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Understanding the molecular mechanism of clear cell renal cell carcinoma (ccRCC)
is essential for predicting the prognosis and developing new targeted therapies. Our
study is to identify hub genes related to ccRCC and to further analyze its prognostic
significance. The ccRCC gene expression profiles of GSE46699 from the Gene
Expression Omnibus (GEO) database and datasets from the Cancer Genome Atlas
Database The Cancer Genome Atlas were used for the Weighted Gene Co-
expression Network Analysis (WGCNA) and differential gene expression analysis.
We screened out 397 overlapping genes from the four sets of results, and then
performed Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of
Genes and Genome (KEGG) pathways. In addition, the protein-protein interaction
(PPI) network of 397 overlapping genes was mapped using the STRING database. We
identified ten hub genes (KNG1, TIMP1, ALB, C3, GPC3, VCAN, P4HB, CHGB, LGALS1,
EGF) using the CytoHubba plugin of Cytoscape based on the Maximal Clique
Centrality (MCC) score. According to Kaplan-Meier survival analysis, higher
expression of LGALS1 and TIMP1 was related to poorer overall survival (OS) in
patients with ccRCC. Univariate and multivariate Cox proportional hazard analysis
showed that the expression of LGALS1 was an independent risk factor for poor
prognosis. Moreover, the higher the clinical grade and stage of ccRCC, the higher the
expression of LGALS1. LGALS1 may play an important role in developing ccRCC and
may be potential a biomarker for prognosis and treatment targets.
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Introduction

Kidney cancer is one of the most common tumors, accounting for 5% and 3% of all adult
malignancies inmen and women, respectively, ranking sixth amongmen and eighth among women
(Siegel et al., 2020). Renal cell carcinoma (RCC) denotes cancer originating from the renal
epithelium, accounting for more than 90% of cancers in the kidney. Clear cell renal cell
carcinoma (ccRCC) is the most common tumor in RCC and the cause of most cancer-related

OPEN ACCESS

EDITED BY

Saravanan Ganesan,
Cornell University, United States

REVIEWED BY

Ezhilarasi Chendamarai,
Washington University in St. Louis,
United States
Zeyan Li,
Shandong University, China

*CORRESPONDENCE

Guangcheng Luo,
lgch@xmu.edu.cn

†These authors have contributed equally to
this work and share first authorship

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 16 September 2022
ACCEPTED 27 December 2022
PUBLISHED 12 January 2023

CITATION

Fang J, Wang X, Xie J, Zhang X, Xiao Y, Li J
and Luo G (2023), LGALS1 was related to
the prognosis of clear cell renal cell
carcinoma identified by weighted
correlation gene network analysis
combined with differential gene
expression analysis.
Front. Genet. 13:1046164.
doi: 10.3389/fgene.2022.1046164

COPYRIGHT

© 2023 Fang, Wang, Xie, Zhang, Xiao, Li
and Luo. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 12 January 2023
DOI 10.3389/fgene.2022.1046164

https://www.frontiersin.org/articles/10.3389/fgene.2022.1046164/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1046164/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1046164/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1046164/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1046164/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1046164/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1046164&domain=pdf&date_stamp=2023-01-12
mailto:lgch@xmu.edu.cn
mailto:lgch@xmu.edu.cn
https://doi.org/10.3389/fgene.2022.1046164
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1046164


deaths (Hsieh et al., 2017). Radiotherapy and chemotherapy are not
effective for ccRCC, and surgery is the first choice for early and locally
advanced ccRCC, while targeted therapies and immunotherapy are the
mainstays for advanced ccRCC, including Pazopanib, Sorafenib,
Tivozanib, Nivolumab, Ipilimumab, Sunitinib. (Sternberg et al., 2010;
Motzer et al., 2013; Motzer et al., 2018). However, there are no available
biomarkers for the prognosis and treatment of the disease at present.

Due to the recent development of high-throughput sequencing
technology, genomic microarrays, and bioinformatics,
bioinformatics analysis has become a new way to reveal the

pathogenesis of the disease. Weighted gene expression network
analysis (WGCNA) is a systems biology method used to describe
the correlation patterns of genes in microarray or RNA Sequence
data. And it is an algorithm for discovering highly related gene
clusters (modules) and identifying phenotypic-related modules or
gene clusters (Langfelder and Horvath 2008). The hub genes and
prognostic biomarkers of various cancers, including
cholangiocarcinoma (Long et al., 2021), hepatocellular
carcinoma (Zhang et al., 2020), and endometrial cancer (Liu
et al., 2019), were identified by WGCNA.

FIGURE 1
Workflow of this study.
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In addition, differential gene expression analysis is another
powerful analysis in transcriptomics that determines genotypic
differences between two or more cell conditions to support specific
hypothesis-driven research, and is one of the most common
applications of RNA sequencing (RNA-seq) data and may reveal
potential biomarkers of disease (McDermaid et al., 2019). Hence,
the results of differential gene expression analysis and WGCNA were
combined for further analysis, which can improve the recognition
ability of highly related genes. The final screened genes can be used as
candidate biomarkers.

In our study, differential gene expression analysis and WGCNA
were performed to identify differentially co-expressed genes by using
the mRNA expression data of ccRCC from the Gene Expression
Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database.
GO enrichment analysis, KEGG pathway analysis, and protein-
protein interaction (PPI) analysis combined with survival analysis
were used to explore the development of ccRCC. Moreover, the
reliability of hub genes was verified and the clinical correlation of
meaningful genes was analyzed. As far as we know, this is the first time
to use the data from the GEO and TCGA database for WGCNA
combined with differential gene expression analysis to screen out the
key genes related to ccRCC and to establish a survival model to predict
the prognosis of ccRCC. The workflow of this study is displayed in
Figure 1.

Materials and methods

Download and preprocess data from the GEO
and TCGA databases

The Gene Expression Omnibus (GEO; https://www.ncbi.nlm.
nih.gov/geo/) and the Cancer Genome Atlas (TCGA; https://portal.
gdc.cancer.gov/) are publicly available cancer databases. Download
the microarray data of ccRCC from the GEO database and the
RNA-seq data and clinical information of ccRCC from the TCGA
database, Firstly, we downloaded the normalized gene expression
matrix files and platform annotations of the GSE46699 dataset
from the GEO database. GSE46699 was composed of 66 tumor
tissues and 64 normal tissues from the ccRCC samples. Then, we
used the platform annotation file to convert the probe into gene
symbols and removed the repeated probes of the same gene by
determining the median expression value of all the corresponding
probes. In consequence, a total of 21654 genes were chosen for
further analysis.

The RNA sequencing (RNA-Seq) expression data of
611 samples and the corresponding clinical information of
537 cases were downloaded from the TCGA database. Among
the 611 samples, 72 cases were normal and 539 cases were
ccRCC. The edgeR R package tutorial recommends that genes
with low expression do not need to be further analyzed
(Robinson et al., 2010). Therefore, we used CPM (count per
million) to correct the data and analyze the genes with CPM >1.
We used the rpkm function in the edgeR R package to select the data
by dividing the gene count by the gene length, then the rpkm values

were output. Finally, 14684 genes with RPKM values were obtained
for the next analysis.

Identify key co-expression modules by
WGCNA

In our research, the R package termed WGCNA was used to
construct a gene co-expression network based on the gene expression
data profiles of GSE46699 and TCGA-KIRC (Langfelder and Horvath
2008). WGCNA was used to find the modules with the most
significant differences between normal and tumor samples and to
extract genes from the modules. An adjacency matrix was constructed
to describe the correlation strength between nodes. The formula of the
adjacency matrix was as follows:

sij � cor xi, xj( )
∣∣∣∣

∣∣∣∣aij � Sijβ

where i and j represented two different genes, and Xi and Xj were
their expression values, respectively. sij represented Pearson’s
correlation coefficient, and aij represented the strength of the
correlation between two genes. β was a soft threshold, which was
the Pearson correlation coefficient β of each pair of genes. Pearson
correlation matrix was transformed into an adjacency matrix (scale-
free network) by a β-power operation. In this study, we chose the soft
power β = 16 and 2. Then, we converted the adjacency matrix into a
topological overlap matrix (TOM) and the corresponding degree of
dissimilarity (1-TOM). Subsequently, the hierarchical clustering
dendrogram of the 1-TOM matrix was constructed, and the
similar gene expression was divided into different gene co-

TABLE 1 Clinical data clinical correlation analysis of survival related genes of
TCGA-KIRC.

Sample number

Gender

Female 191

Male 346

Grade

G1 14

G2 230

G3 207

G4 78

GX 5

unknow 3

Stage Stage I 269

Stage II 57

Stage III 125

Stage IV 83

unknow 3
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expression modules, each module contained at least 50 genes.
According to the previous research (Li et al., 2019), we calculated
the module-trait correlation between the modules and clinical trait
information to further determine the functional modules in the co-
expression network. The method of dynamic tree cutting was used to
identify modules from the hierarchical clustering tree, and the
module eigengene (ME) of each module was calculated. ME
represented the overall expression level of the module. Finally,
the module with a high correlation coefficient was considered as
a candidate module related to clinical traits and was chosen for
follow-up analysis.

Screening the differentially expressed genes
(DEGs)

In this study, the limma R package was used to screen the
differentially expressed genes (DEGs) between ccRCC and normal
kidney tissue in the data downloaded from the GEO and TCGA,
respectively (Ritchie et al., 2015), using the Benjamini–Hochberg
method to adjust the p-value to control the false discovery rate
(FDR). The adj. p <0.05 and |logFC| >1.0 were selected as cut-off
criteria for DEGs. Volcano plots were drawn using the ggplot2 R
package in R version 4.03.

FIGURE 2
Screen the modules correlated with the clinical information from the GSE46699 dataset. (A) The hierarchical clustering of genes based on the 1-TOM
matrix is used to sort the clustering tree of co-expression network modules. Mark each module with a different color. (B) Module-trait relationship in
GSE46699. Each row corresponds to a colormodule, and each column corresponds to the tumor and normal. Each cell consists of the corresponding p-value
and correlation.
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Intersecting the genes in the module of
interest

The overlapping genes, obtained by intersecting the DEGs with the
co-expression genes extracted from the co-expression network, were
used to determine potential prognostic genes. Use theVennDiagram R
package in R software to map the genes we obtained into a Venn
diagram (Chen and Boutros 2011).

Functional annotation and pathway
enrichment analysis

The clusterProfiler R package was used to visualize gene ontology
(GO) enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway of key genes (Yu et al., 2012). The cut-off
criterion was set at adjusted p <0.05.

PPI network construction and hub genes
identification

The key genes were imported into the STRING online database
(https://string-db.org/) (Szklarczyk et al., 2019). Genes with a
confidence score ≥.9 were chosen to build a protein-protein
interaction (PPI) network model and visualized by Cytoscape (v3.8.
2) (Shannon et al., 2003). A Cytoscape plugin, cytoHubba, can be used
to rank nodes in a network by their network features. Among the
eleven methods to find hub nodes, Maximal Clique Centrality (MCC)
was the most effective one. The MCC of each node was calculated by
CytoHubba (Chin et al., 2014), and the genes with the top 10 MCC
scores were identified as hub genes for this study.

Hub genes validation

To verify the reliability of the hub genes, the differentially
expressed genes (DEGs) of hub genes obtained from the TCGA
database were tested by Wilcoxon test in R software using the
limma R package (Ritchie et al., 2015), and the expression level of
each hub gene between normal tissues and tumor tissues was
visualized as a boxplot. Set the cut-off criterion of DEGs to p <0.05.

Verification of hub genes with survival
analysis

To validate whether the survival of ccRCC patients was affected by
hub genes, the data obtained from the TCGA, including the clinical
data and gene expression data of 530 ccRCC samples, were used to
seek the relationship between hub genes and Overall survival (OS) in
patients by Kaplan-Meier univariate survival analysis with the survival
R package in R software. In addition, using the online tool GEPIA2
(http://gepia2.cancer-pku.cn/#index) to determine the relationship
between hub genes expressed in ccRCC patients and Disease-free
survival (DFS) (Tang et al., 2019). The log-rank p <0.05 of the survival-
related hub genes was considered statistically significant.

Construction of the prognostic risk model

Cox regression analysis was used to construct the prognostic risk
model of ccRCC, and the survival package in R was used for univariate
and multivariate Cox proportional hazard regression analysis. The
Cox analysis signature included age, gender, grade as well stages. The
sensitivity and specificity of the Receiver Operation characteristic
(ROC) curve were used to evaluate the prognostic value of the
signature. All analyses were performed using R.

Correlation between hub genes with the
clinicopathological characters

Clinicopathological data of ccRCC patients, including gender,
Grade, and tumor stage were collected from the TCGA database.
We conducted a correlation analysis between hub genes and clinical
traits. The analysis was conducted by chi-square test under R

FIGURE 3
Screen the modules correlated with the clinical information from
the TCGA- KIRC dataset. (A) The hierarchical clustering of genes based
on the 1-TOMmatrix is used to sort the clustering tree of co-expression
network modules. Each module is assigned a different color. (B)
Module-trait relationship in TCGA- KIRC. Each row corresponds to a
color module, and each column corresponds to the tumor and normal.
Each cell consists of the corresponding p-value and correlation.
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environment. And the ggplot2 R package was used to draw boxplots.
The criterion for statistical significance was set as p <0.05.

Results

Construction of weighted gene Co-
expression and division of modules

TheWGCNA R package was used to construct the Weighted gene co-
expression networks from the GSE46699 and TCGA- KIRC datasets for
finding the functional clusters of ccRCCpatients. The screened genes in the
GSE46699 dataset were divided into five cox-expression modules
(Figure 2A) and the screened genes in TCGA- KIRC were divided into
13 cox-expression modules (Figure 3A) (excluding the grey module, the
genes of this gene set were not clustered into any module), and each
module was assigned a color. After that, to assess the correlation between
two clinical traits (normal and tumor) and each module, we drew the

module-traits relationships heatmap. Figure 2B; Figure 3B showed the
module-trait relationships. The blue module of the GSE46699 dataset and
the turquoise module of TCGA- KIRC have the highest correlation with
normal tissues (blue module: r = .88, p = 2e−41; turquoise module: r = .83,
p = 8e-156), the bluemodule of the GSE46699 and the turquoisemodule of
TCGA-KIRC included 1,512 and 10031 co-expression genes, respectively.

DEGs screening and identification of
common genes between co-expression
modules and DEGs

According to the cut-off criteria of |logFC| ≥ 1.0 and adj. p < .05,
we used the limma R package to find that 1,007 DEGs in the
GSE46699 dataset (Figure 4A) and 3,748 DEGs in TCGA-KIRC
(Figure 4B) were abnormally regulated in tumor tissues. Then, we
got a Venn diagram using theVennDiagram R package (Figure 4C). In
total, 397 overlapping genes were extracted for further study.

FIGURE 4
The cut-off criteria for screening differentially expressed genes in GSE46699 and TCGA datasets of ccRCC were | log FC |> 1.0 and adj. p <0.05. (A)
Volcano map of differentially expressed genes in the GSE46699 data set. (B) Volcano map of differentially expressed genes in the TCGA dataset. (C) Venn
diagram of gene crossover between differentially expressed genes and co-expression module. In total, 397 overlapping genes in the intersection of
differentially expressed genes and two co-expression modules.
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Enrichment analysis of GO and KEGG

To explore the biological processes and signal pathways of the
main enrichment of these 397 genes, the clusterProfiler R
package was used for GO and KEGG analysis. The GO
enrichment analysis includes three parts: molecular function
(MF), biological process (BP), and cell component (CC). GO

analysis revealed that the most significant molecular function
(MF), biological process (BP), and cell component (CC) were
monovalent inorganic cation transmembrane transporter
activity, small molecule catabolic process, and apical part of cell,
respectively (Figure 5A). And KEGG analysis showed the signaling
pathway of key genes was mostly related to the Cell adhesion
molecules (Figure 5B).

FIGURE 5
Enrichment Analysis of GO and KEGG. The color represents the adjusted p-values, and the size of the spots represents the gene number. (A) Gene
Ontology (GO) analysis of the 397 overlapping genes. (B) KEGG analysis of the 397 overlapping genes.
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Construction of PPI network and
identification of hub genes

We used the STRING database to construct a PPI network between
overlapping genes. Then, the MCC algorithm of the CytoHubba
plugin was used to select the hub genes from the PPI network,
which was plotted in Figure 6. According to the MCC scores, the
genes with the top ten highest scores were determined as hub genes,
including LGALS1, TIMP1, KNG1, ALB, C3, GPC3, VCAN, P4HB,
CHGB, and EGF.

Validation and survival analysis of hub genes

We validated the expression levels of hub genes among the
patients of the TCGA-KIRC dataset, which was displayed in
Figure 7. We found that ten hub genes in ccRCC up-regulated
significantly more than that in normal tissues. Then, we used the

survival R package and GEPIA2 database to do OS and DFS analysis
on ten hub genes through the Kaplan-Meier curve, to explore
prognostic values of hub genes in ccRCC patients. As shown in
Figure 8, the results illustrated that LGALS1 and TIMP1 were
significantly associated with the overall survival of the ccRCC
patients (p <0.05), and higher expression of LGALS1 and
TIMP1 was related to poorer overall survival (OS) in patients with
ccRCC. And Disease-Free survival in patients with ccRCC was
associated with the expression levels of LGALS1, TIMP1, C3,
CHGB, GPC3, P4HB, and VCAN (p < .05) (Figure 9), high levels
of LGALS1, TIMP1, C3, CHGB, GPC3, P4HB, and VCAN were
correlated with low Disease-Free survival in patients with ccRCC.

Verification of prognostic model

Univariate regression analysis showed that the expression of
LGALS1 and TIMP1, age, grade, and stage were related to the

FIGURE 6
The maximal clique centrality (MCC) algorithm was used to identify the hub genes in PPI networks. The edges represented the connection between
proteins and proteins. The red nodes represented the genes with high MCC scores, while the yellow node represented the genes with low MCC scores.
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prognosis of ccRCC (Figures 10D, F). Multivariate regression analysis
showed that the expression of LGALS1, age, grade and stage were
independent risk factors correlated with the prognosis of ccRCC
patients (Figures 10C, E). To evaluate the prognostic validity of the
risk score, the ROC curve showed that the AUCs of 1-year, 3-year, and
5-year survival expressed by LGALS1 were .606, .587 and .601,
respectively, while the expression of TIMP1 were .654, .569, and
.585, respectively, indicating that the risk model was significantly
effective and applicable.

Clinical correlation analysis of survival-
related genes

We analyzed the correlation between the expression of
LGALS1 and clinical data downloaded from the TCGA database
(Table 1). As shown in Figure 11, there were significant differences
in the expression of LGALS1 from Grade 2 to Grade 3 (p = 0.05) and
Grade 2 to Grade 4 (p = 0.00074). In addition, there were significant
differences in the expression of LGALS1 from Stage I to Stage III (p =
0.025) and Stage I to Stage IV (p =0.0045). Moreover, there are
differences in the expression of LGALS1 (p =0.023) between males

and females in ccRCC patients. These results showed that the higher
the clinical grade and stage of ccRCC, the higher the expression of
LGALS1. And LGALS1 was highly expressed in male patients with
ccRCC.

Discussion

For kidney cancer, about one-third of patients were diagnosed
with regional or distant metastases. The 5-Year Relative Survival of
patients with distant metastasis was only 13.9%. Radical nephrectomy
is the standard treatment for localized primary kidney cancer, but
approximately one-quarter of these have relapses in distant sites
(Choueiri and Motzer 2017). With the development of
bioinformatics, although some biomarkers related to ccRCC have
been found in recent years, such as AOX1 (Xiong et al., 2021),
circCHST15 (Gui et al., 2021), DDX39 (Bao et al., 2021) and
PPAR α (Luo et al., 2019), the risk of death in patients with
ccRCC is still high, so it is necessary to find more reliable markers
and obtain more treatments to reduce the risk of death in patients with
ccRCC. We identified 397 differentially expressed genes with
consistent expression trends in the GSE46699 and TCGA-KIRC

FIGURE 7
Hub genes validation using TCGA dataset. (A) The expression of LGALS1 in tumor and normal tissues in patients with ccRCC. (B) The expression of
TIMP1 in tumor and normal tissues in patients with ccRCC. (C) The expression of ALB in tumor and normal tissues in patients with ccRCC. (D) The expression of
C3 in tumor and normal tissues in patients with ccRCC. (E) The expression of CHGB in tumor and normal tissues in patients with ccRCC. (F) The expression of
EGF in tumor and normal tissues in patients with ccRCC. (G) The expression of GPC3 in tumor and normal tissues in patients with ccRCC. (H) The
expression of KNG1 in tumor and normal tissues in patients with ccRCC. (I) The expression of P4HB in tumor and normal tissues in patients with ccRCC. (J) The
expression of VCNA in tumor and normal tissues in patients with ccRCC.
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databases by WGCNA and Differential gene expression analysis.
Furthermore, we analyzed the KEGG pathway and GO enrichment
analysis of the 397 genes, and found that they play a significant role in
many biological processes. Based on the MCC scores of the
CytoHubba plugin in Cytoscape, the top 10 hub genes correlated
with ccRCC were picked out, including, KNG1, TIMP1, ALB, C3,
GPC3, VCAN, P4HB, CHGB, LGALS1, and EGF. And all ten hub
genes up-regulated significantly in ccRCC compared with the normal
tissues. Among ten hub genes, the high expression of LGALS1 and
TIMP1 were correlated significantly with the poor OS, and the high
expression of LGALS1, TIMP1, C3, CHGB, GPC3, P4HB, and VCAN
were correlated with the low DFS of ccRCC significantly. Univariate
and multivariate Cox proportional hazard analysis showed that
LGALS1 expression was an independent risk factor for poor
prognosis. Finally, the correlation between the expression of
LGALS1 and clinicopathological features was analyzed.

In the Genome database, the gene that encodes galectin-1 is named
LGALS1 (Barondes et al., 1994). Galectin-1 is a homodimer composed
of subunits of approximately 130 amino acids, abundant in skeletal,
smooth, and cardiac muscle, motor and sensory neurons, thymus,
kidney, and placenta. And the carbohydrate recognition domain
(CRD) is responsible for β-galactoside binding (Barondes et al.,
1994). Galectins play important roles in metastasis, angiogenesis,

tumor immunity, proliferation, and apoptosis (Barondes et al.,
1994; Méndez-Huergo et al., 2017; Wdowiak et al., 2018; Huang
et al., 2021). Galectin-1 can influence the proliferation of
CD8†T cells and the immunosuppressive capacity of
CD8†CD122†PD-1†Tregs, lower Galectin-1 expression result in
reduced tumor growth (Cagnoni et al., 2021). Galectin-1 can
interact with oncogenic RAS protein on the cell surface, affect the
proliferation of tumor cells through the RAS pathway (Paz et al., 2001;
Shih et al., 2019), and promote tumor progression and chemotherapy
resistance by up-regulating p38 MAPK, ERK, and cyclooxygenase-2
(Chung et al., 2012), It can also promote tumor invasion and
metastasis by activating the FAK/PI3K/AKT/mTOR pathway (Su
et al., 2020). In addition, Galectin-1 can affect tumorigenesis by
activating the Hh signal pathway (Martínez-Bosch et al., 2014).
Galectin-1 is a multifunctional target during Pancreatic ductal
adenocarcinoma progression (Orozco et al., 2018). Up-regulation of
LGALS1 expression can not only promote the occurrence and
development of non-small cell lung cancer cells (Sun et al., 2022),
but also promote the proliferation and cell cycle progression of
esophageal squamous cell carcinoma cells (Cui et al., 2022). The
high expression of Galectin-1 is associated with the migration and
invasion of gastric cancer cells and poor prognosis of patients with
prostate cancer (Shih et al., 2018) and hepatocellular carcinoma (Tsai

FIGURE 8
Overall survival (OS) of the ten hub genes in patients with ccRCC according to the Kaplan-Meier survival analysis. The patients were divided into high-
expression and low-expression groups based on themedian expression. (A) Survival analysis for LGALS1 in ccRCC. (B) Survival analysis for TIMP1 in ccRCC. (C)
Survival analysis for ALB in ccRCC. (D) Survival analysis for C3 in ccRCC. (E) Survival analysis for CHGB in ccRCC. (F) Survival analysis for EGF in ccRCC. (G)
Survival analysis for GPC3 in ccRCC. (H) Survival analysis for KNG1 in ccRCC. (I) Survival analysis for P4HB in ccRCC. (J) Survival analysis for VCNA in
ccRCC.
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et al., 2022). LGALS1 affects the occurrence and development of
tumors in many ways, and its high expression is related to the poor
prognosis of tumors, which is consistent with our result in ccRCC.
Olena Masui et al. verified the abnormal protein expression of
Galectin-1 in metastatic and primary renal cell carcinoma by
Western blot and immunohistochemical analysis (Masui et al.,
2013). N M A White et al. showed that Galectin-1 is a downstream
effector molecule of miR-22 and participates in the HIF/mTOR signal
axis in renal cell carcinoma (White et al., 2014). In addition, some of
their findings were completely consistent with our study, including
LGALS1 mRNA expression in ccRCC is significantly higher than
normal kidney tissue of the same patient, patients with high
LGALS1 expression are correlated with poor overall survival and
disease-free survival, and compared with low-grade (grade I or II)
tumors, high expression levels of LGALS1 are correlated with high-

grade tumors (grade III or IV) (White et al., 2014). Galectin-1 has
emerged as a therapeutic target and reliable biomarker for a variety of
tumors, which can be used to describe the clinical response and
prognosis of patients. It is also expected to become a therapeutic
target and prognostic marker for ccRCC. Some galectin-1 inhibitors
have been developed for the treatment of tumors. For example, the
Galectin-1 inhibitor showed significant anti-cancer effects both
in vitro and in vivo in thyroid cancer lines expressing Gal-1
(Gheysen et al., 2021), and the Galectin-1 inhibitor had been used
to treat B-cell precursor acute lymphoblastic leukemia (Paz et al.,
2018) and head and neck squamous cell carcinomas (Koonce et al.,
2017). Moreover, the Galectin-1 inhibitor combined with sorafenib
was used in the treatment of liver cancer (Leung et al., 2019). The new
strategy of targeting Galectin-1 in the treatment of ccRCC needs more
research and is expected to improve the prognosis of ccRCC patients.

FIGURE 9
Disease-free survival (DFS) analysis of the ten hub genes of ccRCC patients in the GEPIA2 database. (A) Survival analysis for LGALS1 in ccRCC. (B) Survival
analysis for TIMP1 in ccRCC. (C) Survival analysis for ALB in ccRCC. (D) Survival analysis for C3 in ccRCC. (E) Survival analysis for CHGB in ccRCC. (F) Survival
analysis for EGF in ccRCC. (G) Survival analysis for GPC3 in ccRCC. (H) Survival analysis for KNG1 in ccRCC. (I) Survival analysis for P4HB in ccRCC. (J) Survival
analysis for VCNA in ccRCC.
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Nevertheless, there were some limitations in this study. Even if
we have performed a lot of bioinformatics analysis to determine the
potential diagnostic genes of ccRCC, the number of ccRCC samples
obtainable in the public database is still limited, which may lead to
potential errors/biases. In addition, the molecular mechanisms of
the effects of LGALS1 on the prognosis and survival of patients

with ccRCC need more experiments and verification on a larger
scale.

In conclusion, we identified a hub gene, LGALS, by WGCNA
and differential gene expression analysis in patients with ccRCC,
which can serve as a potential biomarker for predicting prognosis
and treatment targets. Our research provided new insights

FIGURE 10
(A) ROC curve for LGALS1 in ccRCC patients. (B) ROC curve for TIMP1 in ccRCC patients. (C)Univariate Cox regression analysis of LGALS1 expression and
clinicopathologic characteristics. (D) multivariate Cox regression analysis of LGALS1 expression and clinicopathologic characteristics. (E) Univariate Cox
regression analysis of TIMP1 expression and clinicopathologic characteristics. (F) multivariate Cox regression analysis of TIMP1 expression and
clinicopathologic characteristics.

FIGURE 11
(A) Boxplot of the association between the expression of LGALS1 and Grade. (B) Boxplot of the association between the expression of LGALS1 and Stage.
(C) Boxplot of the association between the expression of LGALS1 and Gender.
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for exploring the prognosis and therapeutic targets of ccRCC
patients.
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