musculoskeletal injuries,

presenting itself as a key gene in the new knowledge of injuries in

soccer due to its muscle energy optimizing functions (Varillas

Delgado et al., 2020a; Varillas Delgado et al., 2020b). Lastly, the

current investigation raises the need to include epigenetics and

environmental aspects in the analysis of the factors associated with

soccer performance according to muscle metabolism, improving the

understanding of the links between genetics and injuries (Varillas-

Delgado et al., 2022b).

Conclusion

This study is the first to demonstrate that injury incidence in

professional soccer players was affected by a TGS obtained the

combination of favorable/unfavorable genotypes in genes

involved in muscle performance. The TT genotype and T

allele of AMPD1 appears to be the polymorphism that best

correlates with a higher risk of injury in this cohort of

professional soccer players.
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