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Head and neck squamous cell carcinoma (HNSCC), the most common

malignancy of the head and neck, has an overall 5-year survival rate

of <50%. Genes associated with cuproptosis, a newly identified copper-

dependent form of cell death, are aberrantly expressed in various tumours.

However, their role in HNSCC remains unknown. In this study, bioinformatic

analysis revealed that the cuproptosis-related gene CDKN2A was correlated

with themalignant behaviour of HNSCC. Kaplan-Meier (KM) curves showed that

patients with high CDKN2A expression had a better prognosis. Multiomic

analysis revealed that CDKN2A may be associated with cell cycle and

immune cell infiltration in the tumour microenvironment and is important

for maintaining systemic homeostasis in the body. Furthermore, molecular

docking and molecular dynamics simulations suggested strong binding

between plicamycin and CDKN2A. And plicamycin inhibits the progression

of HNSCC in cellular assays. In conclusion, this study elucidated a potential

mechanism of action of the cuproptosis-associated gene CDKN2A in HNSCC

and revealed that plicamycin targets CDKN2A to improve the prognosis of

patients.
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Background

Head and neck squamous cell carcinoma (HNSCC) is the most common malignant

tumour of the head and neck that develops in the mucosal epithelium of the mouth,

pharynx, larynx, nasal cavity, and sinus cavities (Taberna et al., 2017). It is the sixth most

common malignancy worldwide, with approximately 890,000 new cases and

450,000 deaths owing to HNSCC reported worldwide in 2018 (Bray et al., 2018;

Ferlay et al., 2019). Although significant progress has been made in the combined use

of surgery, radiotherapy, chemotherapy and targeted therapy for the treatment of

HNSCC, 40%–50% of patients have post-treatment relapse, and the overall 5-year

OPEN ACCESS

EDITED BY

Qian Wang,
Tai’an City Central Hospital, China

REVIEWED BY

Shilin Xu,
Xichang People’s Hospital·Liangshan
High-tech Tumor Hospital, China
Peng-fei Liu,
First Affiliated Hospital of HarbinMedical
University, China

*CORRESPONDENCE

Yujie Li,
libeng8465@163.com

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 04 September 2022
ACCEPTED 12 December 2022
PUBLISHED 09 January 2023

CITATION

Fan K, Dong Y, Li T and Li Y (2023),
Cuproptosis-associated CDKN2A is
targeted by plicamycin to regulate the
microenvironment in patients with head
and neck squamous cell carcinoma.
Front. Genet. 13:1036408.
doi: 10.3389/fgene.2022.1036408

COPYRIGHT

© 2023 Fan, Dong, Li and Li. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 09 January 2023
DOI 10.3389/fgene.2022.1036408

https://www.frontiersin.org/articles/10.3389/fgene.2022.1036408/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1036408/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1036408/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1036408/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1036408/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1036408&domain=pdf&date_stamp=2023-01-09
mailto:libeng8465@163.com
mailto:libeng8465@163.com
https://doi.org/10.3389/fgene.2022.1036408
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1036408


survival rate is <50% (Canning et al., 2019). Therefore,

biomarkers that can improve HNSCC prognosis need to be

identified.

Tsvetkov et al., (2022) recently described a new copper-

dependent type of cell death, cuproptosis, closely related to

mitochondrial respiration. Copper binds to fatty acylated

proteins in the tricarboxylic acid cycle during mitochondrial

respiration, resulting in the aggregation of fatty acylated proteins

and low expression of iron–sulfur cluster proteins, thereby

inducing proteotoxic stress and eventually leading to cell

death (Tsvetkov et al., 2022). There have been four genes

identified for cuproptosis that are positively regulated (FDX1,

LIAS, LIPT1,DLD,DLAT, PDHA1, PDHB and ATP7B) and eight

genes that are negatively regulated (MTF1, GLS, cyclin-

dependent kinase inhibitor 2A [CDKN2A] and SLC31A1)

(Tsvetkov et al., 2022). Biological processes such as tumour

cell proliferation, vascular growth, and metastasis have been

shown to be significantly affected by copper, an essential

element for mitochondrial respiration and iron uptake (Ruiz

et al., 2021; Oliveri, 2022). There are a number of factors that

regulate and maintain the body’s intake, excretion, and

metabolism of copper. Copper-induced cell death or abnormal

copper metabolism can occur when copper homeostasis is

disrupted in the body. Previous research reported that the

cuproptosis-related gene LIPT1 is significantly correlated with

prognosis and immune infiltration in melanoma (Lv et al., 2022).

Similar findings have been reported by Yun Y et al. indicating

that SLC31A1, DX1 and TP7B0 are associated with lung cancer

(Yun et al., 2022). Several studies have shown that cuproptosis-

related genes are associated with poor prognosis, reduced drug

sensitivity, and tumor microenvironment in renal clear cell

carcinoma (Ji et al., 2022). However, further studies are

needed to determine the effects of cuproptosis on HSNCC.

Bioinformatic tools have become increasingly popular with

the rapid development of high-throughput technology for

assessing prognostic markers and studying mechanisms (Wei

et al., 2019; Shi et al., 2021; Luo et al., 2022a; Luo et al., 2022b;

Chen et al., 2022; Lin et al., 2022; Mei et al., 2022; Xuan et al.,

2022; Zhao and Jiang, 2022). In melanoma, lung cancer, and

renal clear cell carcinoma, cuproptosis-related genes have been

studied. In recent studies, researchers examined ten cuproptosis-

related lncRNAs associated with immune function and prognosis

in HNSCC (Li et al., 2022). However, the functions and

mechanisms of action of cuproptosis-related genes in HNSCC

warrant further investigation. Molecular dynamics simulation

serves as one of the important tools for assessing the stability of

drug-targeting ligands for the development of oncological

therapeutics (Chikan and Vipperla, 2015; Thai et al., 2015).

The aim of this study was to identify cuproptosis-related

genes associated with poor prognosis of HNSCC and screen

for potential candidate drugs for its treatment using molecular

docking and molecular dynamics simulations.

Materials and methods

Gene identification and data acquisition

TCGA-HNSCC data were analyzed to identify

differentially expressed genes (DEGs) between tumours and

healthy tissues as previous researches (Tomczak et al., 2015;

Kang et al., 2021). Based on the intersection of tumour-

associated DEGs and cuproptosis-associated genes,

CDKN2A was identified as a key gene. We investigated the

correlation between CDKN2A expression and clinical staging

of HNSCC. CDKN2A prognostic significance was evaluated

using KM curves. In order to investigate the performance of

CDKN2A for predicting 1, 3 and 5 year overall survival (OS),

ROC curves were plotted using the time ROC package.

Furthermore, ROC curves were used to assess the

relationship between CDKN2A and HNSCC clinical

characteristics.

CDKN2A function assessment

For further analysis, RNA-seq data were extracted from

TCGA, and log2-transformed gene expression data were

obtained (Tomczak et al., 2015). Based on the median

CDKN2A expression, tumour samples were divided into

high and low-expression groups for survival analysis. In the

high and low CNKN2A expression groups, DEGs were

screened using the limma R package. Adjusted p-values

of <.05 and |logFC| values of >1 were used as the screening

criteria for significant DEGs (Ritchie et al., 2015). The

ggplot2 package was used to plot volcano and heat maps to

visualise the expression of 17 significant DEGs. Data on

CDKN2A mutations was downloaded from TCGAbiolinks

and visualized using track Viewer (Colaprico et al., 2016;

Ou and Zhu, 2019).

Gene set variation analysis (GSVA)

The “GSVA” package was used to analyze all CDKN2A-

associated DEGs, followed by the “limma” package to identify

high and low CDKN2A expression levels (Hänzelmann et al.,

2013; Lin et al., 2021).

GSEA and KEGG enrichment analysis

GSEA was performed on DEGs associated with CDKN2A,

KEGG enrichment analysis was performed with gseKEGG, and

pathways of interest were visualized using ggplot2 (Subramanian

et al., 2005; Ito and Murphy, 2013).
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Immuno-infiltration analysis

In order to calculate 28 immune cells, ssGSEA was used on

gene expression profile data (Barbie et al., 2009). Based on

CDKN2A expression levels, 28 immune cells were compared

between groups with high and low expression levels of the

protein. The Pearson correlation coefficient was used to

examine the correlation between CDKN2A and immune

cell infiltration further. Pearson correlation coefficient was

used to analyze the correlation between each type of

immune cell.

Acquisition and optimization of FDA
structures

Food and Drug Administration (FDA) approved 2,568 small

molecules (as of 2022-01-04). We downloaded the small

molecule structures from Drug Bank (http://www.drugbank.

com/) in SDF format (Luo et al., 2022b). In RDKit, the

Experimental-Torsion Basic Knowledge Distance Geometry

(ETKDG) algorithm was used to generate 3D conformations

based on the modified distance geometry algorithm, while the

MMFF94 stand was used to optimize small molecule structure

and energy using the MMFFOptimize Molecule module (Li et al.,

2022).

The structures of the proteins were obtained from the

Uniport website (https://www.uniprot.org/). PDB structure

1A5E obtained under CDKN2A entry (P42771) using gene

name query. Docking was carried out using Smina Chikan

and Vipperla, (2015). Protein-Ligand Interaction Profiler

(Plip, https://plip-tool.biotec.tu-dresden.de/plip-web/plip)

was used to analyze docking results.

Analysis of PPI networks and gene
networks

By using the STRING website and cytoscape software, we

explored CDKN2A’s protein-protein interaction network

(Shannon et al., 2003; Szklarczyk et al., 2021). Genemania was

used to analyze the CDKN2A network (Warde-Farley et al.,

2010).

Construction of ceRNA network

Firstly, the multiMiR package was used to find miRNAs

related to CDKN2A (Huang et al., 2019a). The LncRNADisease

database was then used to identify HNSCC-related LncRNAs,

and the miRTarBase database was used to identify shared

miRNAs with HNSCC-related LncRNAs (Bao et al., 2019;

Huang et al., 2019b). Cytoscape is used for the final

visualization (Shannon et al., 2003).

Drug analysis

To identify drugs that may act on DEGs (99 highly expressed

genes and 56 lowly expressed genes) between high and low

expression groups of CDKN2A, the cmap website was

accessed (http://clue.io/).

Molecular dynamics simulation (MDS)

The lowest energy conformation was selected as the

kinetic initial conformation. The quantitative software Orca

was used to perform quantum chemical optimization for small

molecules under B3LYP/6-31G* basis set conditions,

involving corrections for bond lengths, bond angles,

dihedral angles, and calculations of RESP2 at 0 fixed

charges. Gromacs 2019.6 was chosen as the kinetic

simulation software, amber14sb was chosen as the protein

force field, and Gaff2 force field was chosen for small

molecules, and the TIP3P water model was used to add

TIP3P water model to the complex system to build a water

box and add sodium ions to equilibrate the system. Under

elastic simulation by Verlet and cg algorithms, Particle-mesh

Ewald (PME) deals with electrostatic interactions using the

steepest descent method for energy minimization for the

maximum number of steps (50,000 steps). The Coulomb

force cutoff distance and van der Waals radius cutoff

distance were both 1.4 nm. Finally the system was

equilibrated with the regular system (NVT) and isothermal

isobaric system (NPT), and the MD simulations were

performed at room temperature and pressure for 100 ns.

During the MD simulation, the hydrogen bonds involved

were constrained using the LINCS algorithm with an

integration step of 2 fs. The PME method was calculated

with a cutoff value set to 1.2 nm and a non-bond

interaction cutoff value set to 10 Å. The V-rescale

temperature coupling method was used to control the

simulation temperature at 300 K and the Berendsen method

to control the pressure at 1 bar. Additionally, 30 ps of NVT

and NPT equilibrium simulations were performed at 300 K.

Finally, 50 ns of finished MD simulations were performed for

the protein–ligand complex system. Root mean square

fluctuations (RMSF) were used to observe the local loci

variation structure of the system during the simulation (the

fluctuation cutoff was set to 0.2). The radius of gyration (Rg)

was used to evaluate the tightness of the system structure. The

RMSF can observe the local loci variation of the system during

the simulation.
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Calculation of free energy of binding of
proteins and small molecules

The MD trajectory operation is calculated by the following

equation:

ΔGbind � ΔGcomplex– ΔGreceptor + ΔGligand( )

� ΔEinternal + ΔEVDW + ΔEelec

+ΔGGB + ΔGSA

In the above equation, ΔEinternal represents internal energy,

ΔEVDW represents van der Waals interaction, and ΔEelec

represents electrostatic interaction. Internal energy includes

bond energy (Ebond), angular energy (Eangle), and torsion

energy (Etorsion). ΔGGB and ΔGSA are collectively referred to

as the solvation free energy. GGB is the polar solvation free energy

and GSA is the non-polar solvation free energy. We used the GB

model for calculating ΔGGB (Weiser et al., 1999). The ΔGSA was

calculated based on the product of surface tension (γ) and solvent

accessible surface area (SA): ΔGSA � 0.0072 ×ΔSA. The entropy
variation was neglected in this study due to the high

consumption of computational resources with low accuracy.

Cell culture and wound-healing assay

Human laryngeal cancer cell lines (TU212) were obtained

from the Cell Bank of the Chinese Academy of Sciences. For cell

culture, Dulbecco’s modified Eagle’s medium (DMEM) containing

10% fetal bovine serum (FBS) was used. In an incubator with 5%

CO2 and 37°C, 10%FBS and 1% penicillin all cell lines were

cultured. In TU212 cells, plicamycin was applied for 14 days at

10 nmol/L. Incubation at 37°C was carried out for both treated and

untreated cells plated on 10-cm culture dishes. With a plastic

pipette tip, a lane was scratched through the confluent monolayers,

followed by addition of DMEM, 1% FBS, and 10 nmol/L

plicamycin. Several wounded areas were observed and then

photographed through a microscope 24 h after the scratch.

Statistical analysis

Standard error of the mean is indicated by bars on figures,

and was calculated using Microsoft Office Excel 2016. All

experiments were performed with at a minimum of triplicate

samples, and all p-values were calculated with two-tailed t-tests.

Results

Data acquisition and screening of DEGs

After intersecting tumour-associated DEGs with

cuproptosis-related genes, CDKN2A was identified as a key

gene (Figure 1A), which may play a critical role in tumour

development through cuproptosis. CDKN2A expression was

significantly higher among patients with T2-stage HNSCC

than among patients with T3-and T4-stage HNSCC

(Figure 1B), indicating that CDKN2A expression is high in

early malignant tumours and low in advanced malignant

tumours. KM curves demonstrated that high CDKN2A

expression was associated with a better clinical prognosis

(Figure 1C). The area under the ROC curves indicated a more

significant protective effect of CDKN2A on 1-, 3- and 5-year OS

(Figure 1D). In addition, age; sex; T, N, and M stages and

CDKN2A were found to have predictive significance for the

prognosis of HNSCC (Figure 1E).

Characterisation of CDKN2A expression
and enrichment analysis

HNSCC samples in TCGA cohort were divided into the

high- and low-CDKN2A-expression groups based on the

median CDKN2A expression. The scatter plot demonstrated

differences in the survival status of patients between the two

groups (Figures 2A, B). A total of 155 DEGs were identified in

the two groups; of which, 99 were upregulated and 56 were

downregulated (Figure2D). The top 17 genes with the most

significant differences in expression were visualised on a heat

map (Figure 2C). GSEA suggested that these genes were

significantly enriched in pathways associated with cell cycle

and DNA replication in the high-CDKN2A-expression group

(Figure 2E). In addition, GSVA suggested that the genes were

enriched in pathways associated with DNA repair, E2F targets

and the G2M checkpoint in the high-CDKN2A-expression

group and pathways associated with coagulation, apical

junction and inflammatory response in the low-CDKN2A-

expression group (Figure 2F). These results suggest that high

CDKN2A expression is associated with activation of the cell

cycle in HNSCC.

Immune infiltration analysis

ssGSEA revealed that the infiltration of memory B cell was

higher in the low-CDKN2A-expression group; however, no

significant difference was observed in the infiltration of other

immune cells between the two groups (Figure 3A and

Supplementary Figure S1A). Correlation analysis revealed a

co-expression relationship among 28 immune cell types

(Supplementary Figure S1B), and the correlation between

CDKN2A and immune cells indicated that CDKN2A

promoted immune cell infiltration (Figure 3B). CDKN2A was

significantly positively correlated with activated B-cell (cor =

0.182, p < 0.001) and activated CD4 T-cell (cor = 0.160, p < 0.001)

(Figures 3C, D) and significantly negatively correlated with
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neutrophils (cor = −0.262, p < 0.001) and gamma-delta T-cell

(cor = −0.166, p < 0.001) (Figures 3E, F). This suggests that

CDKN2A is involved in tumor immune microenvironment

homeostasis.

Gene network and mutation analysis of
CDKN2A

A protein–protein interaction (PPI) network is shown in

Figure 4A. The gene interaction network of CDKN2A was

visualised using geneMANIA (Figure 4B). In the ceRNA

network of CDKN2A, HOTAIR was found to be closely

associated with has-miR-34a and has-miR-125a (Figures

4C, D). HOTAIR may regulate has-miR-34a and has-miR-

125a in HNSCC, thus exerting a regulatory effect on CDKN2A

expression (Figure 4D). In addition, CDKN2A had a higher

mutation rate at the p. R80 locus than at the p. R58 and p.

W110 loci (Supplementary Figure S2).

Molecular docking results

The distribution of docking fractions for virtual screening

is shown in Figure 5. The binding affinity of proteins and

small molecules can be obtained after molecular docking. The

docking fraction for each ordinal number corresponds

to −5.42 kcal/mol, with a mean value of −5.42 kcal/mol.

Based on a potential screening threshold of −7 kcal/mol,

the screening rate is 12.13% (308/2,539), i.e., 12.13% of

small molecules have the potential for precursor

optimization as Potential dead drug set (PLDS). The mid-

docking effects of PLDS were examined to avoid analytical

bias caused by transient false-positive docking results. There

were 104 residue sites contacted (Supplementary Figure S3).

A cut-off of 20 was selected to exclude transient positive

contacts. The results are shown in Figure 6. The orange

colour represents hydrogen bonds; the number share is the

main interaction force [47.41% (1427/3010)] and the amino

acid residue contact sites include 46-ARG, 47-ARG, 54-MET,

84-ASP, 87-ARG, 88-GLU, 105-ASP, 111-GLY, 116-ASP,

131-ARG, 138-ARG, 139-GLY, 142-HIS, 144-ARG and

147-ALA. The blue colour represents hydrophobic

interactions, which are the main interaction forces [38.27%

(1152/3010)], and the amino acid residue contact sites

include 21-ALA, 44-TYR, 51-VAL, 77-THR, 79-THR, 107-

ARG, 110-TRP, 112-ARG, 113-LEU, 117-LEU, 121-LEU,

137-THR, 148-ALA, 149-GLU, 151-PRO and 154-ILE.

Molecular docking analysis suggests that plicamycin binds

CDKN2A most strongly.

FIGURE 1
Identification of key genes. (A) Venn diagram demonstrating the results of intersection analysis of differentially expressed genes and
cuproptosis-related genes; (B) Bar graph demonstrating the difference in CDKN2A expression among patients with different T stages; (C) KM curve
demonstrating a better prognosis for patients with head and neck squamous cell carcinoma with high CDKN2A expression; (D) ROC curve
demonstrating the predictive performance of CDKN2A for 1-, 3- and 5-year OS; (E) ROC curves demonstrating the relationship between clinical
characteristics and the predictive performance of CDKN2A for clinical prognosis.

Frontiers in Genetics frontiersin.org05

Fan et al. 10.3389/fgene.2022.1036408

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1036408


Molecular dynamics and cellular effects of
plicamycin

Molecular dynamics simulation (MDS) is an important

method for assessing the stability of complexes in an aqueous

solution (Hollingsworth and Dror, 2018; Hildebrand et al.,

2019; Huang et al., 2022; Kang et al., 2022; Zhang et al., 2022).

Stability of a system can be measured by the atomic root-

mean-square deviation (RMSD). In Figure 7A, RMSD values

fluctuated between 20 and 30 ns due to transient instability

and then remained stable at 30–50 ns. Root-mean-square

fluctuations (RMSF) reflect changes in the local sites of the

system during MDS. According to Figure 7B, amino acids at

positions 1–15, 33–44, 58, 90, 107, and 124–156 fluctuated

more than other amino acids. Figure 7C shows that the radius

of rotation (Rg) is an important measure of architecture

tightness. In Figure 7D, the solvent-accessible surface area

(SASA) of the protein decreases steadily over 0–100 ns,

indicating favourable binding and progressive protein

tightening. Figure 7E shows the potential-energy curve of

hydrogen bonded complexes in their steady state. Figures

8A, B show the binding site, docking pose, and overall

protein structure.

We compared the binding free energies of the two

solvated molecules in their bound and free states, as well

as the binding free energies of various solvated

conformations of plicamycin (Figure 9A). Analysis of the

variation of the binding free energy with MDS revealed that

the total free energy (Gtotal) was <0, indicating a likely

interaction between the CDKN2A protein and plicamycin.

The binding energy of both van der Waals and electrostatic

interactions was <0, indicating that hydrophobic interactions
and electrostatic energy contribute to the binding between

CDKN2A and plicamycin. Non-polar interactions favored

binding, whereas polar solvation didn’t. Positive values of

polar solvation energy (EGB) indicate that non-polar

interactions favored binding. MET-52, MET-53, MET-54,

and ASP-84 contact residues of the complex have free

energies of zero, indicating they are the major binding

sites for CDKN2A and plicamycin (Figure 9B). There was

a positive free energy difference between ARG-46 and ARG-

87, indicating that plicamycin binds poorly to CDKN2A at

these sites. In the stable complex, the contact residue MET-52

contributes to the major binding force (Figure 9B).

Furthermore, we found that plicamycin treatment reduced

the mobility of TU212 cells in scratch experiments

(Figure 10A, B). Accordingly, plicamycin inhibited

HNSCC progression in cellular assays. Based on molecular

dynamics simulations, this study shows that plicamycin

targets CDKN2A to improve patient outcomes.

FIGURE 2
Relevant functions of CDKN2A. (A) Tumour samples in TCGA database were divided into the high- and low-expression groups according to
median CDKN2A expression; (B) Scatter plot demonstrating the difference in survival status between the two groups; (C) Top 17 differentially
expressed genes; (D) Volcano plot demonstrating the distribution of differentially expressed genes; (E) GSEA; (F) Bar graph demonstrating the
differentially enriched pathways between the two groups.
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Discussion

Cuproptosis, a newly discovered form of cell death, is

involved in the accumulation of intracellular copper and

possesses the common features of multiple regulated cell

death (RCD) mechanisms. Genes associated with cuproptosis

play an important role in the prognosis of various tumours such

as melanoma and lung cancer. (Shanbhag et al., 2021; Yun et al.,

2022). In this study, CDKN2A, a cuproptosis-associated gene,

was identified as a novel biological marker for predicting the

prognosis of patients with T2-stage HNSCC compared with T3-

and T4-stage HNSCC. GSEA and GSVA revealed that CDK2NA

overexpression was associated with the cell cycle. Positive

correlations were found between CDKN2A expression and

activated B and CD4 T cells, but negative correlations were

found between CDKN2A expression and neutrophils and

gamma-delta T cells. Molecular docking and MDS analysis

revealed that plicamycin inhibits HNSCC progression by

acting on CDKN2A.

CDKN2A contributes to cell proliferation and angiogenesis

by being a member of the INK4 family of tumour suppressor

genes (Zhang et al., 2016; Zhao et al., 2016). CDKN2A contains

four exons, namely, exons 1α, 1β, 2 and 3. It possesses

independent promoters for their respective proteins: exons 1,

2 and 3 encode P16INK4a and exons 1, 2 and 3 encode P14ARF,

thus they are both independent proteins (Li et al., 2011). The

cyclin-dependent kinase (CDK) inhibitor p16INK4a inhibits the

phosphorylation of retinoblastoma protein (pRb) by binding to

CDK4 and CDK6. Hypophosphorylated pRb inhibits the

transcription factor family E2F, impairing cell cycle

FIGURE 3
Correlation between CDKN2A and immune cells. (A) Differences in immune cell infiltration between the high- and low-CDKN2A-expression
groups were examined via ssGSEA; (B) Correlation between CDKN2A and the infiltration of immune cells; (C–F)Correlation plots demonstrating the
relationship between the top four immune cell types and CDKN2A.
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FIGURE 4
Single gene network diagram. (A) PPI network analysis of CDKN2A; (B) Gene interaction analysis of CDKN2A using geneMANIA; (C) miRNAs
targeted by CDKN2A were predicted based on data extracted from seven databases; (D) Visualization of the ceRNA network maps using Cytoscape.

FIGURE 5
Different amino acid bindingmodes. (A) The X-axis represents the serial number of FDA-approved drugs, and the Y-axis represents the docking
fraction (unit: kcal/mol); (B) Distribution of docking fractions. The horizontal coordinate represents the docking fraction (unit: kcal/mol), and the
vertical coordinate represents the distribution probability.
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progression from G1 to S phase (Rubin, 2013; van den Heuvel

and Dyson, 2008). By forming a trimeric complex with

MDM2 and p53, P14ARF inhibits the degradation of P53 by

MDM2, resulting in G1 and G2 arrest (Pollice et al., 2008).

CDKN2A expression is correlated with the development and

prognosis of various tumours, including hepatocellular

carcinoma, pancreatic cancer and melanoma (Zeng et al.,

2018; Kimura et al., 2021; Luo et al., 2021). Copy number

deletion in CDKN2A and low expression of p16INK4a

indicate a poor prognosis and can be used as independent

FIGURE 6
Different amino acid bindingmodes. Blue represents hydrophobic interactions (HI), orange represents hydrogen bonds (HdB), green represents
π-π stacking (pSp), red represents π-cation interactions (pCI), purple represents halogen bonds (HIB) and brown represents salt bridge (SB).

FIGURE 7
Results ofmolecular dynamics simulation. (A) Root-mean-square deviation (RMSD) of complexMDS; (B) Root-mean-square fluctuation (RMSF)
of complex MDS; (C) Variations in the radius of gyration (Rg) of complex MDS; (D) Variations in SASA of the protein in 0–100 ns of complex MDS; (E)
Variations in hydrogen bonding in the stable complex.
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prognostic predictors in HNSCC (Chen et al., 2018; Cury et al.,

2021). A meta-analysis on HNSCC reported that methylation of

CDKN2A is significantly correlated with tumorigenesis,

progression and metastasis and can be used as a potential

diagnostic marker (Zhou et al., 2018). Similar results were

obtained in this study, indicating that CDKN2A plays an

important role in regulating the tumour cell cycle and may

serve as a prognostic marker in HNSCC.

Tumor-infiltrating immune cells are critical components of

the tumour microenvironment and are highly predictive of

prognosis and treatment outcomes (Nguyen et al., 2016; Guo

et al., 2020). In this study, CDKN2A was positively correlated

with the infiltration of activated B and CD4 T cells in the tumour

microenvironment, leading to a better prognosis of HNSCC. The

IGJ gene encodes CD19 and the J-chain gene, typical markers of

B cells. In HNSCC, CD19 and J-chain expression were studied,

and B cell infiltration in the tumormicroenvironment indicated a

better prognosis (Kim et al., 2020). Moreover, anti-blockade of

PD-1/PD-L1 immune checkpoints in an AT-84-E7 murine

model of HNSCC led to tumor enlargement by depleting

B cells in the tumor microenvironment by regulating B cell

activation and germinal center formation (Kim et al., 2020).

This suggests that B cell infiltration and activity play an

important role in the treatment of tumors. Hladíková et al.,

(2019) observed a high abundance of tumor-infiltrating B cells

(TIL-Bs) in the HNSCC tumor microenvironment, which may

FIGURE 8
Binding site of plicamycin on the CDKN2A protein. (A) Docking pose; (B) Amino acids and docking sites.

FIGURE 9
Energy analysis of molecular dynamics simulations. (A) Binding free energy of protein–ligand complexes. VDWAALS, van der Waals energy; EEL,
electrostatic energy; EGB, polar solvation energy; ESURF, non-polar solvation energy; GGAS, total gas phase free energy; GSOLV, total solvation free
energy; Gtotal free energy = GSOLV + GGAS. (B) The relationship between each contact residue and the binding energy.
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interact with CD8+ T cells to promote tumor growth (). They

produce tumour-associated antibodies and cytokines, which

exert cytotoxic effects on tumours, as well as presenting

tumour-associated antigens (TAA) (Candolfi et al., 2011;

Mahmoud et al., 2012; Shi et al., 2013; Germain et al., 2014).

Infection with the human papillomavirus (HPV) is causing an

increase in HNSCC. HNSCC with HPV-positive

microenvironment contain more CD4+ T cells, which result in

a better prognosis and response to radiotherapy than those with

HPV-negative microenvironment. However, whether this better

prognostic performance is related to CD4+ T cell infiltration

remains unclear (van Kempen et al., 2016). Multiple studies have

shown that neutrophils can promote tumour development and

angiogenesis through the secretion of cytokines such as vascular

endothelial growth factor, hepatocyte growth factor, IL-6 and IL-

8 (McCourt et al., 1999; McCourt et al., 2001; Schaider et al.,

2003). Low CDKN2A expression was associated with neutrophil

infiltration and poorer prognosis in the present study. Yang et al.

reported in a previous study that high neutrophil infiltration can

result in the generation of reactive oxygen species, arginase and

nitric oxide, causing lymphocytes to be suppressed, T cells to be

activated, and, ultimately, tumour growth (Gooden et al., 2011;

Yang et al., 2019). Watermann et al., (2021) also found a link

between neutrophil infiltration and tumour malignancy in the

microenvironment of recurrent HNSCC.

There is a positive correlation between CDKN2A expression

and activation of B cells and CD4+ T cells. There is evidence that

CD8+ and CD4+ T cells infiltrate the microenvironment to ensure

the beneficial effects of gamma-delta T cells on prognosis

(Nielsen et al., 2017; Lu et al., 2020). Gamma-delta T cells are

important immune cells in the mucosal region responsible for

removing pathogens and maintaining the integrity of the

epithelium. Lu et al. found a high abundance of gamma-delta

T cells infiltration in the tumour microenvironment of patients

with HNSCC with a better prognosis. However, Bas et al.

examined gamma-delta T cell in the peripheral blood of

patients with HNSCC and found that their high abundance

was associated with the recurrence of HNSCC (Bas et al.,

2006). Therefore, CDKN2A, an immune cell related gene, can

aid in improving the prognosis and microenvironment of tumors

by inhibiting immune cells that activate B and CD4 T cell,

neutrophils and gamma-delta T cells.

Plicamycin, also known as mithramycin A, is a natural

polycyclic aromatic polyketide compound that inhibits

SP1 transcription factor binding to DNA, which interferes

with biological processes like tumour cell proliferation,

apoptosis, angiogenesis, invasion, and metastasis (Beishline

and Azizkhan-Clifford, 2015; Schweer et al., 2021). Plicamycin

is a natural polycyclic aromatic polyketide that inhibits

SP1 transcription factor binding to DNA, impeding apoptosis,

angiogenesis, invasion, and metastatic processes in cancer cells

(Saha et al., 2015). In mouse models of lung cancer, low

SP1 expression can effectively inhibit tumour growth and

nicotine-induced lung cancer cell growth (Brown et al., 2013).

The histone methyltransferase gene SETDB1 is an important

gene in the development and metastasis of melanoma in vivo.

Several studies have shown that plicamycin can effectively target

the activity of SP-1 protein on the SETDB1 promoter to inhibit

SETDB1 expression, thus offering a beneficial therapeutic

strategy for melanoma (Federico et al., 2020). Plicamycin, an

inhibitor of SP1, can inhibit tumour progression in several cancer

types and has been used for the treatment of lung, breast and

gastrointestinal tract cancers in phase II clinical trials, with good

efficacy. However, the role and mechanisms of action of

FIGURE 10
Pplicamycin treatment reduced the mobility of TU212 cells. (A) Wound-healing assay for migration activity of untreated (upper panel) and
treated (lower panel) TU212 cells. After 24 h, we captured representative images of the migrating cells. (B) Quantitative analysis of untreated
TU212 invasion effects compared to treated TU212 invasion effects. Invasive cells were counted on average.
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plicamycin in HNSCC remain to be elucidated. In this study,

strong binding was observed between plicamycin and CDKN2A

throughmolecular docking andMDS, suggesting that plicamycin

improves the prognosis of HNSCC by targeting CDKN2A at the

molecular level. However, the relationship between CDKN2A

and SP1 warrants further investigation. The results of this study

are mainly based on bioinformatics analysis and MDS, and they

aren’t validated in vivo or in vitro. Additionally,

plicamycin’s effects on HNSCC should be studied in large

clinical trials.

Conclusion

CDKN2A, which is closely related to the maintenance of

copper metabolic homeostasis in the body, is a biomarker of

HNSCC and may improve its prognosis by regulating the cell

cycle and immune cell infiltration. Further, plicamycin targets

and binds CDKN2A, offering a novel strategy for the treatment

of HNSCC in the future.
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