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Genomic sequencemutations can be pathogenic in both germline and somatic cells.
Several authors have observed that often the same genes are involved in cancer
whenmutated in somatic cells and in genetic diseaseswhenmutated in the germline.
Recent advances in high-throughput sequencing techniques have provided us with
large databases of both types of mutations, allowing us to investigate this issue in a
systematic way. Hence, we applied a machine learning based framework to this
problem, comparing multiple models. The models achieved significant predictive
power as shown by both cross-validation and their application to recently discovered
gene/phenotype associations not used for training. We found that genes
characterized by high frequency of somatic mutations in the most common
cancers and ancient evolutionary age are most likely to be involved in abnormal
phenotypes and diseases. These results suggest that the combination of tolerance
for mutations at the cell viability level (measured by the frequency of somatic
mutations in cancer) and functional relevance (demonstrated by evolutionary
conservation) are the main predictors of disease genes. Our results thus confirm
the deep relationship between pathogenic mutations in somatic and germline cells,
provide new insight into the common origin of cancer and genetic diseases, and can
be used to improve the identification of new disease genes.
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1 Introduction

Many diseases, both rare and common, are caused or favored by mutations in the germline
genome. Even for monogenic diseases, identifying the causative mutation is a difficult problem,
since every individual typically carries many loss-of-function mutations that are compatible
with a normal phenotype (MacArthur and Tyler-Smith, 2010). Several approaches have been
developed to prioritize variants and genes, most of which are based on combining information
about the predicted effect of the variants, their frequency in the human genome, and the known
or predicted function of the affected gene, as reviewed in (Moreau and Tranchevent, 2012;
Eilbeck et al., 2017; Zolotareva and Kleine, 2019).

Cancer is also a disease of the genome, since in most cases it is initiated by mutations
occurring in somatic cells, leading to uncontrolled proliferation and eventually to metastatic
invasion of other tissues. It is thus natural to ask to what extent the same mutations can be
associated to cancer and genetic diseases when occurring respectively in somatic or germline
cells. Indeed many cases are known of genes involved in both types of diseases: for example
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rasopathies (Rauen, 2013) are a family of developmental diseases
caused by germline mutations in genes of the Ras/MAPK pathway,
which is also recurrently mutated in many cancer types (Stephen et al.,
2014). This observation extends to other cancer related genes, such as
ATRX and KDM5C involved in X-linked mental disability (Gibbons
et al., 1995), KMT2D and KDM6A in Kabuki syndrome (Ng et al.,
2010; Lederer et al., 2012), SQSTM1 in Paget disease (Ralston and
Albagha, 2014), and DMNT3A in Tatton-Brown-Rahman syndrome
(Tatton-Brown et al., 2014), while mutations of chromatin remodelers
play crucial roles in both cancer and neurodevelopmental disorders
(Ronan et al., 2013). Recently, a significant overlap was found between
285 newly identified genes associated to developmental delay and

cancer drivers (Kaplanis et al., 2020), and cancer-driving mutations
were found to be enriched in genomic regions intolerant of variation
(Vitsios et al., 2022). Here, we set out to investigate systematically the
extent to which the mutational spectrum of cancer and that of genetic
disorders overlap.

Recent development in sequencing technologies allow the
determination of mutations in patients in a fast and cost-effective
way–especially when the sequencing is limited to exons–so that
sequencing is now routinely used as a diagnostic and prognostic
tool in both genetic diseases and cancer. These developments have
also allowed the creation of large databases of mutations including
many thousands of individuals, providing us with the means to

FIGURE 1
Schematic representation of the procedure adopted in this work. The total number of somatic mutations (TSM) profiled in large cancer datasets (TCGA)
were used, together with gene-phenotype associations obtained from the Human Phenotype Ontology (HPO), and several potential confounders of their
association, including gene evolutionary age, genomic factors and epigenomic features. Statistical analysis (multivariable logistic regression) was used to
establish TSM as significant and independent predictor of genes involved in abnormal phenotypes (IPA). In addition, several machine learning algorithms
were trained to predict IPA from the same set of features. The best performing paradigm was chosen and trained to generate independent predictive models
for multiple phenotypes. The predictions for phenotypes associated to any disease were aggregated to perform disease gene prioritization.
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investigate the relationship between somatic and germline pathogenic
mutations in a systematic and statistically controlled way.

We thus decided to investigate whether patterns of somatic
mutations detected in cancer samples contain information that can
be used to predict the involvement of genes in genetic diseases. We
chose to tackle the issue in a statistical learning framework, that is to
reframe the question as whether it is possible to predict the
involvement of a gene in a genetic disease (or, more generally, an
abnormal phenotype due to germline mutations) using the frequency
of its somatic mutations in a set of common cancers. In this way we
can take advantage of statistical methods to accurately quantify the
predictive power of the model, and thus the extent of the overlap
between the genetics of cancer and of congenital diseases (Figure 1).

2 Materials and methods

2.1 Gene-phenotype associations

Gene-phenotype associations were obtained from the Human
Phenotype Ontology (HPO) (Köhler et al., 2021) web site (release
2020/06/08 for the analysis of “phenotypic abnormality”; 2022/06/
11 for the validation analysis, the specific phenotypes, and the disease
gene prediction model) together with the ontology graph. We
considered a gene associated to a phenotype when it was directly
associated to the phenotype itself or to any of its descendants in the
HPO. All associations to the HPO term “Neoplasm” (HP:0002664)
and to all its descendants were removed before expanding the gene
annotations to HPO ancestors. Therefore, for example, a gene
associated to “Glioma” was not considered associated to
“Abnormal nervous system morphology”, unless the same gene was
also associated to another descendant of “Abnormal nervous system
morphology”, not descending from “Neoplasm”.

2.2 Somatic mutations in cancer

The frequency of cancer somatic mutations of a gene was obtained
from the data generated by the Cancer Genome Atlas (TCGA)
program, and was defined as the number of patients with one or
more somatic mutations in the gene, classified as Frame_Shift_Del,
Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense_Mutation,
Non-sense_Mutation, Silent, Splice_Site, or Translation_Start_Site.
Protein-changing mutations were defined as those not classified as
Silent. Mutation data were obtained from the Firehose repository
(https://gdac.broadinstitute.org/).

2.3 Gene evolutionary age

The evolutionary age of each gene, expressed as the branch of the
tree of life where the gene appeared, was obtained from the
Supplementary Material of (Neme and Tautz, 2013) and was used
in regression either as a numerical variable assuming integer values
between 1 and 20 or as a 20-level categorical variable.

2.4 Genomic and epigenomic features

The following genomic and epigenomic features (a total of
81 variables associated to each gene) were computed for each gene
and used in the predictive models.

• Coding sequence length (one variable): from UCSC known
genes, genome version hg19

• DNAse accessibility (two variables, gene-level and coding
sequence [CDS]-level): fraction of the gene region (or the
CDS) that overlaps a DNAse I hypersensitive site (DHS) in
the “clustered” Encode dataset

• Histone marks (six variables: H3k4me1, H3k4me3, and
H3k27ac at the gene and CDS levels): fraction of the gene
region (or the CDS) that overlaps a peak of the histone
mark. The peaks were obtained for the GM12878, H1-hESC,
HSMM, HUVEK, K562, NHEK, and NHLF cell lines from the
Encode broad peaks. For each histone mark, peaks from all cell
lines were merged.

• Lamin B1 association (one variable): fraction of the gene region
overlapping lamin B1-associated domains in Tig3 cells from the
corresponding UCSC track

• Replication timing (one variable): replication timing by repli-
chip from ENCODE/FSU averaged over the gene region for the
BG02ES, GM06990, H1-hESC, H7-hESC, H9ES, HeLaS3,
IMR90, and iPS_hFib2_iPS4 cell lines, then averaged over the
cell lines

• Nucleosome positioning (two variables, gene-level and CDS-
level): nucleosome signal from GM12878 and K562 cells,
averaged over the gene (or the CDS) region, then averaged
between the 2 cell lines

• Transcription (one variable): pooled RNA-seq signal for the
GM12878, H1-hESC, HSMM, HUVEC, K562, NHEK, and
NHLF cell lines, averaged over the gene region and then over
the cell lines

• Repeat (two variables, gene-level and CDS-level): fraction of the
gene region (or the CDS) that overlaps a simple repeat according
to the corresponding UCSC track

• Recombination rate (one variable): recombination rate from the
corresponding UCSC track averaged over the gene region

• Trinucleotide frequencies (64 variables): frequency of each
trinucleotide in the CDS. The CDS sequence was obtained
from the UCSC known genes, genome version hg19, in the
gene strand

2.5 Disease models and genes

Evolutionary age, cancer somatic mutations, and the genomic/
epigenomic features could be retrieved for a total of 18,170 protein-
coding genes, which were considered in the logistic regression and
machine learning analyses. OMIM and Orphanet datasets were
retrieved from https://hpo.jax.org/app/download/annotation. Gene
Ontology Term Enrichment was performed using g:Profiler
(Raudvere et al., 2019), with default parameters.
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2.6 Logistic regression

We defined the involvement in phenotypic abnormality (IPA)
of a gene as the binary variable taking value one if the gene is
associated to the HPO term “phenotypic abnormality” (HP:
0000118) or any of its ontology descendants, after removal of
the neoplasm-associated genes described above. We used
univariable and multivariable logistic regression to identify the
significant predictors of IPA. All numeric non-binary features were
rescaled to zero mean and unit standard deviation prior to fitting
the logistic model. For multivariable regression, the 80 genomic/
epigenomic features (after the removal of the frequency of the
“TTT” trinucleotide which is collinear to the other trinucleotide
frequencies) were transformed into their principal components. All
principal components were retained in the model.

2.7 Machine learning

Six classification paradigms were tested: logistic regression,
random forest, support vector machine, AdaBoost, histogram
gradient boosting, and Gaussian naïve Bayes. Hyperparameters
were tuned using nested cross-validation. Specifically, the dataset
was first split into 10 outer-folds, used in turn as test sets. The
remaining nine folds were used to tune the hyperparameters
through grid search, by dividing them into three inner folds that
were used in turn as the validation set. Balancing through random
oversampling was performed within the training of the models by
cross-validation using the imbalanced-learn package and native scikit-
learn functionality. The performance of the model with the optimal
hyperparameters was then evaluated by computing the area under the
receiver operating characteristic curve (AUROC) on the test set, and
the average AUROC across the 10 outer folds was the performance
measure. The description of hyperparameter’s space is reported in
Supplementary Table S1.

3 Results

3.1 The frequency of somatic mutations in
cancer predicts the involvement in abnormal
phenotypes

In order to assess whether the frequency of cancer somatic
mutations of a gene is a predictor of its involvement in phenotypic
abnormality (IPA), we first retrieved the associations between genes
and phenotypes from the Human Phenotype Ontology (HPO) (Köhler
et al., 2021). For each (gene, phenotype) pair we thus defined a binary
variable taking value 1 (0) if the gene is (is not) associated to the
phenotype (or to any of its descendants in the ontology). This binary
variable was used as the response in the logistic regression and
machine learning analyses described below. All cancer-related
phenotypes (i.e. the HPO term “Neoplasm” and all its descendants)
and the related gene associations were excluded from the analysis,
since for these phenotypes an overlap between the relevant somatic
and germline mutations is expected. Here, we are specifically
interested in investigating the relationship between somatic
mutations in cancer and non-cancer-related abnormal phenotypes
and diseases.

The independent variable of interest is the frequency of somatic
mutations of each gene in human tumors. These were obtained from
the TCGA research network (https://www.cancer.gov/tcga). For each
of the 33 tumor types and each protein-coding gene we extracted the
number of patients in which the gene was mutated, thus we associating
to each (gene, tumor) pair an integer number.

We first focused on the most general HPO term “phenotypic
abnormality”, and considered as the independent variable the number
of patients with somatic mutation in each gene, summed over all
TCGA tumor types (henceforth denoted by TSM - total somatic
mutations). Univariate logistic regression showed that TSM was
strongly and positively associated with IPA (OR 1.918, 95% CI
1.851-1.989, p < 2.2 · 10–16; the OR is computed in units of one
standard deviation). Figure 2A compares the TSM of genes involved
vs. not involved in phenotypic abnormalities according to the HPO.

Many factors could in principle confound this association, the
simplest example being the length of the gene sequence: Longer genes
have higher probability of undergoing mutations, leading to higher
probability of being somatically mutated in cancer, but also of
undergoing potentially damaging mutations in the germline. More
generally, all factors influencing the propensity of a gene to undergo a
mutation could explain the association between TSM and IPA. A less
obvious confounder is the evolutionary age of the gene, defined as the
node in the phylogenetic tree in which the gene first appeared, which
can be established for each human gene with phylostratigraphic
methods (Neme and Tautz, 2013). It has been shown that
evolutionarily older genes are more likely to be involved in genetic
diseases (Domazet-Loso and Tautz, 2008) and to carry cancer-relevant
mutations (Domazet-Loso and Tautz, 2010). Indeed we confirmed
that gene age was strongly and positively correlated with IPA
(Figure 2B).

We thus repeated the analysis while correcting for these factors.
We used as covariates the evolutionary age of each gene as evaluated in
(Neme and Tautz, 2013) and a set of 80 sequence- and epigenetic-
related variables (see Methods), including in particular trinucleotide
sequence composition, histone modifications, DNA accessibility,
recombination rate, and replication timing, all of which have been
shown to affect the propensity of a gene to accumulate mutations (see
e.g. (Stamatoyannopoulos et al., 2009; Michaelson et al., 2012;
Schuster-Böckler and Lehner, 2012; Sabarinathan et al., 2016;
Halldorsson et al., 2019; Li and Luscombe, 2020)). After
transforming the 80 genetic/epigenetic features into their principal
components (PCs) to avoid collinearity, we fitted a multivariable
logistic regression model to predict IPA from TSM, gene age, and
the 80 PCs, including the 18,170 genes for which all variables were
available. TSM and gene age were confirmed to be the strongest
predictors of disease involvement, and to be independent of each other
and of the PCs. The odds ratios and p-values of the top 10 predictors
are shown in Figure 2C. As the number of positive cases (4,134 genes
with IPA) is ~50 times larger than the number of independent
variables (82) used in the logistic model, we do not expect
significant overfitting. Indeed the area under the receiver operating
characteristic curve (AUROC) of the model was equal to 0.679, while
the average AUROC of a 10-fold cross-validated logistic regression
was 0.667 (95% CI 0.658-0.676).

This result was robust with respect to several alternative modeling
choices (Supplementary Figure S1): (a) considering gene age as a
categorical variable instead of a numerical one; (b) using as predictor
the rate of patients with a somatic mutation in the gene in each tumor
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type, averaged over the tumor types (this weighs all tumor types
equally irrespective of the number of samples included in the TCGA);
(c) considering only somatic mutations predicted to alter the protein
sequence.

Importantly, TSM remained a significant and independent
predictor of IPA when the status of a gene as cancer driver
(derived from (Martincorena et al., 2017) was included as a further
covariate (Supplementary Figure S2). Thus the frequency with which a
gene is somatically mutated in cancer is associated to IPA
independently of whether such mutations contribute to
oncogenesis. It should be noted that driver status was the strongest

predictor of IPA in this model, in agreement with the overlap between
cancer drivers and disease genes found in previous studies (Kaplanis
et al., 2020; Vitsios et al., 2022).

3.2 A machine-learning predictor of genes
associated to abnormal phenotypes

The results of the logistic regression suggest that TSM and gene
age, combined with genomic and epigenomic features, could be used
to build a predictor of phenotypic relevance. Such a predictor would

FIGURE 2
Predictors of involvement in phenotypic abnormality (A): Number of cancer samples with somatic mutations in genes involved or not involved in
phenotypic abnormalities according to theHuman PhenotypeOntology. (B): Fraction of genes involved in phenotypic abnormalities as a function of gene age.
The x-axis shows the branching of the tree of life at which the gene appeared according to the reconstruction of Neme and Tautz (2013). (C): Odds ratios and
p-values of each predictor of involvement in phenotypic abnormality in a multivariable logistic regression with cancer somatic mutations, gene age, and
the principal components of 80 genomic/epigenomic features. The top 10 predictors by p-value are shown. For each PC, the three top features by loading are
shown. CDS, coding sequence; PC, principal component; trinucleotides refer to their respective frequency in the coding sequence.
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be, in particular, useful for the prioritization of variants found in the
exome sequencing of probands affected by genetic diseases, especially
when combined with other prioritization methods based on allele
frequencies or pathway annotation.

While the logistic regression approach used above is suitable to
assess the statistical significance and independence of the features,
machine-learning tools might provide better predictive performance,
in particular by bypassing the constraint of linearity. We thus tested,
by cross-validation, the performance of several tools in predicting IPA
from our features, on the same 18,170 genes used in logistic regression.
We eventually selected random forests, which outperformed logistic
regression, support vector machines, AdaBoost, histogram gradient
boosting, and Gaussian naïve Bayes (see Supplementary Table S2 for
the performance comparison and Supplementary Table S1 for model
parameters).

In predicting IPA from our 83 features, a random forest model
achieved an AUROC of 0.688 (95% CI 0.682-0.694) (mean AUROC
from ten-fold cross-validation) and an area under the precision-recall
curve (AUPRC) of 0.382 (95% CI 0.378-0.397; gain over baseline
AUPRC 67%). The ROC and PRC curves of the ten cross-validation
folds are shown in Figure 3. Feature importance analysis confirmed
that the most predictive features were TSM and gene age
(Supplementary Figure S3). TSM and gene age were among the top
predictors by importance in all models with the exception of the worst
performing one, namely Gaussian naïve Bayes (see Supplementary
Table S2).

To determine whether our model was able to predict recently
discovered associations between genes and abnormal phenotypes, we
took advantage of the fact that a sizable number of genes (435) were
associated to abnormal phenotypes between 2020 and 2022, as shown
by a comparison of the June 2020 release of the HPO (used for training
our models) and the latest release (June 2022). To create a dataset for
this test we removed from the 2020 dataset these 435 genes and also
435 randomly chosen genes that were not associated with abnormal
phenotypes in either release of the HPO, thus obtaining a balanced test
set of 870 genes. The remaining 17,300 were used to train a random
forest model. When used on the test set, this model obtained an

AUROC of 0.679 (p < 2.2 · 10–16), very close to the average AUROC of
0.688 obtained from the cross-validation of the original model. Similar
results were obtained by removing a larger fraction of negative cases
from the original dataset (1,542 genes) so as to obtain a test set with a
fraction of positives similar to the real one (22%). The AUROC in this
case was 0.683 (p < 2.2 · 10–16). These results show that the model is
indeed able to predict new gene-phenotype associations.

These results show that TSM and gene age, combined with
genomic/epigenomic features, can be used in a machine-learning
framework to build a strongly significant predictor of IPA. The
practical use we envision for this predictor is the prioritization of
variants found in exome sequencing assays of probands of genetic
diseases whose causal mutation is unknown. It could be used in
combination with predictors based, for example, on measures of
selection based on allele frequencies in human populations, such as
(Karczewski et al., 2020); and with those based on functional
annotation, such as (Robinson et al., 2014).

However, the predictor described above was trained on genes
involved in a generic phenotypic abnormality, while predictors for
specific phenotypes would be more useful in the context of variant
prioritization. Thus we built a separate random forest model for each
HPO term, after discarding the terms with less than 100 associated
genes to limit the risk of overfitting, thus training a total of
1,361 models. These models achieved a median cross-validated
AUROC of 0.682. The baseline value of the AUPRC (i.e., that
expected from a random predictor) is equal to the fraction of
positive cases, which varies widely among the phenotypes:
Therefore we computed for each phenotype the fractional gain
over baseline AUPRC, finding a median gain of 122%.

To show the effectiveness of this approach we took advantage of a
recently published catalog of genes linked to Autism Spectrum
Disorder (Fu et al., 2022). There, two gene lists are defined with
different stringency criteria (ASD72, more stringent, and ASD185, less
stringent). For each list we considered genes that were not included in
our training set for phenotype “autistic behavior” (HP:0000729) and
analyzed the distribution of the rank-transformed probabilities of
being associated to the phenotype according to the random forest

FIGURE 3
Receiver operating characteristic (A) and precision-recall (B) curves of ten cross-validated random forest models for the prediction of involvement in
phenotypic abnormality from total somatic mutations, gene age, and genomic/epigenomic features.

Frontiers in Genetics frontiersin.org06

Draetta et al. 10.3389/fgene.2022.1045301

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1045301


model (Supplementary Figure S4). We found distributions highly
skewed to low ranks (i.e. more significant) and significantly
different from the uniform distribution of ranks of all remaining
genes (p = 1.173 · 10–12 for ASD72 and p = 1.261 · 10–34 for ASD185,
Mann-Whitney test).

These models for specific phenotypes were then used to build
predictors for genetic diseases, which are often characterized by
multiple phenotypes, as described below.

3.3 Combining phenotypes to predict disease
genes

Genetic diseases are often characterized by multiple abnormal
phenotypes. We reasoned that a promising strategy to predict the
causal gene of such a disease would be to combine the predictors of
each of the relevant phenotypes. To this end, we collected data from
OMIM (Hamosh et al., 2005) and Orphanet (www.orpha.net). In both
cases, we extracted the list of unique HPO phenotypes associated to
each disease. Phenotypes for which we did not generate a model were
mapped to the closest scored node in the HPO ontology. We then
rank-transformed the model probabilities ordering these in ascending
order, so that the lower the rank value the stronger the gene-
phenotype association. Lastly, we computed the disease scores by
taking the geometric mean of the ranks of the associated phenotypes.

We evaluated the performance of such disease score by comparing
its distribution to 100 sets of scores calculated by randomizing the
gene-disease associations. The disease scores were strongly skewed to
low values, with a statistically significant enrichment for scores below
0.15 (Figure 4).

In order to understand the functional implications of our scoring
system, we performed enrichment analysis on the genes included in

each score bin. We found that lower scores are associated to pathways
related to tissue and organ development, while higher scores are
weakly associated to immune-related pathways (Supplementary
Figures S5, S6), indicating that our strategy is particularly well-
suited to prioritize genes associated to developmental syndromes
affecting multiple systems.

4 Discussion

We have shown that the frequency of somatic mutations observed in
cancer patients is strongly associated with the involvement of a gene in
genetic diseases when mutated in the germline, and is independent from
other predictors such as gene age and several genomic and epigenomic
features. This observation was used to build machine-learning tools to
predict the causal gene of phenotypic abnormalities and genetic diseases.
We believe these tools will be useful in interpreting the results of exome
sequencing for genetic diseases of unknown causal genes.

Obviously, mutations causing the phenotypic abnormalities that
are observed in human subjects must have a phenotypic effect on the
organism but not be lethal at the cellular level. The probability that a
mutation in a gene will cause an abnormal phenotype observed in an
individual is positively correlated with: (1) the probability that a
mutation will occur within the gene, (2) the probability that such
mutation will have an effect on the phenotype; and (3) the probability
that a mutation in the gene will not be lethal at the cellular level. Each
of these is directly reflected in one of the ingredients of our model.
Indeed the genomic and epigenomic factors we introduced are
precisely those that are known to influence mutability (Koren
et al., 2014; Monroe et al., 2022), while ancient evolutionary age
can be considered as a proxy for functional relevance, and hence
phenotypic effect.

FIGURE 4
Distribution of disease scores. The histograms represent the distribution of disease scores for gene-disease associations in OMIM (A) and Orphanet (B).
The combined score of a gene is defined as the geometric mean of the rank-transformed scores of the gene for all phenotypes associated to the disease. In
the figure, combined score values are binned into 20 intervals (x-axis). The black dots indicate the distribution of the combined score obtained after
100 randomizations of the gene-disease associations. Red triangles mark the bins having a count higher than the one obtained after randomization with
p <0.01.
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The frequency of somatic mutations in cancer can be interpreted to
represent the compatibility of gene mutations with cellular viability. A
comprehensive study of patterns of somatic mutations in cancer
(Martincorena et al., 2017) demonstrated that driver mutations, which
confer an evolutionary advantage to cancer cells, represent a small
minority of the somatic mutations observed. Therefore, most observed
somatic mutations are presumably neutral or almost neutral in terms of
cancer evolution: However, of course, only those that are viable at the
cellular level will be observed. Large-scale cancer genome repositories can
thus be used to assess, for each gene, the probability that a mutation will
not be lethal for the cell that carries it, i.e. precisely the third factor
described above. Compared with CRISPR-based screening approaches,
such as that of (Wang et al., 2015), of gene essentiality, naturally occurring
somatic mutations in tumors are more relevant to our purpose because of
their in-vivo nature and because they assess the effect of point mutations
that do not necessarily lead to complete loss of function.

Therefore, the deep relationship we found between tumor somatic
mutations and genetic diseases is different and complementary to that
investigated in works, such as (Kaplanis et al., 2020; Vitsios et al.,
2022), which consider only driver mutations. While the relationship
between cancer-drivingmutations and genetic diseases is likely rooted
in gene function, the predictive power of total somatic mutations is
likely rooted in their ability to represent which mutations are
compatible with the survival of the cell, and hence can be observed
and have phenotypic effects in human subjects.

The main aim of this study was to point out that information
about the frequency of somatic mutations in cancer has significant
power in predicting the involvement of a gene in abnormal
phenotypes. More generally, our model only uses unbiased data
derived from genome-wide assays and, contrary to most disease
gene prediction approaches, does not use information about gene
function or frequency of germline mutations. We are not claiming our
model to be a stronger predictor of IPA than those based on such data,
and thus we did not compare the respective predictive performance. A
natural further development is thus the integration of information
about gene function and germline mutation frequency into a more
comprehensive model. Another limitation of the present study is that
the whole analysis was performed at the gene level: Extending it to the
level of individual variants is another possible avenue for future
development.

In conclusion, our results demonstrate how cancer genomics data
can contribute to the task of predicting genes involved in phenotypic
abnormalities, and thus potentially help in identifying disease-causing
mutations in genetic disorders.
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