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Epilepsy, a functional disease caused by abnormal discharge of neurons, has

attracted the attention of neurologists due to its complex characteristics. N6-

methyladenosine (m6A) is a reversible mRNA modification that plays essential

role in various biological processes. Nevertheless, no previous study has

systematically evaluated the role of m6A regulators in epilepsy. Here, using

gene expression screening in the Gene Expression Omnibus GSE143272, we

identified seven significant m6A regulator genes in epileptic and non-epileptic

patients. The random forest (RF) model was applied to the screening, and seven

m6A regulators (HNRNPC,WATP, RBM15, YTHDC1, YTHDC2, CBLL1, and RBMX)

were selected as the candidate genes for predicting the risk of epilepsy. A

nomogram model was then established based on the seven-candidate m6A

regulators. Decision curve analysis preliminarily showed that patients with

epilepsy could benefit from the nomogram model. The consensus clustering

method was performed to divide patients with epilepsy into two m6A patterns

(clusterA and clusterB) based on the selected significant m6A regulators.

Principal component analysis algorithms were constructed to calculate the

m6A score for each sample to quantify the m6A patterns. Patients in clusterB

had higher m6A scores than those in clusterA. Furthermore, the patients in each

cluster had unique immune cell components and different cell death patterns.

Meanwhile, based on theM6A classification, a correlation between epilepsy and

glucose metabolism was laterally verified. In conclusion, the m6A regulation

pattern plays a vital role in the pathogenesis of epilepsy. The research on m6A

regulatory factors will play a key role in guiding the immune-related treatment,

drug selection, and identification of metabolism conditions and mechanisms of

epilepsy in the future.
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Introduction

Epilepsy is a common brain condition characterized by the

recurrence of unprovoked seizures, with over 70 million

patients affected worldwide (Thijs et al., 2019). The clinical

manifestations of epilepsy are complex and diverse, including

loss of consciousness, muscle rigidity, limb clonus, the

disappearance of muscle tension and other symptoms, which

negatively impacts the patients’ quality of life and imparts a

significant economic burden (Covanis et al., 2015; Saxena and

Li, 2017). Recent research has shown that epilepsy has a strong

genetic predisposition and is related to multiple groups of

explicit and recessive genes, which are often shared with

other functional neurological diseases such as paroxysmal

dyskinesia (Reid et al., 2009; Gardiner et al., 2012;

Koeleman, 2018). Treatment for epilepsy is complicated.

Recently, psychotherapy and diet therapy have been put

forward (Elia et al., 2017; Nigro, 2019), but drug treatment

is still the focus of epilepsy symptom control (Mirza et al.,

2021). Traditional epilepsy drugs target ion channels and

neurotransmitter receptors (Hahn and Neubauer, 2009;

Zaccara and Perucca, 2014), and there is currently

insufficient knowledge to design stable and effective

antiepileptic drugs by using specific genes and their products

as intervention sites.

N6-methyladenosine (m6A) is the most prevalent internal

modification of eukaryotic mRNA. Recent research elucidated

the roles of RNA modifications in modulating gene

expression, including cellular self-renewal, differentiation,

invasion, and apoptosis (Liu et al., 2020; Liu and Su, 2021;

Zhu et al., 2021). M6A affected the stability and translation of

the modified transcripts and provided a mechanism to

coordinate the transcripts regulation during cellular state

maintenance and transition (Wei and He, 2021). Previous

studies have confirmed that the m6A modification is inversely

associated with mRNA stability and gene expression, which

are also useful in cancer research (Wang et al., 2014; He et al.,

2019). As an epigenetic modification that requires multiple

regulatory proteins encoded by genes called writers, erasers,

and readers (Yang et al., 2018; Shi et al., 2019), many non-

tumor studies have also begun considering the relationship

between m6A and related diseases such as Parkinson’s disease

(Qin et al., 2020). Numerous studies have focused on de-

methylated transferase (FTO, ALKBH5), which can maintain

a dynamic balance between the methylation and de-

methylation of mRNA (Rowles et al., 2012). However, there

is still a lack of research on the roles of m6A regulators in

epilepsy.

Gene Expression Omnibus (GEO) GSE143272 dataset has

been widely cited in epilepsy studies (Luo et al., 2021). In this

study, GSE143272 was analyzed to evaluate the functions of m6A

regulators in the diagnosis and subtype classification of patients

with epilepsy. We established a gene model for predicting the

correlation between the prediction of epilepsy susceptibility and

drug treatment based on the model with seven candidate m6A

regulators. As a result, we found that the model could provide

good clinical prediction value and be used to analyze the effects of

common drugs, such as carbamazepine, phenytoin, and valproic

acid, on m6A gene expression. Additionally, we revealed two

distinct m6A patterns that were highly consistent with the

expression of autophagy-, ferroptosis-, and cuproptosis-related

genes, suggesting that m6A patterns may be used to distinguish

patients with epilepsy by the activation of different induced cell

death pathways that are implicated in the pathogenesis of cell

death. Finally, the gene expression results were verified by clinical

samples from epilepsy patients.

Materials and methods

Data acquisition

Gene expression information from 91 patients with epilepsy

and 51 healthy controls were obtained from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/) (Barrett et al., 2013), all of

whomwere acquired from the GSE143272 dataset. By identifying

significant m6A regulators between patients with epilepsy and

healthy controls, 17 m6A regulators were extracted from the

dataset, comprising six writers (METTL3, METTL14, WTAP,

RBM15, RBM15B, and CBLL1), ten readers (YTHDC1,

YTHDC2, YTHDF1, YTHDF2, YTHDF3, HNRNPC,

LRPPRC, HNRNPA2B1, RBMX, and ELAVL1), and one

eraser (ALKBH5). Furthermore, clinical information was also

obtained, including age, sex, subtype, and patients’ response to

different antiepileptic drugs.

Construction of the support vector
machine model and random forest model.

A random forest (RF) and support vector machine (SVM)

were constructed to predict the occurrence of epilepsy. To

evaluate the two models above, the “Reverse cumulative

distribution of residual,” “Boxplots of residual,” and

receiver operating characteristic (ROC) curve were plotted.

RF is a constituent supervised learning classifier containing

multiple decision trees, which provide a widely used QSAR

method with high prediction accuracy. We used the

“Randomforest” package in R statistical software (The R

Foundation, Vienna, Austria) to establish an RF model and
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selected candidate m6A regulators among the seven

differentially expressed m6A regulators to predict the

occurrence of epilepsy. In this research, ntrees and mtry

were set at 55 and 3, respectively, and through 10-fold

cross-validation, seven appropriate important m6A

regulators were selected after analyzing their importance

(Qin et al., 2019).

Construction of the nomogram model

To predict the prevalence of patients with epilepsy, a

nomogram model based on the selected candidate m6A

regulators was constructed using the “rms” package in R, and

the calibration curve was formed to evaluate the consistency

between our predicted values and reality. Decision curve analysis

(DCA) and clinical impact were also performed to judge whether

the decisions based on the model benefited patients with epilepsy

(Iasonos et al., 2008).

Feature analysis of molecular subtypes
based on the significant m6A regulators

To identify distinct m6A patterns based on the significant

m6A regulators, we performed the consensus clustering method

using the “ConsensusClusterPlus” package in R (Wilkerson and

Hayes, 2010). The consensus clustering used above was an

algorithm with a function to identify each number and its

subgroup number, which was then verified using clustering

rationality based on resampling.

Identification of differentially expressed
genes between distinct m6A patterns

Differentially expressed genes (DEGs) between distinct m6A

patterns were analyzed and screened using the “limma” package

with p < 0.05 and |logFC| > 0.35 as the screening criterion (the

cut-off criteria for statistical significance were a log fold change

(FC) of >0.35 and a p-value of <0.05) (Ritchie et al., 2015).

Functional and pathway enrichment
analysis

Gene Ontology (GO) functional enrichment was applied

to explore the enrichment pathways and functional

annotation with the aid of the “clusterProfiler” package

(Ashburner et al., 2000). Furthermore, Gene Set

Enrichment Analysis (GSEA) was conducted to analyze the

differently expressed pathways in two distinct m6A patterns

using GSEA software (v4.2.3). The enrichment scores (ES)

were calculated based on weighted Kolmogorov–Smirnov-like

statistics, whose magnitude can imply the relationship

between a get set and the group. The higher ES of the gene

set, the higher the possibility that it was considered to be

enriched in a particular group (Subramanian et al., 2005).

Furthermore, the pathway maps were drawn using pathview

(https://pathview.uncc.edu/), a server for pathway-based

visualization and data integration (Luo et al., 2017).

Estimation of the m6A gene signature

Principal component analysis (PCA) was used to distinguish

the m6A patterns. The m6A score was calculated according to the

formula: m6A score = PC1i, where PC1 is principal component 1,

representing the DEGs. The M6A scores for each sample were

calculated using PCA algorithms (Ringnér, 2008; Chong et al.,

2021).

Estimation of immune cell infiltration

Single-sample gene set enrichment analysis (ssGSEA) was

conducted to analyze and calculate the type and abundance of

23 types of immune cells that are commonly infiltrated in

patients with epilepsy. The gene expression levels in these

samples were sequenced to obtain their rank, and their

expression levels were then summed from the input dataset to

obtain the abundance of immune cells in each sample (Manford,

2017).

RNA extraction and qRT-PCR

TRIzol was used to extract the total cell RNA according to

the manufacturer’s protocol. Reverse transcription was

performed using High Capacity cDNA Reverse

Transcription Kits (Applied Bio-systems) according to the

manufacturer’s protocols. The cDNA was subjected to real-

time PCR using the quantitative PCR System Mx-3000P

(Stratagene). The PCR primer sequences can be found in

Supplementary Table S1.

Statistical analysis

Linear regression analyses were used to predict the

relationship between erasers and writers, and the correlation

between the 17 extracted m6A genes. Differences between the

groups were detected by Kruskal–Wallis tests. All parametric

analyses were built on a two-tailed test, with a statistic

significance set at p < 0.05. All statistical analyses were

performed using R version 4.1.2.
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Results

The difference in the expression of M6A
regulators in epilepsy

Seventeen m6A regulators were analyzed with the differential

expression levels between patients with epilepsy and normal

groups using the “limma” package. Seven significant m6A

regulators, consisting of three writers (WTAP, RBM15, and

CBLL1) and four readers (YTHDC1, YTHDC2, HNRNPC,

and RBMX) were screened and selected. The boxplot and

heatmap intuitively show the expression of these differential

genes (p-value < 0.05) (Figures 1A,B). These findings

indicated that WTAP and YTHDC1 were overexpressed in

patients with epilepsy, while RBM15, CBLL1, YTHDC2,

HNRNPC, and RBMX showed decreased expression in

patients with epilepsy compared to that in the healthy group.

Correlation analysis between M6A-
Related genes in epilepsy

We next performed a correlation matrix to analyze whether

there was a correlation between m6A-related gene expression

levels in epilepsy samples (Figure 1C). We found a positive

correlation between the expression of HNRNPC, RBMX, and

RBM15 in patients with epilepsy. The expression of

YTHDC1 was negatively correlated with RBMX and

YTHDF2, with the same result observed between WTAP,

LRPPRC, and METTL3. We also analyzed the relationship

between the readers and the eraser (ALKBH5) (Figures 2A–F).

The results showed that ALKBH5 is positively correlated with

RBM15 and METTL3, but has an opposite relationship

with WTAP.

Construction of the RF model and SVM
model

Reverse cumulative distribution of the residual and Boxplots

of the residual were established to estimate the RF and SVM

models to select candidate m6A regulators from the 17 m6A

regulators to predict the occurrence of epilepsy. The results both

showed that the RF model had minimal residuals (Figures 3A,B),

while the ROC curve plotted to evaluate the model also indicated

that the RF model had higher accuracy than the SVMmodel with

the AUC value of the ROC curve (Figure 3C). With the smaller

residuals, which are considered better for evaluation, the RF

model was selected to predict the occurrence of epilepsy, with the

ntrees andmtry set at 55 and 3, respectively (Figure 3D). We next

rated the score of importance of these seven differently expressed

m6A regulators (HNRNPC, WATP, RBM15, YTHDC1,

FIGURE 1
Landscape of the 17 RNA N6-methyladenosine (m6A) regulators in epilepsy. (A) Expression heat map of the m6A regulators in patients with
epilepsy and healthy groups. (B) Differential expression histogram of 17 m6A regulators between non-epilepsy and patients with epilepsy. (C)
Spearman correlation analysis of 17 m6A regulators. *p < 0.05, **p < 0.01, and ***p < 0.001.
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YTHDC2, CBLL1, RBMX) and selected them as the candidate

genes (Figure 3E).

Construction of the nomogram model

By using the “rms” package, a nomogrammodel based on the

seven candidate m6A regulators was constructed to predict the

prevalence of epilepsy patients (Figure 4A). Calibration curves

revealed that the predictivity of the nomogram model was

accurate (Figure 4B). The red line in the DCA curve remained

above the gray and black lines from 0 to 1, indicating that

decisions based on the nomogram model may benefit patients

with epilepsy (Figure 4C). The clinical impact curve revealed a

remarkable predictive power of the nomogram model

(Figure 4D).

Two distinct m6A patterns identified by
significant m6A regulators

Based on the seven significant m6A regulators and the

“ConsensusClusterPlus” package, the patients with epilepsy

were clustered into different subgroups using the consensus

clustering method. It was shown that when K = 2, the

consensus matrix has the cleanest distinguishing ability, and

the interference between subgroups is minimal (Figures 5A–C),

with 49 cases in clusterA and 42 cases in clusterB. PCA indicated

that the m6A regulators could distinguish the patients into two

m6A patterns distinctly (Figure 5D). The heatmap and boxplot

revealed the differential expression levels of the seven significant

m6A regulators between the two clusters, showing that

YTHDC2 and RBMX displayed higher expression levels in

clusterA than in clusterB. WTAP, RBM15, YTHDC1, and

HNRNPC showed lower expression levels in clusterA, while

CBLL1 showed no significant differences between the two

clusters (Figures 5E,F). A total of 87 m6A-related DEGs were

selected between the two m6A patterns.

Enrichment analysis of screening
differential genes between patterns

GO enrichment analysis and GSEA were performed to

explore the related pathways involved in m6A-related DEGs

in patients with epilepsy. The results showed that the mainly

centralized pathways were “positive regulation of cytokine

production” in Biological Process (BP), “tertiary granule

lumen” in Cellular Component (CC), and “immune receptor

activity” in Molecular Function (MF) (Figure 6A). Moreover, the

results for GSEA suggested that several pathways were

dynamically enriched in the m6A cluster A compared to those

FIGURE 2
Linear regression analyses shows the correlation between one eraser gene and six writer genes in epilepsy (A–F). Eraser gene: ALKBH5. Writer
genes: CBLL1, METTL3, METTL14, RBM15, RBM15B, and WTAP.
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in the m6A cluster B, including base excision repair, citrate cycle,

TCA cycle, and intestinal immune network for IGA production.

(Figure 6B), while axon guidance, chemokine signaling pathway,

cytokine-cytokine receptor interaction, notch signaling pathway,

renal cell carcinoma, and type II diabetes mellitus were enriched

in the m6A cluster B (Figure 6C). The enrichment results of GO

and GSEA suggested that these differential genes are closely

related to immune function, cell death, and glycometabolism.

Identification of genotyping of subtype
signatures for the m6A gene by the
consensus clustering method

We divided the patients with epilepsy into different genomic

subtypes based on the 87 m6A-related DEGs into gene clusterA

and gene clusterB and visualized their expression between these

groups in the heatmap (Figure 7A). This grouping method was

consistent with the sectionalization of m6A patterns (Figures

7B–D). A boxplot was also drawn to show the differential

expression of the seven significant m6A regulators between

the two gene clusters, which revealed that the expression of

YTHDC2 and RBMX were higher in gene clusterA, while WTAP

and YTHDC1 were expressed at lower levels (Figure 7E).

Calculation of the abundance of immune
cells and the difference between m6A and
gene clusters

Next, ssGSEA was applied to calculate the abundance of

immune cells in patients with epilepsy. The results showed that

the number of immune cells was different between m6A clusters

(Figure 8A) and gene clusters (Figure 8B). According to the

expression of the seven significant m6A regulators and the

abundance of immune cells, the correlation between them was

analyzed and displayed in Figure 8C, which revealed that WTAP

and RBMX were distinctly correlated with numerous immune

cells. We also found that both genes tended to show an

antagonistic relationship, which is shown more clearly in the

boxplots (Figures 8D,E).

Differences in cuproptosis-, pyroptosis-,
and ferroptosis-related genes between
m6A clusters and gene clusters

The results of enrichment analysis implied a difference in cell

death regulation between m6A clusters, and consequently, a

more detailed level of verification was actualized. The results

FIGURE 3
Construction of Random forest (RF) model. (A) The residual distribution of the RF and SVM model. (B) Reverse cumulative distribution of the
residual of the RF and SVM model. (C) Receiver Operating Characteristic (ROC) curves verifying the accuracy of the RF and SVM model. (D)
Correlation between the error and number of trees of non-epilepsy individuals, patients with epilepsy, and both. (E) The score of the importance of
seven significant m6A regulators using the RF model (importance >2).
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FIGURE 4
Construction and benefit prediction of the nomogram model. (A) Nomogram plotted to predict the occurrence of epilepsy based on seven
significant m6A regulators. (B) Calibration curve of the nomogram showing the consistency between the predicted and true occurrence of epilepsy.
(C) Analysis of whether the nomogram model is beneficial to patients with epilepsy. (D) Clinical impact curve to show the clinical impact of the
nomogram model.

FIGURE 5
Consensus clustering of the significant RNA N6-methyladenosine (m6A) regulators in epilepsy. (A) Consensus score matrix of patients with
epilepsy for k = 2. (B) Correlation between cumulative distribution functions. (C) Relative change in the area under the CDF curve for k = 2–9. (D)
Principal component analysis for the expression profiles of the significant m6A regulators between the two m6A patterns. (E) Heatmap of seven
significant m6A regulators between m6Acluster A and m6Acluster (B) (F) Differential expression of the seven significant m6A regulators
between m6Acluster A and m6AclusterB. *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 6
Enrichment analysis of gene expression in samples. (A)Graph showing the Gene Ontology (GO) analysis of the related pathways underlying the
effect of the 87m6A-related differentially expressed genes (DEGs) in patients with epilepsy. (B,C)Gene Set Enrichment Analysis (GSEA) to predict the
pathway of DEGs affecting the occurrence and progression of epilepsy (p < 0.05).

FIGURE 7
Consensus clustering of the 87 RNA N6-methyladenosine (m6A)-related differentially expressed genes (DEGs) in epilepsy, ILogFCI>0.35,
p-value<0.05. (A) Expression heatmap of the 87 m6A-related DEGs between gene clusterA and gene clusterB. (B–D) Consensus matrix of k = 2, as
well as the CDF curve and relative change in the area under the CDF curve for k = 2–9 (E) Differential expression of seven significant m6A regulators
between gene cluster A and gene cluster (B) *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 8
Immune characteristics between m6A and gene clusters. (A,B) Radar plot showing the 23 types of immune cells differing between m6A and
gene clusters. (C) The correlation between the abundance of immune cells and seven significant m6A regulators. (D–E) Immune infiltration of the
differential expression group of RBMX and WTAP. *p < 0.01, **p < 0.001, ***p < 0.0001.

FIGURE 9
Correlation between the expression of cuproptosis, pyroptosis, and ferroptosis in different m6A clusters and gene clusters in epilepsy patients.
The difference of expression of cuproptosis in different m6A clusters (A) and gene clusters (B). The same difference analysis of pyroptosis (C,D) and
ferroptosis (E), (F) *p < 0.01, **p < 0.001, ***p < 0.0001.
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showed that multiple cuproptosis-related genes had distinct

expression between m6A clusters and gene clusters, including

LIPT1, DLST, and PDHB (Figures 9A,B). Following the same

pathway, CASP4, CASP8, NLRP1, and PLCG1, included in the

pyroptosis-related genes, were also differentially expressed

(Figures 9C,D). Additionally, ACSL4, ALOX5, CARS, CS,

GSS, HMGCR, HSPB1, PTGS2, SAT1, FTH1, PEBP1, SQLE,

NFE2L2, and ACSF2 showed significant different expressions

between m6A and gene clusters as ferroptosis genes

(Figures 9E,F).

Metabolic correlation analysis in m6A and
gene clusters

We confirmed that tricarboxylic acid cycle (TAC)-, pyruvate

metabolism-, and type II diabetes-related genes were significantly

differentially expressed in patients with epilepsy and the healthy

group, and preliminarily verified that there was a certain

statistically significant correlation with the prognosis of

patients. Based on this, we analyzed the correlation between

TAC-related genes and m6A and gene clusters and found that

many vital genes in TAC, such as PCK2, PDHB, ACAT, ACAT,

ACSS1, MDH1, G1O1, LDHA, and AKRIB1, had significant

differences between both m6A and gene clusters (Figures 10A,B).

Using the same analysis model, we also found prominent

differences between clusters in pyruvate metabolism and type

II diabetes-related genes (Figures 10C–F). We further explored

the differences in the TAC and type II diabetes mellitus pathways

in clusters. The results indicated that the pathway of insulin

resistance was activated in m6A cluster B Supplementary Figure

S1A, while aerobic oxidation was inhibited in m6A cluster B in

Supplementary Figure S1B, showing that the m6A cluster B was

more likely to be associated with type II diabetes mellitus than the

m6A cluster A.

Correlation analysis between clinical
characteristics and m6A score

In this study, PCA algorithms were conducted to calculate

the m6A score for each sample as m6A patterns. Through the

extraction of clinical data from the GEO dataset (Supplementary

Table S1), we drew a clinical correlation heatmap related to the

m6A score by displaying the expression of seven significant m6A

regulators and analyzed its relationship with the m6A cluster,

gene cluster, age, sex, subtype, drug, and drug response (Figures

11A,B). The results confirmed that the m6A score between the

two distinct m6A patterns or m6A gene patterns was higher in

clusterB or gene cluster B than that in clusterA or gene clusterA

(Figures 11C,D). Moreover, the m6A scores were not statistically

significant under the influence of age, sex, and subtype (Figures

11E–G). Notably, a difference was also found between patients

who took valproic acid (VA) and other patients, including those

FIGURE 10
Analysis of the correlation between the different m6A and gene clusters in patients with epilepsy with the tricarboxylic acid cycle (TAO),
pyruvate metabolism, and type II diabetes. The difference in expression of tac-related genes in m6A clusters (A) and gene clusters (B), pyruvate
metabolism (C,D), and type II diabetes (E,F).*p < 0.01, **p < 0.001, ***p < 0.0001.
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FIGURE 11
Relationship between the signature risk scores and clinical factors. (A–B) Heatmaps for the expression of 7 significant m6A regulators in m6A
clusters and gene clusters with clinical features (age, gender, subtype, drug-response, and drug type). (C–I) The comparison of m6A score between
or among different teams. (J) Sankey diagram to show the relation ofm6A patterns, m6A-related DEGs patterns, Drug-response, andm6A score *p <
0.01, **p < 0.001, ***p < 0.0001.

FIGURE 12
IRNA expression of seven M6A-related genes were measured in primary epilepsy and healthy samples. RNA expression of HNRNPC, CBLL1,
WTAP, RBMX, RBM15, YTHDC2, and YTHDC1weremeasured in blood samples using qRT-PCR. p-values were calculated using a two-sided unpaired
Student’s t-test. *13 < 0.05 **p < 0.01.

Frontiers in Genetics frontiersin.org11

Liu et al. 10.3389/fgene.2022.1042543

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1042543


who took carbamazepine (CBZ), phenytoin (PHT), and no drug

treatment; however, the latter three groups of patients showed no

significant differences in terms of m6A score (Figure 11H).

Furthermore, in the samples with high pharmacodynamic

response, the m6A score was significantly lower than that of

the group without drugs or that with a poor drug response, which

preliminarily proves that the m6A score can be used to predict

the future pharmacodynamic response of patients with epilepsy

(Figure 11I). Finally, a Sankey diagram was drawn to confirm the

relationship between m6A patterns, m6A gene patterns, drug

response, and the patients’ m6A scores (Figure 11J).

Validation of m6A-Related genes by real-
time PCR

To validate the significant m6A regulator expression levels,

qRT-PCR was used to check the 16 clinical blood samples from

eight patients with epilepsy and eight epilepsy people. The qRT-

PCR results indicated that WTAP and YTHDC1 have higher

expression levels in patients with epilepsy, while HNRNPC was

expressed to a lower level, which is consistent with our integrated

analysis (Figure 12).We also checked the expression levels of M6A

related genes with the comparison of drug using (Supplementary

Figure S3) and provided other writer and eraser genes’ expression

condition (Supplementary Figure S2).

Discussion

Epilepsy is a disease caused by the abnormal discharge of

neurons (Manford, 2017). Recent research has shown that m6A

regulators participate in the occurrence and progression of

epilepsy, although their functional roles remain unclear

(Zhang et al., 2022). Therefore, we sought to investigate the

function of m6A regulators in epilepsy, as well as possible

molecular pathways that they participate in.

Firstly, we analyzed the expression of 17 m6A-related genes

extracted from a public dataset and found that seven of them

(HNRNPC, WTAP, RBM15, YTHDC1, YTHDC2, CBLL1, and

RBMX) were differentially expressed between patients with

epilepsy and healthy individuals. We then ranked the genes

by their importance through establishing an RF model. A

nomogram based on the seven genes was established to

predict the occurrence of epilepsy and was verified to be

beneficial to patients with epilepsy through the DCA curve.

However, due to the lack of genes in this data, only 17 m6A-

related genes were extracted. Heterogeneous nuclear

ribonucleoprotein C (HNRNPC), a nuclear RNA-binding

protein involved in pre-RNA processing (Liu et al., 2015),

has been shown to play an important role in alternative

splicing, cell cycle, and the invasion of cancer cells (Hu

et al., 2021). Moreover, Wilms tumor 1 associated protein

(WTAP), is a conserved protein in the cell nucleus as the

partner of Wilms tumor 1 (WT1) (Little et al., 2000), and

has been found to correlate with alternative splicing, cell cycle

regulation, and X-chromosome inactivation (Chen et al., 2019).

RNA binding motif protein 15 (RBM15), whose function is to

bind the m6A complex and recruit it to a unique RNA site, also

takes part in numerous regulations, including the proliferation

and migration of tumor cells, and macrophage infiltration

(Zeng et al., 2022). YTH domain containing 1 (YTHDC1), a

gene that can bind to m6A-modified RNAs and facilitate the

selection of splice site (Xiao et al., 2016), and YTH domain

containing 2 (YTHDC2), which is involved in the regulation of

mRNA decay (Lin et al., 2017), are members of the YTH family,

and play a crucial role in the phase-shift of mitosis and meiosis

with different binding affinities of m6A (He et al., 2021). Cbl

Proto-Oncogene Like 1 (CBLL1), an E3 ubiquitin ligase with a

RING-finger domain (Huang et al., 2020), was found to have an

upper expression in non-small-cell lung cancer tissues and was

identified to be involved in the cell cycle and colony formation.

RNA binding motif protein, X-linked (RBMX), also known as

hnRNPG, has recently been rediscovered as participating in DNA

damage repair (Zheng et al., 2020), while the absence of this gene

can lead to aberrant activation of the p53 pathway (Cai et al., 2021).

According to numerous studies, we found that the seven genes

have an apparent relationship with the cell cycle, as well as the

migration and progression of tumor cells. Unfortunately, few

reports have evaluated the relationship between these seven

genes and epilepsy. It is hoped that this research will provide a

new direction for further research onm6A regulators and epilepsy.

Certain findings have presented the close relationship between

epilepsy and the immune system (Perucca et al., 2020). Some

scholars have proposed “autoimmune epilepsy” as a systematic

explanation (Husari and Dubey, 2019). Autoantibodies against

neuronal surface antigens play a substantial role in target proteins

(Geis et al., 2019), resulting in the excitement and damage of

synaptic function and plasticity. Simultaneously, nerve-specific

antibodies commonly associated with autoimmune epilepsy

include leucine-rich glioma inactivation protein (LGI1),

glutamic acid decarboxylase (GAD), and glutamate

decarboxylase 65 (GAD65) IgG (Karaaslan et al., 2017;

Nóbrega-Jr et al., 2018). According to our study, the differential

expression of m6A is closely related to the component differences

in immune cells, which also provides a basis for future studies of

the relationship between m6A and autoimmune epilepsy.

Neuron loss and degeneration are characteristic pathological

changes of epilepsy (Farrell et al., 2017; Becker, 2018), which have

been verified in animal models (Li et al., 2021); however, whether

these characteristic or non-characteristic neuronal changes and

death are associated with programmed cell death remains

unknown. Here, we analyzed the correlation of several unique

cell death modes, such as cuproptosis, pyroptosis, and

ferroptosis, and concluded that in the study of differences

caused by m6A and gene grouping there is a strong
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correlation between iron death and epilepsy. Finally, diabetes has

also been identified as a high-risk factor for epilepsy

(Marcovecchio et al., 2015; Shlobin and Sander, 2020).

Therefore, we also conducted an analysis on metabolism. The

enrichment results and grouping studies confirmed a close

relationship between the TAC, pyruvate metabolism, and type

II diabetes, indicating that cluster B may be resistant to insulin

and glycometabolism disorder. Frye et al., 2018.

Conclusion

In this study, seven candidatem6A regulators were selected and a

nomogram model was established to predict the prevalence of

epilepsy. We identified two m6A patterns and found one may be

related to immune epilepsy. A clinical correlation heatmap was

drawn and found a unique association between m6A gene

clustering and drug response. Through enrichment analysis, the

exact association between m6A gene clustering and ferroptosis

and glucose metabolism was preliminarily found. By analyzing

pathways of glucose metabolism, we found that cluster B may be

related to type II diabetes. Taken together, these results show that

m6A-related genesmay regulate the immunologic process, cell death,

drug-response, and glucosemetabolism in patients with epilepsy. The

detection of RNA content also confirmed the difference in thesem6A

genes between patients with epilepsy and healthy individuals.
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