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Cuproptosis is the most recently discovered type of regulated cell death and is

mediated by copper ions. Studies show that cuproptosis plays a significant role

in cancer development and progression. Lower-grade gliomas (LGGs) are slow-

growing brain tumors. The majority of LGGs progress to high-grade glioma,

which makes it difficult to predict the prognosis. However, the prognostic value

of cuproptosis-related genes (CRGs) in LGG needs to be further explored.

mRNA expression profiles and clinical data of LGG patients were collected from

public sources for this study. Univariate Cox regression analysis and the least

absolute shrinkage and selection operator (LASSO) Cox regression model were

used to build a multigene signature that could divide patients into different risk

groups. The differences in clinical pathological characteristics, immune

infiltration characteristics, and mutation status were evaluated in risk

subgroups. In addition, drug sensitivity and immune checkpoint scores were

estimated in risk subgroups to provide LGG patients with precision medication.

We found that all CRGs were differentially expressed in LGG and normal tissues.

Patients were divided into high- and low-risk groups based on the risk score of

the CRG signature. Patients in the high-risk group had a considerably lower

overall survival rate than those in the low-risk group. According to functional

analysis, pathways related to the immune system were enriched, and the

immune state differed across the two risk groups. Immune characteristic

analysis showed that the immune cell proportion and immune scores were

different in the different groups. High-risk group was characterized by low
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sensitivity to chemotherapy but high sensitivity to immune checkpoint

inhibitors. The current study revealed that the novel CRG signature was

related to the prognosis, clinicopathological features, immune

characteristics, and treatment perference of LGG.

KEYWORDS

lower-grade glioma, cuproptosis-related gene, gene signature, prognosis, immune
score

Introduction

Worldwide, the incidence of central nervous system (CNS)

tumors is 1.6%, while their mortality rate has reached 2.5%

(Sung et al., 2021). According to the 2007 World Health

Organization (WHO) classification of CNS tumors, gliomas are

divided into four classes (i.e., WHO grades I, II, III, and IV) (Fan

et al., 2016). Grade II and III gliomas are referred to as “diffuse

lower-grade gliomas” (LGGs), which tend to have a better prognosis

than higher grade gliomas. LGGs, which include astrocytomas,

oligodendrogliomas, and oligoastrocytomas, are infiltrative

neoplasms that account for 6.4% of CNS tumors (Brat et al.,

2015). The primary treatment for LGG patients is surgery,

radiotherapy and chemotherapy to relieve symptoms and

improve the quality of life (Youssef and Miller, 2020). However,

LGG relapse and progression can occur, usually owing to incomplete

elimination of cancer cells, resulting in a broad range of overall

survival times from 1 to 15 years, which makes prognosis prediction

difficult (Smoll et al., 2012). Therefore, there is an urgent need to

develop an innovative prognostic system.

Different types of regulated cell death, such as apoptosis,

pyroptosis, necroptosis, and ferroptosis, have attracted much

attention, as inducing regulated cell death is regarded as a novel

approach for treating cancer patients (Lei et al., 2022). As new kinds

of regulated cell death have been identified, our understanding of

regulated cell death in cancer is continually expanding. Copper-

dependent cell death, known as cuproptosis, is a type of regulated

cell death that is induced by excessive copper ions (Hasinoff et al.,

2014). According to recent research, cuproptosis triggers cell death

by regulating the lipoylated components in the tricarboxylic acid

(TCA) cycle, resulting in toxic protein stress. Furthermore, genes

related to cuproptosis were identified, which are of great value to

study (Tsvetkov et al., 2022). Many studies have proven that

cuproptosis inhibits tumor growth and progression in colorectal

cancer, hematopoietic cancers, and glioblastoma (Chen et al., 2019;

Buccarelli et al., 2021; Gao et al., 2021). However, whether these

cuproptosis-related genes (CRGs) are correlated with LGG patient

prognosis remains to be further explored.

In the present study, the mRNA expression profiles and

corresponding clinical data of LGG patients were downloaded

from public databases. Then, a prognostic multigene signature

was constructed based on CRGs in the TCGA cohort and

validated in the CGGA cohort. This CRG signature divided

LGG patients into high-risk and low-risk groups and

predicted overall survival with high sensitivity and specificity.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) functional enrichment analysis and Gene Set

Enrichment Analysis (GSEA) were performed to determine the

biological differences between patients in the high- and low-risk

groups. Next, immune characteristics analyses, such as ssGSEA,

CIBERSORT, and ESTIMATE, were performed to evaluate the

tumor immune microenvironment differences between groups.

Furthermore, the sensitivity to anticancer drugs and immune

checkpoint inhibitors was predicted for patients in different risk

groups. We discovered that differences in immune function and

immune cell infiltration between the high-risk and low-risk

groups were underlying features related to the ability of the

gene signature to predict LGG patient prognosis.

Materials and methods

Data collection

RNA sequencing data were downloaded from The Cancer

Genome Atlas (TCGA; https://portal.gdc.cancer.gov/) and

Chinese Glioma Genome Atlas (CGGA; http://www.cgga.org.

cn) databases (Liu et al., 2018). The gene expression profiles were

normalized using the R package “limma.” Ten cuproptosis-

related genes were identified from previous literature

(Tsvetkov et al., 2022). A total of 182 samples were collected

from the CGGA cohort, among which 172 samples with

complete survival data were used to further validate the

results from the TCGA cohort and were subjected to futher

immune characteristic analysis.

Construction and validation of a
prognostic cuproptosis-related gene
signature

In the TCGA cohort, the “DESeq2” R package was used to

screen differentially expressed genes (DEGs) across tumor tissues

and normal tissues with a false discovery rate (FDR) of 0.05. To

identify cuproptosis-related genes with prognostic significance, a

univariate Cox analysis of overall survival (OS) was performed.

Benjamini and Hochberg (BH) adjustment was used to modify p

values. The STRING database (version 11.0) was used to create
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an interaction network for the overlapping prognostic DEGs

(Szklarczyk et al., 2011). To reduce overfitting, a CRG signature

was built using LASSO-penalized Cox regression analysis

(Tibshirani, 1997; Simon et al., 2011). With the “glmnet” R

package, the LASSO algorithm was employed for variable

selection and shrinkage. The normalized expression matrix of

putative prognostic DEGs was used as the independent variable

in the regression, while the response variables were overall

survival and patient status in the TCGA cohort. The penalty

parameter (λ) of the CRG signature was calculated via tenfold

cross-validation using the minimal criteria. The patients’ risk

scores were computed using the normalized expression levels of

each gene and the related regression coefficients (Liang et al.,

2020). Based on the median value of the risk score, the patients

were divided into high-risk and low-risk groups. PCA was

performed using the “prcomp” function of the “stats” R

package based on the expression of genes in the signature.

Furthermore, t-distributed stochastic neighbor embedding

(t-SNE) was used to investigate the distribution of distinct

groups using the “Rtsne” R package. The appropriate cutoff

expression value for each gene’s survival analysis was found

using the “surv cutpoint” function of the “survminer” R package.

To assess the prediction potential of the gene signature, time-

dependent ROC curve studies were performed using the

“survivalROC” R package (Heagerty et al., 2000).

Clinical correlation of the cuproptosis-
related prognostic signature

The associations between the risk score and the clinical

characteristics, tumor stage, and mutations were investigated

FIGURE 1
Flow chart of data collection and analysis.
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using the chi-square test. Univariate and multivariate analyses

were carried out on the training and testing sets to assess

whether the predictive value of the risk score was independent

of other available clinical pathology parameters.

Functional enrichment analysis

Based on the DEGs (|log2FC|>1, FDR<0.05) between the

high-risk and low-risk groups, the “clusterProfiler” R package

was used to perform GO and KEGG enrichment analysis and

GSEA studies. The BH approach was used to adjust the p

values.

Immune characteristics analysis

Correlations between the expression of genes in the signature

and immune cells were evaluated by the TIMER2.0 database

(http://timer.cistrome.org/). Single-sample gene set enrichment

analysis (ssGSEA) in the “gsva” R package was used to determine

the infiltration score of 16 immune cells and the activity of

13 immune-related pathways (Rooney et al., 2015). Immune cell

infiltration and stromal cell infiltration were quantified with the

“ESTIMATE” R package. The proportion of 22 immune cells was

estimated by the “CIBERSORT” algorithm.

Drug sensitivity

To explore the drug sensitivity of the two groups of patients,

the “Oncopredict” software package was used to calculate the

half-maximal inhibitory concentration (IC50) values of LGG

after multidrug treatment (Maeser et al., 2021). The

probability of an immunotherapy response was calculated

using the TIDE method (Jiang et al., 2018).

Statistical analysis

The gene expression of tumor tissues and adjacent

nontumorous tissues was compared using Student’s t test.

The chi-squared test was used to compare proportional

differences. The ssGSEA scores of immune cells or

pathways were compared between the high-risk and low-

risk groups using the Mann–Whitney test with p values

corrected using the BH technique. The log-rank test was

used to compare the OS of various groups using Kaplan-

Meier analysis. To identify independent determinants of OS,

researchers used univariate and multivariate Cox regression

analyses. R software (Version 3.5.3) or SPSS was used for all

statistical analyses (Version 23.0). A p value of less than

0.05 was regarded as statistically significant unless

otherwise stated, and all p values were two-tailed.

Results

Figure 1 shows a flow chart depicting the steps of this

investigation. A total of 529 LGG patients from the TCGA-

LGG cohort and 182 LGG patients from the CGGA cohort were

finally enrolled. The detailed clinical characteristics of these

patients are summarized in Table 1 and Table 2.

TABLE 1 Clinical characteristics of the LGG patients from the TCGA
cohort.

Characteristic High Low p

n 262 262

Gender, n (%) 0.926

Female 105 (22.6%) 103 (22.2%)

Male 127 (27.4%) 129 (27.8%)

Grade, n (%) 0.020

G2 98 (21.1%) 124 (26.7%)

G3 134 (28.9%) 108 (23.3%)

IDH status, n (%) <0.001
Mutant 181 (34.7%) 243 (46.6%)

WT 79 (15.2%) 18 (3.5%)

1p/19q codeletion, n (%) <0.001
codel 12 (2.3%) 156 (29.8%)

non-codel 250 (47.7%) 106 (20.2%)

Age, meidan (IQR) 40 (32,24) 41.5 (33,53) 0.766

TABLE 2 Clinical characteristics of the LGG patients from the CGGA
cohort.

Characteristic High Low p

n 46 126

Gender, n (%) 0.764

Female 19 (11%) 47 (27.3%)

Male 27 (15.7%) 79 (45.9%)

Grade, n (%) <0.001
G2 16 (9.3%) 82 (47.7%)

G3 30 (17.4%) 44 (25.6%)

IDH status, n (%) <0.001
Mutant 25 (14.6%) 102 (59.6%)

WT 21 (12.3%) 23 (13.5%)

1p/19q codeletion, n (%) <0.001
codel 0 (0%) 55 (32.4%)

non-codel 46 (27.1%) 69 (40.6%)

Age, mean ± SD 43.54 ± 13.54 39.32 ± 9.49 0.056
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Identification of prognostic cuproptosis-
related DEGs in the TCGA cohort

According to previous research, ten genes were found to be related

to cuproptosis: FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, PDHB,

MTF1, GLS, and CDKN2A(8). Based on the TCGA and GTEx

databases, all 10 genes were differentially expressed between tumor

tissues and normal tissue, and of these, six genes (FDX1, LIAS, DLD,

DLAT, PDHB, and MTF1) were correlated with LGG patient

prognosis according to Cox regression analysis (Figures 2A,B)

Therefore, six prognostic cuproptosis-related DEGs were identified.

Theheatmap showed that these geneswere upregulated in tumor tissue

(Figure 2C) The interaction network involving these genes indicated

that DLD, DLAT, and PDHB were the hub genes (Figure 2D). The

correlation between these genes is presented in Figure 2E.

Construction of a cuproptosis-related
genes signature

Using the LASSO approach, we aimed to identify a

prognostic gene set for LGG. The abovementioned genes were

used to develop a prognostic signature, and a regression model

with a minimal lambda was used to generate a gene signature that

could be quantified in each patient (Supplementary Figure

S1A,B). With this, we created a scoring system that we named

the CRG risk score to calculate the CRG pattern for a specific

patient. The following formula was used to determine the risk

score: e(0.38*expression level of FDX1-0.39*expression level of

LIAS+0.41*expression level of DLD+0.08*expression level of

DLAT-0.4*expression level of PDHB+0.45*expression level of

MTF1).

Prognostic value of the cuproptosis-
related genes signature in the the cancer
genome atlas cohort

According to the median cutoff value, which is 1.160294,

the patients were divided into two groups: high-risk (n = 262)

and low-risk (n = 262) (Figure 3A). The patients in distinct risk

groups were clustered separately according to PCA and t-SNE

analyses (Figures 3B,C). Patients with higher risk scores were

highly likely to have higher mortality risks and shorter survival

FIGURE 2
Identification of candidate cuproptosis-related genes in the TCGA cohort. (A)Cuproptosis-related genes were differentially expressed between
glioma tissue and normal tissue. (B) Forest plots showing the results of the univariate Cox regression analysis of DEGs related to OS. (C) Heatmap
showing the expression of cuproptosis-related prognostic genes in tumor and normal tissues. (D) The PPI network downloaded from the STRING
database indicated the interactions among candidate genes. (E) The correlation network of candidate genes. The correlation coefficients are
represented by different colors. Adjusted p values are shown as follows: ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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times (Figure 3D). The Kaplan–Meier curve consistently

showed that patients in the high-risk group had a

considerably shorter OS than those in the low-risk group

(Figure 3E). Time-dependent ROC curves were used to

assess the risk score’s predictive ability for OS, and the area

under the curve (AUC) reached 0.787 at 1 year, 0.732 at 2 years,

0.693 at 3 years (Figure 3F), 0.684 at 4 years, and 0.693 at

5 years (Supplementary Figure S2A).

FIGURE 3
(A) The distribution and median value of the risk scores in the TCGA cohort. (B) PCA plot of the TCGA cohort. (C) t-SNE analysis of the TCGA
cohort. (D) The distribution ofOS status, OS, and risk score in TCGA. (E) Kaplan‒Meier curves for theOS of patients in the high-risk group and low-risk
group in the TCGA cohort. (F) The AUC values of time-dependent ROC curves verified the prognostic performance of the risk score in the TCGA
cohort.
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Prognostic value of the cuproptosis-
related genes signature in the chinese
glioma genome atlas cohort

To validate the risk signature developed based on the TCGA

cohort, patients from the CGGA cohort were likewise divided

into high-risk and low-risk groups according to the median value

obtained with the formula based on the TCGA cohort

(Figure 4A). PCA and t-SNE analyses indicated that patients

in the two subgroups were clustered separately, similar to the

results for the TCGA cohort (Figure 4B,C). Patients in the high-

risk group were also more likely to die early (Figure 4D) and had

a shorter survival time (Figure 4E) than those in the low-risk

group. Furthermore, the AUCs of the six-gene signature were

FIGURE 4
(A) The distribution and median value of the risk scores in the CGGA cohort. (B) PCA plot of the CGGA cohort. (C) t-SNE analysis of the CGGA
cohort. (D) The distribution of OS status, OS, and risk score in the CGGA. (E) Kaplan‒Meier curves for the OS of patients in the high-risk group and
low-risk group in the CGGA cohort. (F) The AUCs of time-dependent ROC curves verified the prognostic performance of the risk score in the CGGA
cohort.
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0.674, 0.739, 0.739, 0.782, and 0.797 from 1 year to 5 years

(Figure 4F, Supplementary Figure S2B).

Assessment of the independence of the
cuproptosis-related genes signature

Univariate and multivariate Cox regression analyses of the

available factors were performed to evaluate whether the risk

score was an independent prognostic predictor of OS. In both

the TCGA and CGGA cohorts, the risk score was substantially

correlated with OS in the univariate Cox regression models (TCGA

cohort: HR= 4.317, 95%CI = 2.648–7.038, p< 0.001; CGGA cohort:

HR = 4.989, 95%CI = 3.057–8.142, p < 0.001) (Figures 5A,B). In the

multivariate Cox regression analysis, the risk score remained an

independent predictor of OS after controlling for additional

confounding variables (TCGA cohort: HR = 2.716, 95% CI =

1.710–4.312, p < 0.001; CGGA cohort: HR = 3.868, 95% CI =

2.361–6.337, p< 0.001; Figures 5A,B).Meanwhile, stratified analyses

were performed to investigate the correlation between clinical

characteristics and CRG risk scores. The results showed that

patients with advanced stage, wild-type IDH status, or 1p/19q

non-codeletion LGG were more likely to have a higher risk score

than those who had a lower stage and mutation type LGG in both

TCGA (Figures 6A–C) and CGGA cohort (Figures 7A–C). The

prognostic risk signature accurately divided LGG patients with

different clinical features into short-term and long-term survival

groups according to the Kaplan‒Meier plot. In both the TCGA and

CGGA cohorts, the G2, G3, IDHmutation, IDH wild type, and 1p/

19q non-codeletion groups, who had lower risk scores, survived

longer than those who had higher risk scores (Figures 6D–H,

Figures 7D–H). In addition, consistent results were obtained

when risk of patient was determined according to the clinical

subgroups median risk score (Supplementary Figures S3, S4).

Functional annotation of the cuproptosis-
related genes signature in the the cancer
genome atlas and chinese glioma genome
atlas cohorts

The DEGs between the high-risk and low-risk groups were

utilized to conduct GO enrichment and KEGG pathway analyses

to reveal the biological activities and pathways related to the risk

score. In both the TCGA and CGGA cohorts, DEGs were

enriched in molecular functions and cellular component terms

FIGURE 5
Results of the univariate and multivariate Cox regression analyses regarding OS in the TCGA cohort (A) and the CGGA validation cohort (B).
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relevant to substance transportation, such as ion channel activity

and ion channel complex. Interestingly, the TCGA cohort DEGs

were clearly enriched in immune-related biological processes,

such as immunoglobulin-mediated immune response, B-cell-

mediated immunity, and humoral immune response mediated

by circulating immunoglobulin (Figures 8A,B). Analysis of the

CGGA cohort corroborated these findings. The DEGs were

enriched in leukocyte-mediated immunity and positive

regulation of leukocyte activation (Figures 9A,B). The

neuroactive ligand‒receptor interaction and cAMP signaling

pathways were also shown to be enriched in DEGs from both

the TCGA and CGGA cohorts, according to KEGG pathway

analyses (Figures 8C, Figure 9C). GSEA showed that the IL6-

JAK-STAT3 signaling pathway was enriched in DEGs from both

the TCGA and CGGA cohorts (Figures 8D, Figure 9D).

Comparison of immune characteristics
between subgroups

First, to investigate the relationship between a single CRG

and immune infiltration, 6 CRGs were independently

imported into the TIMER database (Figure 10). The results

showed that MTF1 and FDX1 were closely associated with

immune infiltration. The expression of MTF1 and FDX1 was

positively related to B cells, CD8+ T cells, CD4+ T cells,

macrophages, neutrophils, and dendritic cells (Figures

10A,B). However, PDHB was negatively related to the cells

mentioned above (Figure 10F). Next, we used ssGSEA,

CIBERSORT, and ESTIMATE to quantify the enrichment

scores of various immune cell subpopulations, associated

functions, and pathways to further investigate the

FIGURE 6
Kaplan–Meier curve of stratified analyses of the CRG signature for associations with clinical characteristics in the TCGA cohort. (A) Risk score
between grade 2 and grade 3 stage patients. (B) Risk score between IDH mutation and IDH wild-type patients. (C) Risk score between 1q/19p non-
codeletion and 1q/19p codeletion patients. (D)OS curve in grade 2 patients. (E)OS curve in grade 3 patients. (F)OS curve in IDHmutation patients. (G)
OS curve in IDH wild-type patients. (H)OS curve in 1q/19p non-codeletion patients. Adjusted p values are shown as follows: ns, not significant;
*, p < 0.05; **, p < 0.01; ***, p < 0.001.
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relationship between the risk score and immunological state.

Surprisingly, all the immune-related functions and pathways

differed between the low-risk and high-risk groups in the

CGGA cohorts (Figure 11A). In the CGGA cohort, B cells,

CD8+ T cells, immature DCs, macrophages, plasmacytoid

DCs, T helper cells, Th2 cells, tumor-infiltrating

lymphocytes (TILs), and Tregs were differentially abundant

between the high-risk group and the low-risk group (Figures

11B–D). Based on immune scores, macrophages and T helper

cells were most significantly differentially abundant between

the high-risk group and low-risk groups, which was consistent

with the outcomes from GO and KEGG analyses.

Furthermore, ESTIMATE analysis showed that the higher

the risk score was, the higher the stromal, immune, and

estimate scores were (Figures 11E–G).

Comparison of anticancer drug sensitivity
between patients in different subgroups

The calculated half-maximal inhibitory concentration

(IC50) differed significantly across the two risk groups.

Interestingly, the IC50 values of temozolomide, dabrafenib,

cyclophosphamide, oxaliplatin, tamoxifen, sorafenib,

FIGURE 7
Kaplan–Meier curve of stratified analyses of the CRG signature for associations with clinical characteristics in the CGGA cohort. (A) Risk score
between grade 2 and grade 3 stage patients. (B) Risk score between IDH mutation and IDH wild-type patients. (C) Risk score between 1q/19p non-
codeletion and 1q/19p codeletion patients. (D)OS curve in grade 2 patients. (E)OS curve in grade 3 patients. (F)OS curve in IDHmutation patients. (G)
OS curve in IDH wild-type patients. (H)OS curve in 1q/19p non-codeletion patients. Adjusted p values are shown as follows: ns, not significant;
*, p < 0.05; **, p < 0.01; ***, p < 0.001.
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lapatinib, gefitinib, and erlotinib were lower in patients with

low CRG risk scores, suggesting that the CRGs are correlated

with drug resistance (Figure 12). Immune checkpoint-related

gene expression was higher in the high-risk group than in the

low-risk group, demonstrating that the risk score matched

the status of tumor-induced immunosuppression

(Figure 13A). The TIDE algorithm was used to predict the

clinical outcome of immune checkpoint inhibitors. TIDE

scores were substantially different between the high-risk

and low-risk groups (Figure 13B). According to the TIDE

analysis, low-risk patients had a higher exclusion score and a

higher dysfunction score than high-risk patients (Figures

13C,D).

Discussion

Glioma is a malignant brain tumor that has a significant

impact on human health. WHO grade II and grade III gliomas

are considered LGGs. Untreated LGG spontaneously progresses

into higher-grade glioma on average 4–5 years after diagnosis.

However, glioma also tends to relapse despite rigorous treatment,

such as surgery, radiotherapy, chemotherapy, and targeted

therapy (Chang et al., 2016). These findings indicate that

there is an urgent need to predict the prognosis of LGG

patients. In recent years, programmed cell death, apoptosis,

pyroptosis, and ferroptosis have been regarded as potential

options for treating cancer. Therefore, cuproptosis, as a novel

FIGURE 8
Functional analysis of DEGs between the high- and low-risk groups in the TCGA cohort. (A and B) Bubble graph for GO analysis. (C) Bar plot for
KEGG pathways. (D) GSEA.

Frontiers in Genetics frontiersin.org11

Zhang et al. 10.3389/fgene.2022.1036460

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1036460


form of regulated cell death triggered by excessive copper, is of

great value to study (Tang et al., 2022). Recently, cuproptosis has

attracted much attention, as it could be a factor that has a huge

impact on cancer development and progression. Many studies

have applied CRGs to predict outcomes and guide treatments for

cancer patients, for example, triple-negative breast cancer,

hepatocellular carcinoma, and bladder cancer patients. As

shown in previous studies, CRGs are closely related to the

prognosis of breast cancer patients (Sha et al., 2022). In

addition, the cuproptosis-related risk score could divide liver

cancer patients into two groups with differences in mutation

status and responded to target therapy in different ways (Zhang

et al., 2022). Furthermore, cuproptosis patterns were able to

predict immunotherapy responses in bladder cancer patients

(Song et al., 2022). A previous study proved that cuproptosis

plays an essential role in glioma growth and progression

(Buccarelli et al., 2021). Moreover, Chen et alestablished a

cuproptosis activity score (CuAS) based on bulk tumor and

single-cell transcriptome data, suggesting that cuproptosis

mediates glioma aggressiveness and neoplasm-immune

interactions (Chen et al., 2022). In addition, Yan et alreported

that cuproptosis-related lncRNAs can guide LGG treatment, as

they could divide LGG patients into different groups according to

the response to immunotherapy (Yan et al., 2022). In addition,

two subclusters of glioma patients were identified based on CRG

expression, which was correlated with tumor driver gene

mutations and the response to chemotherapy, according to

Wang et al. (Wang et al., 2022). Thus, it is critical to explore

the relationship between cuproptosis-related genes and LGG

prognosis to achieve a comprehensive understanding of the

FIGURE 9
Functional analysis of DEGs between the high- and low-risk groups in the CGGA cohort. (A and B) Bubble graph for GO analysis. (C) Bar plot for
KEGG pathways. (D) GSEA.
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function of cuproptosis in LGG and thereby further improve the

efficacy of prognosis and treatment options for gliomas. In the

current study, we focused on the expression of 10 CRGs in LGG

tumor tissues and their relationships with OS. Surprisingly, all

cuproptosis-related genes were differentially expressed between

tumor and normal tissues, and six of them were correlated with

OS in the univariate Cox regression analysis. First, a novel

prognostic signature including six cuproptosis-related genes

was developed and tested in the TCGA and CGGA databases.

As shown above, the prognostic signature separated patients into

high-risk and low-risk groups, and this separation was validated

by PCA and t-SNE analysis. The overall survival of patients in the

FIGURE 10
The correlations between the expression of 6 CRGs and the levels of immune cells from the TIMER database. (A) MTF1 and immune cells; (B)
FDX1 and immune cells; (C) LIAS and immune cells; (D) DLD and immune cells; (E) DLAT and immune cells; (F) PDHB and immune cells.
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high-risk group was significantly shorter than that of patients in

the low-risk group. These findings strongly suggested that

differentially expressed cuproptosis-related genes affected LGG

development and progression. The prognostic signature included

6 genes (FDX1, LIAS, DLD, DLAT, PDHB, and MTF1).

According to Golub et al., cuproptosis-related genes are either

correlated with the lipoic acid (LA) pathway or involved in the

formation of the pyruvate dehydrogenase (PDH) complex

FIGURE 11
Immune characteristics analysis in the CGGA cohort. (A and B) ssGSEA scores of 13 immune-related functions and scores of 16 immune cells
between the high- and low-risk groups. (C and D) Immune cell infiltration in the high- and low-risk groups using CIBERSORT. (E–G) Immune score,
stromal score, and combined score estimated using ESTIMATE. Adjusted p values are shown as follows: ns, not significant; *, p < 0.05; **, p < 0.01;
***, p < 0.001.
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(Tsvetkov et al., 2022). FDX1 is a crucial factor in the synthesis of

steroid hormones and heme A and Fe/S clusters (Sheftel et al.,

2010). In addition, a recent study revealed that FDX1 is involved

in glucose metabolism, fatty acid oxidation, and amino acid

metabolism (Zhang et al., 2021). Importantly, FDX1 could be

a target of cuproptosis, as it is directly regulated by elesclomol

(Tsvetkov et al., 2019). The final step in the production of lipoic

acid, an antioxidant, is catalyzed by LIAS. According to previous

research, overexpression of LIAS in a mouse model enhanced

antioxidant defense and proved effective in treating diabetic

nephropathy, nonalcoholic fatty liver disease, pulmonary

fibrosis, and atherosclerosis (Tian et al., 2020; Zhao et al.,

2020; Xu et al., 2021; Zhao et al., 2021). The pyruvate

dehydrogenase complex (PDC) is essential for glucose

metabolism, as it connects glycolysis to the TCA cycle

(Echeverri Ruiz et al., 2021). The E1, E2, and E3 subunits of

the PDC are encoded by PDHB, DLAT, and DLD, respectively

(Goguet-Rubio et al., 2016). DLD, a redox enzyme, plays an

important role in glucose metabolism and ATP production.

Under certain circumstances, it can either stimulate or inhibit

ROS and reactive nitrogen species production. Thus, DLD

inhibitors could be used to protect against oxidative damage

(Yang et al., 2019). Moreover, DLD inhibition increases

intracellular ROS generation and lowers mitochondrial

membrane potential, resulting in autophagic cell death (Dayan

et al., 2019). DLAT is found to regulate cell proliferation and

FIGURE 12
The correlation between different risk groups and drug sensitivity in LGG patients. (A) temozolomide, (B) dabrafenib, (C) cyclophosphamide, (D)
oxaliplatin, (E) tamoxifen, (F) sorafenib, (G) lapatinib, (H) gefitinib, and (I) erlotinib. Adjusted p values are shown as follows: ns, not significant; *, p <
0.05; **, p < 0.01; ***, p < 0.001.
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carbohydrate metabolism in gastric cancer cells and B-cell

chronic lymphocytic leukemia cells (Goh et al., 2015; Mayer

et al., 2018). Overexpression of PDHB switches cell metabolism

from glycolysis to the Krebs cycle in gastric cancer and epithelial

ovarian carcinoma (Cai et al., 2010; Li et al., 2020). It has been

reported that PDHB exerts an anticancer effect by counteracting

oncogenic noncoding RNAs, such as miR-370, miR-363-3p, and

miR-146b-5p, in melanoma, glioma, and colorectal cancer,

respectively (Wei and Ma, 2017; Zhu et al., 2017; Xu et al.,

2018). MTF1 is a transcription factor that responds to metal

excess or deficiency and shields cells from oxidative and hypoxic

damage (Tavera-Montañez et al., 2019). MTF1 inhibits matrix

collagen deposition and stimulates angiogenesis to promote

tumor growth (Haroon et al., 2004). According to a previous

study, knockout of MTF1 inhibits ovarian cancer cell

proliferation, migration, and invasion by suppressing

epithelial-to-mesenchymal transition (Ji et al., 2018).

Functional analyses, such as GO and KEGG analyses, were

performed to explain the underlying mechanism of prognosis

between the high-risk and low-risk groups. As shown in the GO

analysis, cellular components and molecular functions related to

substance transportation were downregulated in the high-risk

groups. We assumed that copper was more difficult to transport

into cells in high-risk group samples, thus inhibiting cuproptosis.

In addition, many immune-related biological processes and

pathways were enriched. It is reasonable to assume that

cuproptosis may have a close connection with tumor

immunity. According to TIMER analysis, each of six CRGs

FIGURE 13
Immunotherapy response of LGG patients. (A) Differences in immune checkpoint gene expression between patients in the high- and low-risk
groups. (B–D) TIDE, dysfunction and exclusion scores between patients in the high- and low-risk groups. Adjusted p values are shown as follows: ns,
not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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are related to immune cell infiltration, especially MTF1 and

FDX1. In addition, all six CRGs were associated with CD8+

T cells. Thus, to evaluate the immune activities between the

high-risk and low-risk groups, the infiltration scores of

16 immune cells and the activity of 13 immune-related

pathways were analyzed. Surprisingly, all of the immune-

related pathways and half of the immune cells were

significantly different between the high-risk group and the

low-risk group. It is conceivable to conclude that cuproptosis

has a strong relationship with tumor immunity. As shown above,

the CD8+ T-cell score was higher in the high-risk group than in

the low-risk group. According to previous research, CCL4 is

produced by naive CD8+ T lymphocytes, prompting microglia to

produce a key LGG growth factor (CCL5), which is necessary for

LGG stem cell survival and stimulating LGG growth (Guo et al.,

2020). In the high-risk group, the macrophage cells gained higher

scores than those in the low-risk group. Tumor-associated

macrophages (TAMs), which exert procancer functions, are

M2 phenotype macrophages polarized from circulating

monocytes and tissue-resident macrophages (Anderson et al.,

2021). M2a-like and M2c-like macrophages have been shown to

increase cell invasion and tumor growth in lung cancer, whereas

M1-like macrophages decrease lung cancer cell proliferation,

diminish angiogenesis, and induce death, which explains why

macrophages are enriched in the high-risk group (Song et al.,

2021). Treg cells, characterized by FOXP3 expression, alleviate

autoimmune responses and suppress antitumor immune

responses (Tanaka and Sakaguchi, 2017). Treg cells intensively

infiltrated gliomas and stimulated cancer growth by promoting

glioma stem cell function through TGF-beta secretion (Liu et al.,

2021).

Drug sensitivity prediction showed that patients in the high-

risk group were not as sensitive as patients in the low-risk group

to anticancer drugs. However, immune checkpoint gene

expression was higher in patients in the high-risk

group. TIDE analysis showed that the high-risk group

possessed a higher exclusion score and lower dysfunction

score, indicating that patients in the high-risk group were

more likely to benefit from immune checkpoint inhibitors

(ICIs). Therefore, the CRG signature may guide clinical

treatment for LGG patients.

This research has several limitations. First, we built and

verified our CRG signature using data from public databases.

More prospective data are needed to confirm the therapeutic

value of this signature. Second, cuproptosis is a novel concept

that has been studied recently. The ten cuproptosis-related

genes used in this study constitute a small fraction of total

cuproptosis-related genes. This prognostic signature could be

made more efficient as more cuproptosis-related genes are

identified. In addition, the relationship between the risk score

and immunological activity should be investigated

experimentally.

In conclusion, our research identified a new prognostic

signature based on six cuproptosis-related genes that was able

to predict prognosis for LGG patients with high sensitivity and

specificity. In addition, our comprehensive analysis of CRGs

revealed that these genes had a significant impact on immune

features, clinical features, and treatment response. These findings

provide new research directions for precise treatment of LGG

patients.
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