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Lung adenocarcinoma is the most common subtype of lung cancer clinically, with
high mortality and poor prognosis. Cuproptosis present a newly discovered mode of
cell death characterized by aggregation of fatty acylated proteins, depletion of iron-
sulfur clusterin, triggering of HSP70, and induction of intracellular toxic oxidative
stress. However, the impact of cuproptosis on lung adenocarcinoma development,
prognosis, and treatment has not been elucidated. By systematically analyzing the
genetic alterations of 10 cuproptosis-related genes in lung adenocarcinoma, we
found that CDKN2A, DLAT, LIAS, PDHA1, FDX1, GLS, and MTF1 were differentially
expressed between lung cancer tissues and adjacent tissues. Based on the
expression levels of 10 cuproptosis-related genes, we classified lung
adenocarcinoma patients into two molecular subtypes using the Consensus
clustering method, of which subtype 2 had a worse prognosis. Differential
expression genes associated with prognosis between the two subtypes were
obtained by differential analysis and survival analysis, and cox lasso regression
was applied to construct a cuproptosis-related prognostic model. Its survival
predicting ability was validated in three extrinsic validation cohorts. The results of
multivariate cox analysis indicated that cuproptosis risk score was an independent
prognostic predictor, and the mixed model formed by cupproptosis prognostic
model combined with stage had more robust prognostic prediction accuracy. We
found the differences in cell cycle, mitosis, and p53 signaling pathways between
high- and low-risk groups according to GO and KEGG enrichment analysis. The
results of immune microenvironment analysis showed that the enrichment score of
activated dendritic cells, mast cells, and type 2 interferon response were down-
regulated in the high-risk group, while the fraction of neutrophils and
M0 macrophages were upregulated in the high-risk group. Compared with the
high-risk group, subjects in the low-risk group had higher Immunophenoscore
and may be more sensitive to immunotherapy. We identified seven
chemotherapy agents may improve the curative effect in LUAD samples with
higher risk score. Overall, we discovered that cuproptosis is closely related to the
occurrence, prognosis, and treatment of lung adenocarcinoma. The cuproptosis
prognostic model is a potential prognostic predictor andmay provide new strategies
for precision therapy in lung adenocarcinoma.
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1 Background

Lung adenocarcinoma (LUAD), a primary pathological type of
lung cancer, was characterized by high mortality and poor prognosis
(Duma et al., 2019). Although the advent of immunotherapy and
targeted therapy has led to new advances in treating lung
adenocarcinoma, its 5-year overall survival rate is less than 20%
(Lin et al., 2016). Mining new biomarkers to predict the prognosis
of patients with lung adenocarcinoma is imminent.

Copper can participate in the occurrence and development of
malignant tumors due to its roles in enhancing angiogenesis, cell
proliferation, and metastasis (Theophanides and Anastassopoulou,
2002; Park et al., 2016). The latest research uncovers a novel regulatory
mechanism of cell death named cuproptosis. Cuproptosis mainly
occur in cells dependent on respiration and the TCA cycle. In the
cuproptosis process, promoting the binding of copper to fatty acylated
components leads to cascade including aggregation of fatty acylated
proteins, iron-sulfur cluster proteins exhaustion, the trigger of HSP70,
induction of intracellular Toxic oxidative stress, ultimately causing cell
death (Tsvetkov et al., 2022). Studies have demonstrated that copper is
abundant in lung cancer patient’s serum or tumor tissues. In addition,
copper is associated with tumorigenesis, invasion, and metastasis
(Wang et al., 2021). However, few reports involve the regulatory
mechanism of cuproptosis on lung adenocarcinoma. In this paper,
we clustered lung adenocarcinoma patients into two subtypes based on
the mRNA expression of 10 copper death-related genes by consensus
clustering. A prognostic model was constructed based on differential
genes between the two subtypes, and its underlying immune
mechanism was explored.

2 Materials and methods

2.1 Data collection and processing

Ten cuproptosis-related genes were obtained from the science
journal article (Tsvetkov et al., 2022). Lung adenocarcinoma
transcriptome data and clinical data were acquired from TCGA
project (http://xena.ucsc.edu/) and GEO (https://www.ncbi.nlm.
nih.gov/gds), and TCGA transcriptome data with FPKM format
(fragments per kilobase per million mapped reads) was
downloaded, which was further converted to TPM (transcripts
per million) enhancing the comparability with the microarray data.
The CNV (copy number variation), SNP (single nucleotide
polymorphism), and drug response analysis results of lung
cancer patients in TCGA were achieved from the GSCA website
(http://bioinfo.life.hust.edu.cn/web/GSCALite/) (Liu et al., 2018).
The drug sensitivities were calculated using the training data from
the Cancer Therapeutics Response Portal (CTRP) (Basu et al.,
2013). We compare the mRNA expression of 10 cuproptosis-
related genes between 526 tumor subjects and 59 tumor-
adjacent subjects in TCGA. GEO microarray transcriptome data
were normalized using the normalizeBetweenArrays function of
the “limma” package (Ritchie et al., 2015). Log2 transformed all
gene expression data. In this study, 1417 LUAD patients and six
LUAD cohorts were enrolled including TCGA (503), GSE30219
(85), GSE50081 (127), GSE72094 (398), GSE31210 (246), and
GSE3141 (58). The clinical characteristics of the six cohorts
were represented in the Supplementary Table S1. Three cohorts,

including TCGA, GSE30219, and GSE50081, were merged as a
pooled dataset with 738 LUAD patients. The “combat” function of
the SVA package (Leek et al., 2012) is used to remove the batch
effect. Besides, GSE32863 cohort containing transcriptome data of
58 lung adenocarcinoma and 58 adjacent non-tumor lung fresh
frozen tissues, was used to verify the expression of ten cuproptosis
related genes and prognostic signature genes (20 of 22 signature
genes available due to GPRIN1, HJURP unavailable).

2.2 Consensus clustering

Lung cancer samples in the pooled dataset were grouped according
to the mRNA expression of 10 cuproptosis-related genes using a
consensus clustering method. “Cancer Subtypes” package (Xu et al.,
2017) was applied for the consensus clustering analysis and comparing
the prognostic difference between two clusters. “Limma” package was
used to analyze the differentially expressed genes between the two
subtype groups. Those differential expression genes were defined as
cuproptosis pattern differentially genes (CPDGs). The screening
criteria were FDR <.05 and log|FC| > .5.

2.3 Construction and evaluation of prognostic
model

In the pooled dataset, univariate cox regression analysis was used
to find out prognosis-related CPDGs, whose gene expression values
and overall survival data were further input to construct a cuproptosis
prognostic model using cox least absolute shrinkage and selection
operator (lasso) regression analysis. The pooled dataset was used as the
training set, while the other three cohorts, including GSE72094,
GSE31210, and GSE3141, were validation sets. The risk scores were
calculated according to the below formula.

RiskScores � ∑ coefficientpGeneExpression

The median of risk scores was regarded as the cut-off to divide
the LUAD samples into a high and low-risk groups. The
distribution of risk scores between different clinical subgroups
was compared in training and test cohorts. Due to unavailable
clinical data, GSE3141 wasn’t included. Kaplan-Meier (KM)
survival curves were drawn for LUAD subjects in the high and
low-risk groups. The AUC (area under the curve) value of
timeROC (time receiver operating characteristic) curve was
used to evaluate the survival prediction ability of 1, 2, and
3 year of overall survival (OS) time. Besides, multivariate cox
analysis was applied to demonstrate whether the cuproptosis
prognostic model is an independent survival predictor in
training and test sets. The GSE3141 cohort was excluded for its
unavailable clinical data.

2.4 Nomogram drawing

The risk score of the cuproptosis prognostic model was integrated
with clinical features such as age, gender, and stage to fabricate a
nomogram (Iasonos et al., 2008) using rms package. TimeROC and
calibration curves were used to evaluate the survival prediction ability
of the mixed model.
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2.5 Gene ontology (GO) and kyoto
encyclopedia of genes and genomes (KEGG)
enrichment analysis

Limma package was utilized to screen the differential expression
genes between high and low-risk groups. The selecting criteria were
FDR <.05 and log|fc| >1. Afterward, Gene Ontology (GO) (Gene
Ontology Consortium, 2015) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa and Goto, 2000) enrichment analysis
were performed for the differential expression genes.

2.6 Immune infiltration analysis

The immune cell fraction of each LUAD sample was calculated by
the CIBERSORT algorithm of “IOBR” R package, which also was
applied to analyze the Immunophenoscore (IPS) characterizing the
immunogenicity of LUAD samples (Newman et al., 2015;
Charoentong et al., 2017; Zeng et al., 2021). In addition, the single
sample gene set enrichment analysis (ssGSEA) (Barbie et al., 2009) was
used to measure the relative abundance level of 16 immune cells and
13 immune function signatures in LUAD samples.

FIGURE 1
Transcriptome and genomic variation of 10 cuproptosis-related genes in TCGA-LUAD. (A) the gene expression difference of 10 cuproptosis genes
between NC and lung cancer in TCGA. (B) Homozygous CNV of 10 cuproptosis-related genes in LUAD. (C) Heterozygous CNV of 10 cuproptosis-related
genes in LUAD. (D)SNV percentage heatmap of 10 cuproptosis genes in LUAD. (E) Correlations of CNV of ten cuproptosis-related genes with mRNA
expression in LUAD. (F) Correlation between CTRP drug sensitivity and mRNA expression of ten cuproptosis-related genes. The symbols *, **, ***, ***
corresponded to p < .05, .01, .001, .0001, respectively. p< .05 was regarded as significant.
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2.7 Drug sensitivity analysis

Oncopredict package was used to calculate the estimation IC50 for
each sample based on ridge regression method (Maeser et al., 2021).
The drug sensitivity and transcriptome data of cell lines in Genomicsof
Drug Sensitivity in Cancer (GDSC) database was regarded as the
training data. (Yang et al., 2013) considering the low sample size of
GSE3141, we included the merge cohort, GSE31210, and
GSE72094 for drug sensitivity analysis. The correlation coefficients
were obtained by conducting pearson correlation analysis between
drug sensitivities and the risk scores. To obtain robust result, we
included the drugs whose estimation IC50 values correlated with risk

scores in all three cohorts simultaneously. FDR<.05 was considered
significant.

2.8 Statistical analysis

R language (version 4.0.5) was primarily used for all data analysis in
the study. The “ggplot2” package was applied for figure fabrication.
Wilcox or Kruskal-Wallis test was used to estimate the statistical
significance of quantitative data when comparing two or more types.
For Kaplan-Meier survival analysis, the log-rank method was used to test
the statistical significance. Cox lasso regression analysis was conducted

FIGURE 2
Two cuproptosis-related subtypes of LUADwere identified using the consensus cluster method. (A) Two LUAD subtypes were obtained according to the
mRNA expression of cuproptosis-related genes using the consensus clustering in the merge cohort, in which subtype 1 had a poorer prognosis compared
with sub type 2. (B) The mRNA expression difference of ten cuproptosis-related genes between two subtypes in merge cohort. In the silhouette plot of
Figure 2A, each row represent the Silhouette Coefficient (range from 0–1) of each sample, higher Silhouette Coefficient means better clustering effect,
the average Silhouette Coefficient for subtype 1 and 2 were .95 and .96. The symbols *, **, ***, *** corresponded to p < .05, .01, .001, .0001, respectively. p <
.05 was regarded as significant.
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using the R package “glmnet”. p < .05 was considered statistically
significant. The Benjamini-Hochberg method was applied to limit the
false discovery rate (FDR) when conducting multiple hypothesis testing.

3 Result

3.1 Transcriptome and genomic variance of
ten cuproptosis-related genes in LUAD

Differential expression analyses of ten cuproptosis-related genes
between LUAD and tumor-adjacent samples were conducted

(Figure 1A). Among them, the significantly upregulated genes in
LUAD were CDKN2A, DLAT, LIAS, and PDHA1, while FDX1,
GLS, and MTF1 were downregulated. Similar expression pattern
was found in cohort GSE32863 except for the MTF1 gene, which
exhibited significantly higher expression in lung cancer tissues
compared with normal tissues (Supplementary Figure S1A). SNV
and CNV analysis showed that some cuproptosis-related genes
exhibited genomic variance. The mutation frequency of CDKN2A
was 24%, far more than the others. The homozygous deletion
frequency of CDKN2A was much higher than homozygous
amplification frequency. In heterozygous CNV analysis, DLD,
LIPT1, and GLS were prone to heterozygous amplification, while

FIGURE 3
The Prognostic model was constructed using cox lasso method in the merge cohort. (A) The left part of picture showed the coefficients of 169 survive-
related genes dropping speed as the log lambda increased. The right section of the figure exhibited that partial likelihood deviance was applied to evaluate the
fitness of the prognosticmodel, theminimum value amongwhich would correspond to a specific log lambda. (B) The heatmap showed themRNA expression
of 22 prognosticmodel genes in the high and low-risk groups. (C) Themore significant number of deaths and lower survival timewere represented in the
high-risk group.
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PDHB, CDKN2A, and PDHA1 were prone to heterozygous deletion
(Figures 1B–D). The correlation of CNV with mRNA expression
showed that copy number increasing of cuproptosis-related genes
significantly enhanced the mRNA expression except for the GLS
(Figure 1E). We also correlated drug sensitivity and cuproptosis-

related mRNA expression according to the Cancer Therapeutics
Response Portal (CTRP) database. The bubble chart showed that
the mRNA expression of ten cuproptosis-related genes was
negatively correlated to the IC50 value of cancer therapy agents
(Figure 1F). We used the best cut-off to compare KM overall

FIGURE 4
The distribution of risk scores between different clinical subgroups in the merge cohort. (A–F) corresponded to two age groups (<60 vs. ≥ 60 years),
gender (male vs. female), Tumor classification, node classification, metastasis classification, and stages. p < .05 was considered significant.

FIGURE 5
Evaluation of prognostic model in training and test cohorts, including merge cohort (A,E), GSE72094 (B,F), GSE31210 (C,G), and GSE3141 (D,H). The
overall survival KM curves showed that LUAD patients in the high-risk group had a shorter OS time comparing with the low-risk group (A–D) pictures from
(E–H) were timeROC curves of 1, 2, and 3 year overall survival time, which showed that the prognostic model had an excellent 1, 2, and 3 year OS time
predicting ability.
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survival time between high and low gene expression groups of ten
cuproptosis-related genes. We found that seven genes significantly
correlated with prognosis, where PDHA1, DLAT, DLD, and

CDKN2A were high-risk factors for the prognosis of LUAD
patients in the TCGA cohort, while MTF1, LIPT1, and GLS
were favorable factors (Supplementary Figure S2).

FIGURE 6
The risk score was the independent prognostic factor in LUAD cohorts. Forest maps were made based on the univariate cox analysis results (A–C).
Multivariate cox analysis results were shown in pictures (D–F). (A,D) correspond to themerge cohort; (B,E) correspond to the GSE72094 set; (C,F) correspond
to the GSE31210 set. p < .05 was considered significant.

FIGURE 7
The risk score combining stage showed a better prognostic prediction power. (A) Nomogram with a total score of risk score and stage predicting the
overall survival time was drawn in the merge cohort. (B) The calibration curve showed the difference extent between nomogram-predicted OS and observed
OS. (C–E) were the timeROCs for features including risk score, stage, and nomo_score in 1, 2, and 3 year overall survival time, respectively.
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3.2 Identification of two cuproptosis-related
patterns in LUAD

Consensus clustering was used to group the lung cancer samples of
the pooled dataset based on the mRNA expression of ten cuproptosis-
related genes (Supplementary Table S2). Since the CDF curve of
cluster number two was smoothest with average silhouette width of
.95, we grouped the samples into two subtypes. KM overall survival
analysis showed that patients in subtype2 have a poorer prognosis
than subtype1 (Figure 2A). Differential expression analysis results
showed that the mRNA expression of CDKN2A, DLAT, PDHA1, and
MTF1 were significantly upregulated in subtype 2, while PDHB was
upregulated in subtype1 (Figure 2B).

3.3 Prognostic model construction and
evaluation

Conducting differential expression analysis between subtype 1 and
subtype 2 generated 235 CPDGs in the pooled dataset (Supplementary
Table S3), among which 169 CPDGs significantly correlated with the
prognosis according to the univariate cox regression analysis result
(Supplementary Table S4). Next, we conducted LASSO Cox regression
analysis on the 169 OS-related CPDGs using one standard error (SE)
and 10-fold cross-validation, and a 22-genes cuproptosis prognostic
signature was formed in pooled dataset regarded as the training cohort
(Figures 3A). The signature consists of 22 CPDGs, including
ANKRD29, C4BPA, CDC7, CDH17, CDKN3, CLDN2, DKK1,
FOSL1, GPR37, GPRIN1, GSTA1, HJURP, HLF, KIF20A, KLK11,
LPL, PRC1, RFC4, RNASEH2A, TCF19, TNNT1, and UBE2S, whose

coefficients were presented in Supplementary Table S5. Among the
22 CPDGs, seven genes including KLK11, LPL, CLDN2, C4BPA,
GSTA1, ANKRD29, and HLF were favorable prognostic factors
and the rest of them were high risk factors according to the
univariate cox regression analysis result. Then we investigated the
transcriptome expression difference of those genes between lung
cancer and normal tissues. In TCGA cohort, 19 of the 22 CPDGs
showed significant expression difference except the three genes
including CLDN2, DKK1, and FOSL1. Among the 19 significant
CPDGs, low risk genes were upregulated in normal tissues while
high risk genes show higher expression in lung cancer tissues. Above
transcriptome differences were also verified in GSE32863
(Supplementary Figures S1B,C). The risk score of each sample was
calculated using the formula of method section (Supplementary Tables
S6–S9), and LUAD samples were stratified into high-risk group (n =
356) and low-risk group (n = 357) based on the median of risk scores
in the pooled cohort. Not only in the training set but also in three test
sets (GSE72094, GSE31210, and GSE3141), risk scores exhibited
similar distribution, and samples with higher risk scores
corresponded to shorter OS time and more death, the expression
characteristics of 22 CPDGs between high and low-risk groups were
similar as well (Figures 3B,C; Supplementary Figure S3).

In the training set of the pooled dataset, there was no noticeable
difference in risk score distribution neither between two age groups
(≥60 years vs. <60 years) nor two gender types (Male vs. Female),
while male LUAD patients own significant higher risk score in
GSE72094 cohort. Generally, higher TNM (Tumor classification,
node classification, metastasis classification) and stages go along
with higher risk scores, demonstrated in both the training and
validation sets (Figure 4; Supplementary Figure S4).

FIGURE 8
The differences in the immune environment between the high and low-risk groups of the merge cohort. (A) The GO enrichment result for differential
expression genes between the high and low-risk group. (B) The KEGG enrichment result for differential expression genes between the high and low-risk
group. (C) 16 immune cell signatures were compared between the high and low-risk groups. (D) 13 immune function signatures were compared between the
high and low-risk group I (E) immune cell fractions inferred by CIRBERSORT were compared between the high and low-risk groups. (F)
Immunephenoscore (IPS) was compared between high and low-risk groups. The symbols *, **, ***, *** corresponded to p < .05, .01, .001, .0001, respectively.
p < .05 was regarded as significant.
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Kaplan-Meier analysis manifested that the patients in the high-
risk group had shorter OS time than the low-risk group in both the
training cohort and three test cohort (pooled dataset, p < .001;
GSE72094, p < .001; GSE31210, p = 1.583e−02; GSE3141, p =
2.501e−02) (Figures 5A–D). The timeROC curves of the risk score
also exhibit good OS prediction ability in both training and test set
(Figures 5E–H), especially at 1 year overall survival time [AUC (95%
CI): pooled dataset, .730(.659–.800); GSE72094, .699(.611–.787);
GSE31210, .677(.446–.908); GSE3141, .706(.540–.871)].

3.4 The 22-genes cuproptosis signature was
an independent prognostic factor

We conducted univariate andmultivariate Cox regression analyses
among the retrievable variables to identify whether the risk score could
predict the OS independently. Due to the non-availability of clinical
data in the GSE3141 cohort, the univariate and multivariate cox
analyses were not carried out in the GSE3141 cohort. In univariate
Cox analyses, the risk score was significantly related with the overall
survival in both the training and the validation cohort [pooled dataset:
2.589 (2.002–3.349) HR (95% CI), p < .001; GSE72094:

2.278(1.547–3.355), p < .001; GSE31210: 2.214(1.141–4.295), p =
0.019] (Figures 6A–C). After rectification for other noise factors,
the risk score was demonstrated to be an independent prognostic
factor in the multivariate Cox regression analysis (pooled dataset:
2.136(1.617–2.821) HR (95% CI), p < .001; GSE72094:
2.437(1.645–3.610), p < 0.001; GSE31210: 2.391(1.042–5.486), p =
.04; Figures 6D–F).

3.5 Mixed-model strengthened the accuracy
of OS prediction

Tumor staging can describe the severity and involvement range of
malignancy and predict the prognosis of patients.We hoped to explore
whether tumor staging combined with the cuproptosis prognostic
model could more accurately predict the OS of lung cancer patients.
To this end, we draw a nomogram based on the Cox regression model
(Figure 7A). The calibration curves illustrate the high accuracy of the
total score of the staging and the cuproptosis prognostic models in
predicting 1, 2, and 3-year overall survival (Figure 7B). What’s more,
through the timeROC curve, we found that the AUC value of the
mixed model combining the stage and the cuproptosis prognostic

FIGURE 9
Correlation analysis between drug sensitivities of agents and risk scores. 61 significant agents were represented in the figure. The horizontal ordinate was
the correlation coefficient, while the ordinate represents the name of the drugs. Different shapes of dots represent different cohorts. The larger the dot, the
greater the absolute value of the correlation coefficient. The color corresponded to the FDR value. On the ordinate, green marks negatively correlated drugs,
while red marks positively correlated drugs. FDR <.05 was considered significant.
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model to predict the 1, 2, and 3-year overall survival was higher than
that of them alone, indicating that the stage combined with the
cuproptosis prognostic model can more accurately predict the
overall survival (Figures 7C–E).

3.6 GO and KEGG enrichment analysis

To investigate the risk score related biological functions and
pathways, GO and KEGG enrichment analyses were conducted for
differential expression genes between the high-risk and low-risk
groups. Combining GO and KEGG-enriched results in four cohorts
(pooled dataset, GSE72094, GSE31210, and GSE3141), we found that
DEGs were mainly associated with cell cycle, mitosis, p53 signaling,
complement and coagulation cascades (Figures 8A,B; Supplementary
Figure S5; Supplementary Tables S10–S13).

3.7 Immune microenvironment analysis

To investigate whether risk scores are associated with immune
infiltration, we used twomethods to quantify immune cells or immune
function in each sample: CIRBERSORT and ssGSEA, and compared
them between high-risk and low-risk groups. For the sake of rigor, the
simultaneous presence of statistical significance in the four arrays was
considered significant. In the ssGSEA analysis results, the enriched
scores of activated dendritic cells, mast cells, and Type II interferon
Reponse were significantly down-regulated in the high-risk group
compared to the low-risk group (Figures 8C,D; Supplementary Figure
S6). By CIRBERSORT analysis, we found that the fraction of
neutrophils and M0 macrophages were significantly higher in the
high-risk group than in the low-risk group (Figure 8E; Supplementary
Figures S7A–C). In addition, patients in the high-risk group had lower
IPS than those in the low-risk group significantly except for the
patients in the GSE3141 cohort (Figure 8F; Supplementary Figures
S7D–F).

3.8 Drug sensitivity analysis

To investigate the relationship between the risk scores and drug
sensitivities, we calculated the estimation IC50 value for lung
cancer samples based on the drug sensitivity data in GDSC. Risk
score related drugs were obtained in three cohorts (merge cohort,
GSE31210, GSE72094). The result represented in Figure 9. A total
of 61 agents were found significantly correlated with risk scores.
Among them, 54 agents showed lower drug sensitivities in the
higher risk samples, most of which target PI3K/MTOR signaling
(7 agents: MK-2206, Uprosertib, Afuresertib, AZD8186,
Ipatasertib, GNE-317, and LJI308), Genome integrity (4 agents:
Olaparib, Niraparib, Talazoparib, and BIBR-1532), Chromatin
histone methylation (4 agents: GSK591, Vorinostat, PCI-34051,
and OF-1), Cell cycle (4 agents: Palbociclib, Dinaciclib, CDK9_
5576, and CDK9_5038), and kinases (4 agents: Sorafenib,
AZD1208, PRT062607, JAK1_8709, and Ibrutinib), while seven
agents exhibited higher drug sensitivities in the higher risk samples
including Docetaxel (target pathway: Mitosis), AZD7762 (Cell
cycle), Dasatinib (kinases), Lapatinib (EGFR signaling), WIKI4
(WNT signaling), MIM1 (Apoptosis regulation), and

BPD-00008900 (other). Above result may provide values in
clinical individual therapy.

4 Discussion

In this paper, we first analyzed the transcriptome, genomic
alterations, and prognostic analysis of 10 cuproptosis-related genes
in LUAD, and then clustered lung cancer patients into two subgroups
according to the mRNA expression of the ten cuproptosis-related
genes. A prognostic model was constructed based on the differentially
expressed genes between the two subgroups. Through enrichment
analysis, it was found that there were differences in cell cycle, mitosis,
and p53 signaling pathway between high and low-risk groups. In
addition, the High-risk group samples exhibited different immune
infiltration patterns compared with the low-risk group.

Seven of the ten copper death-related genes were significantly up-
or down-regulated in lung adenocarcinoma tissues. The FDX1 gene is
a core regulator of copper death, which induces the conversion of
bivalent copper to monovalent copper, and is also an upstream
regulator of proteolipidation in TCA (Rayess et al., 2012; Dörsam
and Fahrer, 2016; Tsvetkov et al., 2022). FDX1 was significantly
downregulated in LUAD, which may be related to the escape of
cuproptosis in lung cancer cells. We found that seven of ten
cuproptosis-related genes were significantly associated with
prognosis according to KM survival analysis result. The above
results suggest that cuproptosis has a potential role in the
occurrence and prognosis of LUAD. Through SNV and CNV
analysis, we found that the gene mutation frequency of CDKN2A
is much higher than that of other copper death genes, and there are
also significant CDKN2A homozygous and heterozygous deletions in
CNV. CDKN2A is a cell cycle regulator whose loss of function is
closely related to the progression, prognosis, and treatment of lung
cancer (Kim et al., 2016; Jeong et al., 2018; Liu et al., 2020; Chakraborty
et al., 2021; Gutiontov et al., 2021). However, how CDKN2A regulates
cuproptosis in lung cancer remains to be elucidated. In addition to
CDKN2A, genes, including DLD, LIPT1, GLS, PDHB, and PDHA1,
also have significant CNVs, indicating the heterogeneity of lung cancer
tissue.

We divided the LUAD samples into two subtypes based on the
mRNA expression of 10 cuproptosis-related genes. CDKN2A, DLAT,
MTF1, and PDHA1 were highly expressed in subtype 2, while PDHB
was highly expressed in subtype 1. Among them, patients with subtype
2 lung cancer had a worse prognosis. The existence of two subtypes of
cuproptosis in lung adenocarcinoma and the different prognoses of
the two subtypes suggest that cuproptosis represents a promising
investigating subject with the potential to guide the precision
treatment of lung adenocarcinoma.

We established a prognostic model consisting of 22 genes using the
CPDGs. The 22 genes included ANKRD29, C4BPA, CDC7, CDH17,
CDKN3, CLDN2, DKK1, FOSL1, GPR37, GPRIN1, GSTA1, HJURP,
HLF, KIF20A, KLK11, LPL, PRC1, RFC4, RNASEH2A, TCF19,
TNNT1, and UBE2S. Among these genes, many are associated with
the proliferation and invasiveness of lung cancer. C4BPA, as a cofactor
of soluble complement inhibitor factor I, can help non-small cell lung
cancer cells escape the cytotoxic activity of the complement system
and enhance the invasiveness of tumor cells (Okroj et al., 2008). The
CDC7 gene encodes a cell division cyclin with kinase activity essential
for the G1/S transition. High CDC7 expression was significantly
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associated with p53 gain-of-function mutation status and predicted poor
clinical prognosis in lung adenocarcinoma patients (Datta et al., 2017).
CDKN3 may be involved in cell cycle regulation, and high expression of
CDKN3 predicts poor prognosis in lung cancer patients (Hannon et al.,
1994; Fan et al., 2015). CLDN2, a member of the claudin protein family, is
a membrane protein localized at tight junctions, which may increase the
mRNA level and enzymatic activity of MMP-9 by increasing the nuclear
distribution of Sp1, and promote A549 cell migration (Ikari et al., 2011).
DKK1 encodes a secreted protein that promotes the proliferation,
invasion, and growth of cancer cell lines (Niehrs, 2006). FOSL1 is a
transcription factor, and high expression of FOSL1 predicts poor
prognosis in mutant KRAS lung cancer (Vallejo et al., 2017).
GPR37 belongs to the G protein-coupled receptor family, and
GPR37 can induce lung adenocarcinoma cell cycle arrest in G1 phase
by binding to CDK6, thereby enhancing the progression andmigration of
lung adenocarcinoma cells. GPRIN1 can promote the proliferation and
migration of lung cancer (Zhuang et al., 2020). GSTA1 is an enzyme that
promotes the binding of glutathione to target electrophilic compounds
and promotes lung cancer cell invasion and adhesion (Wang et al., 2017).
HJURP is an important factor promoting the immortalization of cancer
cells and is associated with poor prognosis in lung cancer patients (Kato
et al., 2007). HLF can promote the distant metastasis of non-small cell
lung cancer to multiple organs through the PPAR/NF-κb pathway (Chen
et al., 2020). High expression of KIP20A can enhance the resistance of
A549 cell line to ionizing radiation (Xiu et al., 2018). LPL encodes a
protein lipase; high expression of LPL predicts poor prognosis in non-
small cell lung cancer and can be highly expressed in tumor-associated
macrophage subsets (Podgornik et al., 2013). As a transcriptional target
gene of notch1 signaling pathway, RFC4 can promote the metastasis and
stemness of non-small cell lung cancer through a positive feedback loop
(Liu et al., 2021). RNASEH2A, a nucleic acid-degrading enzyme
associated with cell proliferation, DNA replication, and gene
instability, promotes LUAD cell proliferation and reduces apoptosis
(Zhang et al., 2021). TCF19 gene can promote the proliferation of
non-small cell lung cancer cells by inhibiting FOXO1 (Zhou et al.,
2019). UBE2S gene encodes a member of the ubiquitin-conjugating
enzyme family. High expression of UBE2S activates the NF-κB
pathway and promotes the metastasis of lung adenocarcinoma (Ho
et al., 2021). We calculated the risk score of each sample according to
the prognostic model formula and compared the distribution of risk
scores in different clinical subgroups. The results showed that the risk
score increased with tumor invasion degree, lymph node metastasis level,
and distant metastasis degree. Moreover, the results were in substantial
agreement across the three cohorts, instructing that cuproptosis risk score
and lung adenocarcinoma aggressiveness are closely related. Recently,
similar studies investigating the prognostic model for lung
adenocarcinoma using cuproptosis signature occurred (Li et al., 2022;
Wang et al., 2022; Zhang et al., 2022). Among them, Li, et al. applied
neural network to establish a cuproptosis prognostic model. Wang, et al.
and Zhang, et al. constructed a cuproptosis signature using lasso method
based on the 10 or 13 cuprotosis related genes, which regarded TCGA as
training cohort. In our study, we applied the 169 CPGs which represented
more characters to establish the prognostic model to quantify the
cuproptosis related patterns. To compare the prognostic efficacy
between our 22-genes signature and other two published cuproptosis-
related signatures (Wang et al., 2022; Zhang et al., 2022), we calculated the
C-index of prognostic models in three validation cohorts including
GSE31210, GSE3141, and GSE72094. The C-index of 22-genes
signature were higher than Wang, et al. and Zhang, et al. signatures in

GSE31210 and GSE72094. In GSE3141, zhang, et al. signature exhibited
highest C-index and 22-genes signature was in the second place
(Supplementary Figure S8). Due to the low sample size in GSE3141
(58 samples), the results in GSE31210 and GSE72094 were more
convincing. Overall, 22-genes signature showed a better prognostic
efficacy than the others.

According to KM survival analysis and ROC curve results, the
prognostic model showed good survival prediction ability in both the
training and validation sets. Multivariate COX analysis showed that after
adjustment for other confounding clinical factors, the risk score could still
predict the prognosis of lung cancer patients well. Therefore, the risk score
of the cuproptosis prognostic model is an independent prognostic
predictor. In order to investigate whether the cuproptosis prognostic
model combined with stage can exhibit stronger prognostic prediction
ability, we drew a nomogram based on multivariate COX analysis. The
calibration and timeROC curves showed that the cuproptosis prognostic
model combined with the stage had a better OS prediction effect. This
suggests that the cuproptosis prognostic model can optimize the
predictive power of stage for prognosis in lung cancer patients.

To understand the underlying molecular mechanism of copper
death regulating lung adenocarcinoma, we performed GO and KEGG
enrichment analyses for differentially expressed genes between high-
and low-risk groups. The results showed significant differences in cell
cycle, mitosis, and p53 signaling pathway between high- and low-risk
groups. In the study of AML, glioblastoma, and non-small cell lung
cancer, copper ion-binding small molecule compounds or drugs can
induce oxidative stress and cell cycle arrest in tumor cells (Duan et al.,
2014; Hassani et al., 2018; Shimada et al., 2018). Meanwhile, in the
colon adenocarcinoma cell line HCT116, copper ions can reduce the
induction of the P53 pathway by cisplatin in cancer cells (Kabolizadeh
et al., 2007). These pieces of evidence suggest that copper metabolism
is involved in tumor suppression via regulating the cell cycle and
p53 pathway, which is consistent with our enrichment analysis results
and points out the direction for further cuproptosis investigations.

The immune microenvironment plays an integral role in tumor
initiation and progression. To this end, we analyzed immune
infiltration in the high- and low-risk groups. Activated dendritic cells,
mast cell enrichment fraction, and type 2 interferon response levels were
significantly down-regulated in the high-risk group, while the proportions
of neutrophils and M0 macrophages also showed a significant upward
trend in the high-risk group. Mature dendritic cells promote T cell
activation in tertiary lymphoid structures and explain the high
expression of CD8+ T cells and more prolonged overall survival in
some lung cancer patients (Goc et al., 2014). Mast cells predicting
prognosis in patients with lung adenocarcinoma may depend on the
microlocalization of mast cell infiltration, and high-density mast cell
infiltration in non-small cell lung cancer epithelial cells suggests a
better prognosis (Welsh et al., 2005). IFN-γ can inhibit the
proliferation of lung adenocarcinoma cells by activating the JAK2-
STAT1 pathway, and blocking the PI3K-AKT pathway can enhance
the anti-proliferation ability of IFN-γ (Gao et al., 2018). Neutrophils
promote the entire carcinogenesis process, including carcinogenesis,
proliferation, and metastasis. And in targeted therapy for metastatic
renal cell carcinoma, increased neutrophil counts predict a poor
prognosis (Ocana et al., 2017). An increased proportion of
M0 macrophages is associated with poor prognosis in lung cancer
patients (Liu et al., 2017). The above evidence indicates that the
changes mentioned above in the level of immune cell infiltration and
the enrichment of immune responses account for the poor prognosis of the
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high-risk group. The IPS is an indicator for evaluating the immunogenicity
of tumor samples, and higher IPS predicts higher sensitivity to
immunotherapy (Charoentong et al., 2017). A comparison of IPS
between high- and low-risk groups found that the low-risk group had
higher IPS, indicating that patients in the low-risk group were more likely
to benefit from immunotherapy. In addition, Chemotherapy remains the
major treatment modality for cancers. We obtained 61 agents whose drug
sensitivities were associated with risk scores. Seven kinds of drugs showed
higher sensitivities in higher risk score samples were identified, which
including Docetaxel, AZD7762, Dasatinib, Lapatinib, WIKI4, MIM1, and
BPD-00008900. Agents including Dasatinib (Haura et al., 2010), Docetaxel
(Joshi et al., 2014), Lapatinib (Blumenschein et al., 2010) were effective
agent in treatment of LUAD, which may exhibit better curative effect in
LUAD patients with higher risk scores. Therefore, the risk score may
represent a guiding index for the precise treatment of lung cancer patients.

There are still shortcomings in this study. Although the
prognosis predictive ability of the prognostic model was validated
in multiple cohorts, the data were derived from a public database of
retrospective studies. Its predictive ability remains to be verified in
randomized clinical trials. IPS can estimate the sensitivity of lung
cancer patients to immunotherapy but cannot substitute for the real
treatment response.

In this paper, lung adenocarcinoma patients were clustered into
two subtypes according to the expression levels of 10 copper death
genes, and the differentially expressed genes related to prognosis
between the two subtypes were obtained through differential
analysis and survival analysis, and the cuproptosis prognostic
model was constructed using cox lasso regression analysis, we
found that the risk score was a good predictor of overall survival
in patients with lung adenocarcinoma. In addition, there were
different immune infiltration patterns between high- and low-risk
groups, and the low-risk group was more sensitive to immunotherapy,
according to IPS. LUAD patients with higher risk scores may benefit
from seven kinds of chemotherapy drugs according to the drug
sensitivities analysis. Through the above analysis, we found an
intimate relationship between cuproptosis and lung
adenocarcinoma occur, prognosis and treatment, and the
cuproptosis prognostic model may be valuable for prognosis
prediction and immunotherapy guidance in lung adenocarcinoma
patients.
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SUPPLEMENTARY FIGURE S1
The gene expression difference between lung cancer and paired normal tissues
in GSE32863 and TCGA. (A)The boxplot showed the 10 cuproptosis genes
expression pattern in GSE32863 cohort. (B) The violinplot showed the
prognostic signature genes expression pattern in TCGA cohort. (C) The boxplot
showed the prognostic signature genes expression pattern in
GSE32863 cohort. The symbols *, **, ***, *** corresponded to p < 0.05, 0.01,
0.001, 0.0001, respectively p < 0.05 was regarded as significant.

SUPPLEMENTARY FIGURE S2
Seven cuproptosis-related genes correlated with prognosis significantly.
PDHA1, DLAT, DLD, and CDKN2A were high-risk factors for the prognosis of
LUAD patients in the TCGA cohort, while MTF1, LIPT1, andGLSwere favorable
factors.

SUPPLEMENTARY FIGURE S3
Heatmap for 22 prognostic model genes and risk scores distribution among
LUAD patients in three validation sets. (A,D)were for GSE72094, (B,E)were for
GSE31210, (C,F) were for GSE3141.

SUPPLEMENTARY FIGURE S4
The distribution of risk scores in different clinical features in the
GSE31210 cohort (A–C) and GSE72094 cohort (D–F).

SUPPLEMENTARY FIGURE S5
GO and KEGG enrichment results for three validation cohorts. (A–C) were the
GO enrichment results; (D–F) were the KEGG results. (A,D) were for
GSE72094, (B,E) were for GSE31210, (C,F) were for GSE3141.

SUPPLEMENTARY FIGURE S6
immune cell and function signatures were compared between the high and
low-risk groups in three validation sets. (A,D) were for GSE72094, (B,E) were
for GSE31210, (C,F) were for GSE3141.

SUPPLEMENTARY FIGURE S7
CIRBERSORT, ESTIMATE and IPS results were compared between the high and
low-risk groups. (A,D)were for GSE72094, (B,E)were for GSE31210, (C,F)were
for GSE3141. (G–I) were the ESTIMATE results (from left to right: ESTIMATE
score, immune score, stromal score, and tumor purity) in the merge cohort.

SUPPLEMENTARY FIGURE S8
The forest plot showed the C-index differences among the 22-genes signature,
Zhang, et al, and Wang, et al in three validation cohorts.
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