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Since the first sequencing of the human genome, associated sequencing costs have
dramatically lowered, leading to an explosion of genomic data. This valuable data
should in theory be of huge benefit to the global community, although unfortunately
the benefits of these advances have not been widely distributed. Much of today’s
clinical-genomic data is siloed and inaccessible in adherence with strict governance
and privacy policies, with more than 97% of hospital data going unused, according to
one reference. Despite these challenges, there are promising efforts to make
clinical-genomic data accessible and useful without compromising security.
Specifically, federated data platforms are emerging as key resources to facilitate
secure data sharing without having to physically move the data from outside of its
organizational or jurisdictional boundaries. In this perspective, we summarize the
overarching progress in establishing federated data platforms, and highlight critical
considerations on how they should be managed to ensure patient and public trust.
These platforms are enabling global collaboration and improving representation of
underrepresented groups, since sequencing efforts have not prioritized diverse
population representation until recently. Federated data platforms, when
combined with advances in no-code technology, can be accessible to the
diverse end-users that make up the genomics workforce, and we discuss
potential strategies to develop sustainable business models so that the platforms
can continue to enable research long term. Although these platforms must be
carefully managed to ensure appropriate and ethical use, they are democratizing
access and insights to clinical-genomic data that will progress research and enable
impactful therapeutic findings.
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1 Introduction

Genomic technologies are rapidly advancing the integration of genomics into clinical care,
with evidence demonstrating their role in disease diagnosis, drug discovery and targeted
therapeutics (Green et al., 2020; Atutornu et al., 2022; Borle et al., 2022). Digital health records,
next generation sequencing, and artificial intelligence (AI) are also leading to an explosion of
health data (Asiimwe et al., 2021). As observed within research, increased sample size improves
the potential for discovery: genome wide association studies (GWAS) are prime examples,
where it has been shown that a 10-fold increase in sample size can lead to a 100-fold increase in
identified loci with significant disease associations (Visscher et al., 2017). Due to their sensitive
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nature, clinical, phenotypic and omics datasets are primarily distributed
and stored in siloed, inaccessible locations (Asiimwe et al., 2021; Garden,
2021); in a stark example, the World Economic Forum estimates that
97% of all hospital data goes untouched1.

Between nations there exists strict national regulatory frameworks
governing the movement of patient data and limiting transfer between
national jurisdictions, which poses a significant barrier when trying to
access international datasets (Mitchell et al., 2020). Adding to the
complexity of using such data to derive meaningful insights, it is well-
recognized and unfortunate that most genomic data does not represent
diverse populations. A lack of diverse representation in clinical-genomic
datasets ultimately limits the clinical utility of genetic findings as low
sample sizes are insufficiently powered to identify disease-causing variants
for specific populations (Atutornu et al., 2022; Lee et al., 2022).

Despite these challenges, there are ongoing efforts to increase the
useability of clinical, phenotypic and multi-omic data for diagnosing
and treating disease. Federated data platforms are emerging as means
to achieve data accessibility, useability and security while adhering to
governance and privacy regulations (Saunders et al., 2019; Blomberg
and Lauer, 2020; Nik-Zainal et al., 2022). In this perspective, we
explore how federated models for data access and analysis and end-to-
end platforms can help to facilitate genomic benefits sharing;
democratizing access to global data assets and insights facilitates
the linking of diverse datasets to improve representation. We
describe successful examples of how federation is being adopted
across research and healthcare settings and discuss ongoing
challenges and recommendations. Moving forward, it is imperative
to build upon these technologies to ensure breakthroughs in genomic
medicine for all. Safe and secure access to usable, diverse genomic data
is poised to rapidly progress research and benefit patients.

2 Overcoming secure data sharing via
federated platforms

2.1 Federated biomedical data platforms are
emerging worldwide

Federation, in its simplest terms, is a software process that allows
multiple databases to function as one. Federated architecture is a
technological blueprint that facilitates interoperability and
information sharing between autonomous, decentralized
organizations. Within a federated architecture, data will remain
within appropriate jurisdictional boundaries, while metadata are
centralized and searchable. This is an alternative to a model in
which data is moved or duplicated then centrally housed.
Federated architectures of individual organizations may be
connected together into a federated data platform, enabling data
access and computation for users across organizations. We
consider full federation to occur when both data and compute
access are federated over distributed compute and databases to
allow querying and joint analyses over the data (Chaterji et al.,
2019). However, there also exists the potential for partial federation
(I and II), when either compute access or data access are federated and

compute or databases are distributed (Table 1). This is distinct from
federated learning, which has tackled this problem in the context of
Machine Learning (ML) in healthcare—researchers can train machine
algorithms collaboratively on dispersed data, including health records,
without infringing on data governance legislations (Mandl and
Kohane, 2015; Stephens et al., 2015; De Fauw et al., 2018; Rieke
et al., 2020; Xu et al., 2021; Pati et al., 2022).

There is now an increasing prevalence of federated architectures to
connect large-scale health data (Saunders et al., 2019; Blomberg and Lauer,
2020; Thorogood et al., 2021; Nik-Zainal et al., 2022). Given the sensitive
nature of health data, it cannot be physically pooled ormoved for legal and
regulatory reasons. This poses a challenge for researchers who rely on
access and sufficient sample size to progress research. National genomic
programs are increasingly adopting platforms with federated architectures
to bring together distributed national datasets (Stark et al., 2019).
Australian Genomics is developing a federated repository of genomic
and phenotypic data to bridge the gap between its national health system
and state-funded genetic services (Stark et al., 2019). In Canada, each
province has its own health data privacy legislation such that data
generated in each province must follow provincial governance laws.
The Canadian Distributed Infrastructure for Genomics (CanDIG)
platform is tackling this with a fully distributed federated data model,
enabling federated querying and analysis while making sure that local data
governance laws are respected (Dursi et al., 2021).

Within Europe, initiatives such as ELIXIR are linking Europe’s leading
research organizations to more easily find, share and analyze data
(Saunders et al., 2019; Blomberg and Lauer, 2020). ELIXIR oversees
sub-initiatives including the European Genome Archive (EGA)
federated networks to enable access and sharing of genomic data.
ELIXIR is further participating in the Beyond 1 Million genomes
(B1MG)2, which aims to create a network of clinical and genomic data
across Europe. At a global level, the Common Infrastructure for National
Cohorts in Europe, Canada, and Africa (CINECA) project is working to
federate data between cohorts and across continents (Dursi et al., 2021).
Through employing federated architectures, each of these initiatives allow
organizations to store and manage their data locally while researchers
worldwide can access the data securely.

2.2 Important considerations in establishing
federated platforms

Federated analysis integrates with the architectures described above so
that disparate data can, once securely accessed, be analyzed in situ across
multiple sites. Establishing federated architectures requires that
computing environments, systems, devices and applications within and
across organizational, regional and national boundaries are all
interoperable—this means overcoming the differences in multiple
healthcare reporting systems, which frequently use different data
models and ontologies (Mulder et al., 2017; Stark et al., 2019). Health
data exchange architectures, application programming interfaces (APIs)
and standards can provide a common language and set of expectations to
enable interoperability between systems or devices so that authorized

1 World Economic Forum. 4 ways data is improving healthcare (2019). World
Economic Forum. https://www.weforum.org/agenda/2019/12/four-ways-
data-is-improving-healthcare/ [Accessed 27 July 2022].

2 Beyond One Million Genomes Project (2022) https://b1mg-project.eu/
[Accessed 13 December 2022].
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researchers can access and share data regardless of when or where it
originates (Thorogood et al., 2021)4.

International initiatives have come together to tackle the issue of
interoperability in federated platforms. The Global Alliance for
Genomics and Health (GA4GH) sets standards to promote the
international sharing of genomic and health-related data, in part by
setting interoperability standards and providing open-source APIs
(Thorogood et al., 2021). The GO FAIR initiative aims to implement
data principles in order to make it Findable, Accessible, Interoperable
and Reusable (FAIR)5 and the Observational Health Data Sciences
(OHDSI) community is developing open-source tools to implement a
common data model for combining disparate datasets6. The
importance of widespread interoperability is increasingly reflected
in the long-term strategy and funding of research institutes; in the US,
the National Institutes of Health (NIH) Cloud Platform
Interoperability Effort (NCPI)7 is establishing and implementing

guidelines and technical standards for a federated data ecosystem.
In the UK, the UK Research and Innovation program has recently
established the Data and Analytics Research Environments UK
(DARE UK) program8 to design and deliver a more coordinated
national data research infrastructure.

While data interoperability is hugely important for federated
collaborations, the data must be of a high quality. As federated data
platforms lower the barrier of access to data, there must be guidelines to
ensure that the data utilized in analysis is of acceptable quality to yield
reliable results. For example, low-quality sequencing reads are more likely
to inaccurately call variants, which can derail research efforts; within the
context of precision medicine efforts, this could even lead to inaccurate
diagnoses. There is now a breadth of literature highlighting the importance
of quality control within sequencing analysis (NCI-NHGRI Working
Group on Replication in Association Studies, 2007; Miyagawa et al.,
2008; Turner et al., 2011; DeLuca et al., 2012; Ma et al., 2019), with
organizations such as ENCODE9 offering guidelines for appropriate
sequencing coverage and quality controls. As federated data platforms
continue to expand, it will be important that administrative authorities
designate quality thresholds for data submission, and that these should be
published within the metadata catalogs for researchers.

With the ability to process immense datasets, computational
resources are an important consideration. The scale of distributed

TABLE 1 Levels of federation.

No federation Partial federation I (federated
learning)

Partial federation II Full federation

Mode of data access Mode of data access Mode of data access Mode of data access

• Manual access to different organizations
and analysis

• Results aggregation analysis is
centralized

• Federated data access, distributed
databases and joint analyses

• Federated data access

• Results are aggregated and sent back to a
central platform

Mode of compute access Mode of compute access Mode of compute access Model of compute access

• Centralized compute; results aggregation
analysis

• Federated compute access, distributed
compute

• Centralized (via on-demand streaming) • Federated compute access, distributed
compute and databases, joint querying
over distributed data and joint analysis

Requirements Requirements Requirements Requirements

• Manual intervention • Requires a central, unified and federated
platform and federated access for
compute (i.e., via API)

• Requires a central unified and federated
platform and federated access for data
queries and retrieval (i.e., via API,
database queries)

• Requires a central, unified and
federated platform or cleanrooms
across each network in the federation• Containerized/portable, versioned and

FAIR tools/algorithms that humans can
run in different environments

Common use case Common use case Common use case Common use case

• Optimal when federated access to
organizations is not permitted, e.g., a
researcher downloads publically available
WGS data from various sources and
analyzes it together in-house

• Optimal when security and governance
clearance is provided and federated
linkage is permitted, e.g., the
Trustworthy Federated Data Analytics
consortium that enables federated data
learning on disparate clinical imaging3

• Optimal when security and governance
clearance is provided and federated
linkage is permitted, e.g., ELIXIR
federated data platform to connect
Europe’s data sources Saunders et al.
(2019)

• Optimal when security and governance
clearance is provided and federated
linkage is allowed (if a federated platform
does not exist, a cleanroom is permitted),
e.g., Lifebit federated technology bridging
the trusted research environments of
biobanks and national genomics
initiatives to enable joint querying and
analysis Nik-Zainal et al. (2022)

3 Trustworthy Federated Data Analytics (TFDA) (2022). https://tfda.hmsp.
center/ [Accessed 5 December 2022].

4 Healthcare Information and Management Systems Society (2020).
Interoperability in Healthcare. https://www.himss.org/resources/
interoperability-healthcare [Accessed 16 August 2022].

5 GO FAIR Initiative (2017). TheGO FAIR Initiative. https://www.go-fair.org/go-
fair-initiative/ [Accessed 16 August 2022].

6 Observational Health Data Sciences and Informatics (2022). OMOP
Common Data Model. https://www.ohdsi.org/data-standardization/the-
common-data-model/ [Accessed 16 August 2022].

7 NIH Cloud Platform Interoperability Effort (2022) https://datascience.nih.
gov/nih-cloud-platform-interoperability-effort [Accessed 16 August 2022].

8 Data and Analytics Research Environments UK (2021). https://dareuk.org.uk/
about/ [Accessed 16 August 2022].

9 ENCODE. (2022) https://www.encodeproject.org/ [Accessed 13 December
2022].
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multi-omics and clinical datasets available today has brought an
increasing shift towards commercial cloud infrastructure. The “elastic”
nature of cloud computing means researchers only pay for what they
need. Further, researchers can create near identical hardware and software
setups remotely, regardless of whether they are near a data center
(Langmead and Nellore, 2018). Cloud computing builds capacity for
state-of-the-art capabilities in encryption, firewalls and monitoring.
Despite this, there is still reticence towards adopting cloud computing
for genomic data in some jurisdictions; it is not fully clear how existing
privacy and data protection laws apply in the genomics context and as
such there is a lack of community consensus on best practices (Dove et al.,
2015). Defining standards and best practices, in addition to cloud
companies providing transparency of security and technology
infrastructure, will be essential to build trust across the industry and
enable more organizations to harness the benefits of cloud computing.

Despite these advances, any computing environment that involves
sensitive patient data is not without risk (Melis et al., 2018; Nasr et al.,
2018). While data remains locally for federated architectures, there is
still a component that is exchanged, such as intermediate ML models
or aggregated results for federated learning and analysis, respectively.
With federated learning, ML models can be susceptible to security
risks such as inference attacks, feature leakage and data poisoning,
which can result in the leakage of unintended information about
participants’ training data (Melis et al., 2018; Nasr et al., 2018).
Ongoing work is needed to investigate how parameters can be
further protected and how the tradeoff between the privacy and
security-level versus system performance and cost should be
managed (Popovic, 2017). Likewise, federated models for data
access introduce unique security risks, such as when new users or
code are introduced into a data controller’s computing environment
(Popovic, 2017). Careful logging and auditing of platform and user
activity, as well as data/code export controls (e.g., airlocks10), are
needed to monitor these risks.

2.3 Federation to promote global
collaboration and representation in genomic
datasets

To improve disease diagnostic capabilities for the greatest number
of people, larger and more diverse cohorts are needed (Zoch et al.,
2021). By facilitating international cooperation via secure data
unification, federation can support more diverse population
representation in genomic datasets (Vesteghem et al., 2020;
Asiimwe et al., 2021; Garden, 2021; Powell, 2021; Zoch et al., 2021;
Lee et al., 2022). In academic research, initiatives like Matchmaker
Exchange (MME) are demonstrating how distributed datasets of
genotypes and rare phenotypes can be combined using a federated
network to facilitate rapid, secure data sharing to achieve faster
diagnoses (Philippakis et al., 2015; Zoch et al., 2021). The Human
Heredity and Health in Africa (H3Africa) initiative is promoting intra-
continental collaborations to establish a network of African-based
biorepositories (Abimiku et al., 2017; Mulder et al., 2017). Already,
this program is highlighting deep regional variation for disease-related

risk factors and has established critical tools (genotyping arrays and
reference gene panel for imputation) that support the analysis of
genetic data from individuals of African descent (Mulder et al., 2017).

Despite this progress, trust remains an important issue to recruit
participants, especially in historically marginalized groups. As data
custodians retain control over their dataset in a federated data access
model, data access agreements must be negotiated in a manner that is
acceptable for research participants to engender trust, particularly in
historically underrepresented groups (Thorogood et al., 2021; Lee et al., 2022).

3 Democratizing access to data assets
and insights via federated platforms

3.1 Considerations in democratizing genomic
data

A core benefit of federated data platforms is that they can
democratize access to health data in a secure manner. While this
brings huge potential for advancing medical research, there must be
strict regulations over how data is governed and accessed that are
applied at the organizational- and researcher-level, in order to
engender public and participant trust.

There is a valid concern of ownership over federated data platforms—a
trusted independent party, a group of institutions, or the government could
theoretically assume the role. In the United Kingdom, there is currently a
concerted effort across the public sector towards the establishment of a
federated, research data infrastructure11–13. In this model, patient data is
stored in trusted research environments (TREs) or “secure data
environments” and federated technology is used to virtually link these
environments while data stays securely at its source, always within full
control of the data custodian/controller. The TRE is fully owned and
governed by the data controller(s)13; thismeans there is collective ownership
across the multiple healthcare providers contributing to the data source.

In line with the surge in data regulations arising across global
jurisdictions14–16, there is an increasing prevalence of accreditation
schemes to audit and certify the “owner” of data management
platforms14,17. To guarantee ethical and secure usage of federated

10 Importing and exporting files using the Airlock (2022). https://re-docs.
genomicsengland.co.uk/airlock/#importing-and-exporting-files-
using-the-airlock [Accessed 13 December 2022].

11 Genome UK: 2021 to 2022 implementation plan (2021) https://www.gov.uk/
government/publications/genome-uk-2021-to-2022-implementation-plan
[Accessed 16 August 2022].

12 Better, broader, safer: using health data for research and analysis (2022)
https://www.gov.uk/government/publications/better-broader-safer-
using-health-data-for-research-and-analysis [Accessed 16 August 2022].

13 Secure data environment for NHS health and social care data—policy
guidelines (2022). https://www.gov.uk/government/publications/secure-
data-environment-policy-guidelines/secure-data-environment-for-nhs-
health-and-social-care-data-policy-guidelines [Accessed 13 August 2022].

14 NIH Data Management and Sharing Policy (2022). https://sharing.nih.gov/
data-management-and-sharing-policy [Accessed 13 December 2022].

15 General Data Protection Regulation (2022). https://gdpr-info.eu/ [Accessed
13 December 2022].

16 CS/HB 833 — Unlawful Use of DNA (2021). https://www.flsenate.gov/
Committees/billsummaries/2021/html/2543 [Accessed 13 December
2022].

17 Our Future Health opens consultation on trusted research environment
accreditation process (2022). https://ourfuturehealth.org.uk/news/our-
future-health-opens-consultation-on-trusted-research-environment-
accreditation-process/ [Accessed 13 December 2022].
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platforms, the safety and governance of these infrastructures must be
regularly reviewed and measured against all aspects relevant to data
security and governance, from implementing industry-recognised
data protection frameworks18, standards and information security
measures to compliance with local data regulations and
commitments to interoperability. Access to the data within these
federated platforms must be appropriately reviewed and governed
by the data controllers—identifying an efficient and secure process for
approving access and democratization of this data is a community-
wide work in progress. Implementing such governance and regulatory
bodies that regulate the use of data can help foster trust in the wider
public for genomics research among the wider public and ensure data
use is in the interest of both the public and participants.

3.2 Enabling analytics via no/low-code tools
and end-to-end platforms

The software industry is currently shifting towards “no/low-code”
tools to support a wider range of end users with and without a data
science background, thus enabling full democratization of access to
genomic data and the insights derived. The Galaxy Community, an
initiative within ELIXIR, is one such example offering a web-based
platform to facilitate computational research for a variety of “omics”
types (The Galaxy Community et al., 2022). There are also resources

such as DepMap19 that offer easy-to-use graphical user interfaces to
explore cancer vulnerabilities from available chemical and genetic
perturbation data using analytical and visualization tools. Together,
these tools enable users of diverse backgrounds to visualize the data
directly or build reproducible pipelines and complex workflows for
analyses.

While such low-/no-code tools are a huge first step, there should
ideally be an end-to-end, federated solution for researchers as well as
clinicians - providing the latter with the resources they require to
understand their patients’ data (Kullo et al., 2013; Lau-Min et al.,
2021). An end-to-end data platform, building upon the current
advances of federated data architectures and capable of ingesting
clinical and raw genomic data, can democratize access and accelerate
the generation of clinically actionable insights. Such platforms could
securely integrate between a country’s healthcare network, national
genomic medicine initiatives and sequencing laboratories. When
coupled with tools to enable anyone to run bioinformatic pipelines
and workflows, such a platform could handle genetic services end-to-
end: from patient recruitment, sample collection, sequencing, data
standardization, analysis and clinical reporting (Stark et al., 2019)
(Figure 1). By federating across distributed databases and systems as
well as providing the necessary, easy to use tools to transform raw
data into meaningful insights can bring more direct benefits to
patients.

FIGURE 1
An example genomic medicine end-to-end solution that integrates federated architecture. Genomic or phenotypic clinical data is first collected and
transformed into interoperable formats. Next, these data will be ingested into the federated architecture, which allows authorized users to access and
combine this data with other disparate sources to build unique and valuable analysis cohorts. Strict security measures will facilitate results export to clinicians
and researchers, to enable them progress therapeutic discovery and make informed clinical decisions.

18 What is the Five Safes framework? (2022) https://ukdataservice.ac.uk/help/
secure-lab/what-is-the-five-safes-framework/ [Accessed 13 December
2022].

19 Explore the Cancer Dependency Map (2021). https://depmap.org/portal/
[Accessed 13 December 2022].
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3.3 Ensuring the sustainability of federation
for future genomics research

While many countries are increasingly, and successfully, integrating
genomics into healthcare (Stark et al., 2019; Kloypan et al., 2021), it is
important to note that not all learnings described here are broadly
applicable. Many countries and regions are faced with rapidly shifting
health priorities and challenges including low levels of government
support, absence of well-funded national healthcare systems, workforce
skill shortages and gaps in infrastructure (Mulder et al., 2017; Stark et al.,
2019; Maxmen, 2020). Data sharing, even in a fully federated system, is
associated with significant costs (Chalmers et al., 2016)20. The long-term
sustainability of the genomics ecosystem is reliant on more sustainable
solutions and secure, long-term funding, something that will only be
achieved through industry-wide collaboration.

Collaboration between biobanks and the broader life sciences industry
can build larger and more representative data ecosystems and open
sustainable funding mechanisms for population genomics initiatives
and biobanks, particularly in countries with fewer resources for
research. Specifically, extending collaboration into the private sector,
biobanks can accelerate growth with highly lucrative and sustainable
funding. There is increasing recognition among pharmaceutical
companies that diversity among the patient-participant population of
clinical trials is critical given large genetic variability in drug responses that
is often correlated with ancestry (Gross et al., 2022).

As the private sectors will not freely disseminate their knowledge,
there is a model by which genomic initiatives and biobanks can
negotiate data access agreements with pharmaceutical companies
who require large and diverse patient cohorts for R&D and drug
discovery pipelines (Garden, 2021; Thorogood et al., 2021). An
example is that of 54 Gene, a venture capital-backed biobank based
in Nigeria, which will partner with pharmaceutical companies to fund
its research by charging access fees, like the UK Biobank (Maxmen,
2020). By generating stable and sustainable funding mechanisms
through collaborative partnerships, biobanks and precision
medicine programs can generate holistic benefits sharing at scale
(Maxmen, 2020; Thorogood et al., 2021; Bedeker et al., 2022).

4 Discussion

Here, we have presented a perspective on the overarching progress to
develop federated data platforms to enable research and genomics efforts.
While there has been significant progress within national and international
endeavors to provide secure access to their large-scale health data, as well
as tools to empower users to derive meaningful insights, frameworks and
policies guiding the genomics community on best practices for data
sharing are necessary to ensure successful collaboration. These must
cover critical considerations discussed in this perspective including
interoperability, secure data access, cloud computing, usability,
democratized data access, clinical utility, ethical considerations and
sustainability of the platforms (Thorogood et al., 2021; Lee et al.,
2022). Governing agencies are indeed beginning to address the

complexities associated with data sharing—the World Health
Organization’s recent report serving as a notable example (WHO,
2022) Within a federated ecosystem, there are roles for the private and
public sectors. In this perspective, we have highlighted an opportunity for
pharma to invest in biobanking and federated data platforms in order to
increase their access to data, which in turn funds the platforms. Further, it
may be important to consider moving forward the role of DNA testing
companies in building federated networks. These companies have access
to the data ofmillions of individuals, and it will be interesting to determine
whether there are any incentives for these to join the federated data
ecosystems, while also adhering to governance and privacy policies.

Finally, continued democratization of data access and analysis has the
potential to broaden the reach for innovative technologies (Drake et al.,
2018; Christopher et al., 2021). Future efforts to expand federated data
platforms in an ethical manner will require broad coordination between
non-governmental organizations, local governments, scientific
researchers and industry to advocate for increased investments to
build capacity and improve infrastructure21. Evolving federated data
platforms, such as those discussed here, are already accelerating
research by drawing research communities together to benefit patients.
Further investment in and expansion of such sustainable platforms will
continue to power research so that access and usability of data will no
longer be a barrier to discovering powerful therapeutic insights.
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