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Bovine respiratory disease (BRD) is the most common and costly infectious

disease affecting the wellbeing and productivity of beef cattle in North America.

BRD is a complex disease whose development is dependent on environmental

factors and host genetics. Due to the polymicrobial nature of BRD, our

understanding of the genetic and molecular mechanisms underlying the

disease is still limited. This knowledge would augment the development of

better genetic/genomic selection strategies andmore accurate diagnostic tools

to reduce BRD prevalence. Therefore, this study aimed to utilize multi-omics

data (genomics, transcriptomics, and metabolomics) analyses to study the

genetic and molecular mechanisms of BRD infection. Blood samples of

143 cattle (80 BRD; 63 non-BRD animals) were collected for genotyping,

RNA sequencing, and metabolite profiling. Firstly, a genome-wide

association study (GWAS) was performed for BRD susceptibility using

207,038 SNPs. Two SNPs (Chr5:25858264 and BovineHD1800016801) were

identified as associated (p-value <1 × 10−5) with BRD susceptibility. Secondly,

differential gene expression between BRD and non-BRD animals was studied. At

the significance threshold used (log2FC>2, logCPM>2, and FDR<0.01),
101 differentially expressed (DE) genes were identified. These DE genes

significantly (p-value <0.05) enriched several immune responses related

functions such as inflammatory response. Additionally, we performed

expression quantitative trait loci (eQTL) analysis and identified 420 cis-eQTLs

and 144 trans-eQTLs significantly (FDR <0.05) associated with the expression of

DE genes. Interestingly, eQTL results indicated the most significant SNP (Chr5:

25858264) identified viaGWASwas a cis-eQTL for DE geneGPR84. This analysis

also demonstrated that an important SNP (rs209419196) located in the

promoter region of the DE gene BPI significantly influenced the expression

of this gene. Finally, the abundance of 31 metabolites was significantly

(FDR <0.05) different between BRD and non-BRD animals, and 17 of them

showed correlations with multiple DE genes, which shed light on the

interactions between immune response and metabolism. This study

identified associations between genome, transcriptome, metabolome, and
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BRD phenotype of feedlot crossbred cattle. The findings may be useful for the

development of genomic selection strategies for BRD susceptibility, and for the

development of new diagnostic and therapeutic tools.

KEYWORDS

disease susceptibility, GWAS, differential expressed gene, eQTL, causal SNP,
metabolomics

Introduction

Bovine respiratory disease (BRD) is a worldwide infectious

disease that causes a significant economic loss in cattle

production due to mortality, increased expenses associated

with prevention, treatment and labour, impaired growth of

animals, and reduced carcass value (Griffin, 1997; Smith,

2000; Irsik et al., 2006; Schneider et al., 2010). In North

America, BRD has been identified as the most expensive

infectious disease in the beef cattle industry (Taylor et al.,

2010), causing high morbidity rates that can reach up to 80%,

and moderate to high mortality in some feedlots (Smith, 1998;

Baptista et al., 2017). Newly-received cattle in the feedlot are

highly susceptible to BRD due to compromised immunity from a

number of stressors including weaning, long-distance

transportation, and co-mingling of cattle from different

sources especially in auction markets (Taylor et al., 2010).

These stressors expose the animals to multiple BRD pathogens

and provide a conducive environment for the emergence of

opportunistic viral and bacterial infections of the respiratory

tract (Griffin et al., 2010; Taylor et al., 2010; Kirchhoff et al.,

2014). In feedlots, the most commonly used disease control

approach is treating animals with a wide range of antibiotics

before or on entry into the feedlots (Ives and Richeson, 2015),

however this may lead to the development of antimicrobial

resistance which is a major concern for both human and

animal health (Klima et al., 2014; Stanford et al., 2020).

Additionally, early diagnosis and appropriate treatment of

infected animals could increase recovery from infections and

potentially reduce negative impacts of the disease on animal

performance and productivity. However, most clinical signs of

BRD are subjective, difficult to standardize, and non-specific for

BRD, which makes the diagnosis of BRD difficult (Buczinski and

Pardon, 2020).

Heritability estimates of BRD range from 0.07 to 0.29

(Snowder et al., 2005; Schneider et al., 2010; Neibergs et al.,

2014a; 2014b). This suggests there is the potential to breed BRD

resistant animals, which would lead to a sustainable reduction in

BRD incidence and potentially antimicrobial resistance

(Neibergs et al., 2014b; Hoff et al., 2019). Several SNPs and

quantitative trait loci (QTLs) have been reported as significantly

associated with BRD through genome-wide association studies

(GWAS) (Neibergs et al., 2014b; Hoff et al., 2019), however,

investigations into the genetic background of resistance or

susceptibility to BRD in beef cattle populations is an ongoing

endeavour. In addition, RNA sequencing (RNA-Seq) offers high

resolution profiling of transcriptomes of individual animals in a

given sample/tissue, hence allowing the discovery of

transcriptome-wide expression differences between animals

with contrasting phenotypes of interest (e.g., BRD and non-

BRD) (Costa-Silva et al., 2017; Hrdlickova et al., 2017). Such

differential gene expression between BRD and non-BRD animals

could help reveal differences in the host response to BRD

infection and help to identify potential biomarkers for BRD

diagnosis. Several transcriptomic studies have been conducted

to investigate the gene expression differences and host response

to BRD infection (Tizioto et al., 2015; Scott et al., 2020; Sun et al.,

2020; Jiminez et al., 2021). These studies have shown that host

animals have the ability to respond to BRD pathogen infection

and the damage caused by these pathogens by altering the

expression of certain key immune genes (e.g., BPI, GPRA84,

S100A8, S100A9, and IL3RA). These studies further suggest that

gene expression alterations may vary with different viral and

bacterial pathogen infections as well as the stage of disease

development. However, these analyses have mainly focused on

the correlation between the transcriptome and BRD infection

status, with no consideration of the potential relationship

between different omics layers. Changes in gene expression

are not only associated with the disease or trait of interest,

but are also affected by genomic regulation (i.e., expression

QTL, eQTL) (Cookson et al., 2009). Thus, integration of

GWAS, differential gene expression analysis and eQTL

analysis could aid in interpreting the results of GWAS and

identifying functional or causal SNPs. Furthermore,

metabolites are small molecules involved in metabolic

activities, which could provide additional insights into the

host response to disease, and could also be used as

biomarkers to indicate the presence or absence of the disease

(Xia et al., 2013; Blakebrough-Hall et al., 2020). Identifying

metabolites associated with BRD, and studying their

correlations with DE genes, may lead to a better

understanding of the biological basis for disease response and

could help to identify more biomarkers involved in disease

pathogenesis. For BRD, however, this knowledge is currently

largely unknown.

Therefore, the objectives of this study were to identify DNA

markers associated with BRD susceptibility, the DE genes and

significant metabolites associated with BRD infection in feedlot

cattle. We also aimed to identify cis- and trans-eQTLs associated

with DE genes and correlations between DE genes and significant
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metabolites in this study. This multi-omics study may shed light

on the genetic and molecular architecture of BRD in crossbred

feedlot cattle and provide information on biomarker

identification in the general beef cattle population in Canada.

Materials and methods

Animal population and phenotype
collection

A total of 143 crossbred or multi-breed beef cattle were

used in this study. Animals were conventionally raised cattle

that included heifers (n = 87) and steers (n = 56). These

animals were enrolled into the feedlot during the fall of 2015 at

four commercial feedlots in Central/Southern Alberta,

Canada. On-arrival processing of the animals was

previously described (Jiminez et al., 2021). Briefly, animals

were weighed (average body weight: 571 ± 106 Lb) and

received a subcutaneous injection of a long-acting

macrolide (tulathromycin, Draxxin, 2.5 mg/kg, Zoetis,

Kirkland, QC, Canada) and vaccinated against multiple

bacterial and viral agents including bovine herpes virus-1

(BoHV-1), bovine viral diarrhea virus (BVDV) (types I and

II), bovine parainfluenza-3 (PI3V), bovine respiratory

syncytial virus (BRSV), Mannheimia haemolytica,

Histophilus somni, and clostridial pathogens. They were

also dewormed with a pour-on ivermectin solution. While

in the feedlots, animals were fed twice daily on a concentrate

barley-based receiving/growing diet. This diet also contained

25 ppm of monensin (Rumensin 200, Elanco, Guelph, ON,

Canada) and 35 ppm of chlortetracycline (Aureomycin 220,

Zoetis). Cattle received a growth implant and a second

vaccination against infectious viruses at approximately

30 days after arrival to the feedlot. Animals were monitored

daily and those that showed signs and symptoms of BRD

(depression, nasal or ocular discharge, cough, tachypnea, or

dyspnea) within 50 days of arrival at the feedlots were

clinically examined by an experienced veterinarian. The

details of clinical examinations and case definition

(i.e., BRD or non-BRD cattle) were previously described

(Jiminez et al., 2021). Briefly, animals were retrospectively

identified as BRD positive based on clinical examination and

serum haptoglobin concentration. The animal was confirmed

as BRD positive if the animal displayed at least one visual BRD

symptom, had a rectal temperature ≥40°C, abnormal lung

sounds detected at auscultation, a serum haptoglobin

concentration ≥0.25 g/L, and had no prior treatment

against BRD or other diseases during the feedlot period

(i.e., first BRD occurrence). For each animal that was BRD

positive blood samples were collected by jugular vein puncture

using Tempus (Thermo Fisher Scientific, ON), EDTA and

heparin tubes (BD, Mississauga, Canada). In addition, in each

pen that had a BRD positive animal, blood samples were

similarly collected from two healthy matched-control or

non-BRD cattle (i.e., animals which had no visual signs of

BRD or other diseases, a rectal temperature <40°C, no

abnormal lung sounds detected at auscultation and a serum

haptoglobin concentration <0.25 g/L). A large proportion of

apparently healthy pen-mates had rectal temperature >40°C,
abnormal lung sounds at auscultation and/or serum

haptoglobin ≥0.25 g/L. However, it is expected to find a

large proportion of apparently healthy cattle with either

fever, abnormal lung sounds at auscultation or high serum

haptoglobin as subclinical BRD is very common early in the

feeding period (Timsit et al., 2011). Therefore only 63 controls

were included in this study. It was also worth noting that these

63 non-BRD cattle did not become BRD positive later during

the experiment (i.e., they remained healthy until sent to

market). After sample collection, animals identified as BRD

positive received an antibiotic treatment subcutaneously in

combination with non-steroidal anti-inflammatory drugs, in

accordance with feedlot treatment protocols. The blood

samples collected from both BRD positive and non-BRD

animals were used for DNA extraction for GWAS analysis,

transcriptome profiling for gene expression analysis and

metabolome abundance profiling for the metabolomics

analysis.

DNA extraction, genotyping, and genomic
breeding composition estimation

DNA was extracted from 50 uL whole blood sample of each

animal using the sBeadex Livestock kit (LGC, Berlin, Germany).

Four animals were not genotyped because their blood samples

were lost. The extracted DNA was used to genotype each animal

for 100,000 SNPs using Illumina’s GGP Bovine 100 K

microarray SNP chip (Illumina, San Diego, CA,

United States) by Neogen (Lincoln, NE, United States). The

SNPs located on the sex chromosomes were excluded from the

analysis. In addition, SNPs that had minor allele frequency <5%,

or missing allele rate >10% and those that failed to pass the

Hardy-Weinberg equilibrium test (p-value <0.0001) were also

excluded from the analysis. The remaining SNPs

(i.e., 85,100 SNPs) were used to predict breed composition of

each animal using ADMIXTURE software (v1.3.0) (Alexander

and Lange, 2011). The reason for this analysis is due to the

crossbred nature of the animals in our population, which should

be considered in the statistical analysis. The ancestry value of K =

3 was used to define the source of genetic makeup because it had

the smallest cross-validation error and yielded the most accurate

breed composition prediction based on prior knowledge of breed

composition for a subset of animals. The genomic breed

composition of each animal was shown in Supplementary

Figure S1.
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Additional SNPmarkers and their genotypes were called from the

RNA-Seq data of all animals using the Genome Analysis Toolkit best

practices (GATK v3.8) (Van der Auwera and O’Connor, 2020). Prior

to the variant calling processes, themapped reads from two-pass STAR

alignment were sorted, had read groups added, and duplicates

identified using the Picard tools package (v2.20.6). A series of

processing steps including splitting “N” cigar reads (i.e., splice

junction reads), reassigning mapping quality score, and base quality

score recalibration were performed to improve variant calling accuracy

using GATK. After data preprocessing, variants were called using the

HaplotypeCaller algorithm in Genomic Variant Call Format (GVCF)

mode, which included two steps: (i) variants were called individually on

each sample, generating one GVCF file per sample that lists genotype

likelihoods and their genome annotations; (ii) variantswere called from

the GVCF file through a joint genotyping analysis. The joint

genotyping method is more flexible and technically easier, and is

recommended for variant calling in RNA-Seq experiments (Poplin

et al., 2017; Brouard et al., 2019). Stringent filtering procedures were

applied to variants using the GATK Variant Filtration tool and

VCFtools (v0.1.14) (Danecek et al., 2011). Indels, non-biallelic SNPs

and SNPs on sex chromosomes were excluded. Then SNPs withQD <
3.0, FS> 60.0,MQ< 40.0,MQRankSum<−12.5, ReadPosRankSum<
−8.0, SOR > 3.0, minor allele frequency <5%, missing allele rate > 10%

and severe departure from Hardy-Weinberg equilibrium

(p-value <0.0001) were removed.

Finally, the two SNP datasets (genotype derived vs. RNAseq

derived) were merged based on the position of SNPs on the

chromosome using Plink (v1.90b6.7) (Chang et al., 2015). For the

overlapping SNPs in the two SNP datasets, the SNPs derived

from genotyping were used. A total of 207,038 SNPs were

available for 138 animals (79 BRD; 59 non-BRD animals as

one sample failed to yield quality genotypes from the RNA-seq

data) and used in GWAS and eQTL analysis.

Genome-wide association analysis for
BRD susceptibility

Prior to performing the GWAS for BRD susceptibility, the

phenotype of BRD (BRD status of the animal, as a binary trait)

was first fitted into a logistic model with a fixed effect of “feedlot,”

and two covariates including days on feed, and genomic breed

composition from admixture breed composition analysis. This

modeling was used to determine which fixed effect and covariates

had significant effects on the phenotype. Next, the GWAS

analysis between SNP marker genotypes (from SNP chip and

RNA-seq data) and adjusted BRD status was performed using the

single SNP-based mixed linear model association (mlma), as

implemented in the GCTA package (v1.93.2) (Yang et al., 2011).

The linear mixed model can be described as follows:

yij � μ + bjxij + ai + eij

where yij is the adjusted phenotypic value of the i th animal with

the j th SNP (i.e., the ij th animal), bj is the allele substitution

effect of the j th SNP, xij is the j th SNP genotype of animal i

coded as 0, 1, 2 for genotypes A1A1, A1A2, and A2A2,

respectively, ai is the additive polygenic effect of the ij th

animal ~ N(0,Gσ2a), and eij is the random residual effect of

the ij th animal ~ N(0, Iσ2e). The genomic relationshipmatrixG
was derived based on total filtered SNP markers (207,038 SNPs)

as described by Yang et al. (2014), which is essentially the same as

VanRaden’s second formulation (VanRaden, 2008). The SNP

allele substitution effect was estimated, and the significance test

of the SNP allele substitution effect was conducted via a

generalized least square F-test as implemented in the GCTA

package. The phenotypic variance explained by each significant

SNP was calculated by 2pqβ2

S2 *100%, where p and q denote the SNP

allele frequency of A1 and A2, respectively; β is the SNP allele

substitution effect; 2pqβ2 is the additive variance of the SNP, and

S2 is the phenotypic variance.

Those SNP with FDR <0.05 were identified as significant

SNPs. The threshold of p-value <1 × 10−5 were considered as the

suggestive line. To visually summarize the GWAS results both

the quantile-quantile (Q-Q) plot and Manhattan plot were

generated using the R package qqman (Turner, 2014).

RNA isolation, cDNA library preparation
and sequencing

Tempus tubes were thoroughly mixed by 20 inversions

and stored on ice until transported to the laboratory and

stored at −20°C. Total RNA was extracted in two batches

(Batch 1, n = 47; Batch 2, n = 96). Similar procedures were

performed on all samples in both batches. Initially, total RNA

was isolated from blood using a Preserved Blood RNA

Purification Kit (Norgen Biotek Corp, Thorold, ON,

Canada), and the quality of RNA was measured using the

2200 RNA ScreenTape TapeStation System (Agilent

Technologies Inc. Cedar Creek, TX, United States)

producing RNA integrity numbers (RIN) ranging from

8.0 to 9.8. Thereafter, cDNA libraries were prepared for

sequencing for each individual animal from the high-

quality RNA using the TruSeq RNA Library Preparation kit

v2 (Illumina, San Diego, CA, United States) and the NEBNext®

Ultra™ II Directional RNA Library Prep Kit for Illumina®

(New England Biolabs Ltd. Whitby, ON, Canada). Samples

in both batches used the stranded library preparation process.

Paired-end sequencing was performed using the Hiseq

4000 platform and Novaseq 6000 for batch 1 and batch

2 samples respectively to generate paired-end sequences of

100 bp read length. Sequencing of samples in the two batches

was performed at the McGill University and Genome Quebec

Innovation Center (Montreal, QC, Canada). Finally, the raw
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reads of 143 samples (80 BRD; 63 non-BRD) were obtained

and used for downstream analyses.

Sequence data processing, alignment and
counting

Raw reads for each sample were assessed for quality using

FastQC (v0.11.8) (Andrews, 2010). The bases with low quality

score (Phred quality score <20) and 3’ adapter sequences on raw

reads were removed using Trimmomatic (v0.39) (Bolger et al.,

2014). These cleaned-up sequences were aligned to the Bos taurus

reference genome (ARS-UCD1.2.98, downloaded from Ensembl

genome browser) using a short read alignment software STAR

(v2.7.1a) with paired-end default parameters (Dobin et al., 2013).

FeatureCounts (SubRead v1.6.4) was used to count the reads that

aligned to a particular annotated gene in the bovine genome (Liao

et al., 2014) and these counts were consequently used for

differential gene expression analysis between BRD and non-

BRD animals.

Differential gene expression analysis and
functional enrichment analysis

Read counts per gene generated by FeatureCounts as

described above were utilized for differential gene

expression analysis between BRD and non-BRD animals

using the R Bioconductor package edgeR (McCarthy et al.,

2012). Firstly, lowly expressed (count per million or

CPM <0.5 in at least 63 samples) genes were filtered out

from the analysis. Counts of the retained genes were then

normalized using the trimmed mean M values (TMM) method

(Robinson and Oshlack, 2010), to account for the technical

variations between samples that may have been caused by the

RNA extraction, cDNA library construction, and differences

in sequencing depth (Robinson and Oshlack, 2010). The

normalized counts were then modeled for differential gene

expression between BRD and non-BRD animals using

generalized linear models (GLM) under a negative binomial

distribution assumption that considered feedlot, genomic

breed composition, and sequencing batch as fixed effects.

To test for significance of differential expression of a gene

between BRD and non-BRD groups, a likelihood ratio test was

performed, and those genes with Benjamini-Hochberg false

discovery rate (FDR) < 0.01, log fold change (log2FC) > 2, and

log counts per million (logCPM) > 2 were identified as

significant differentially expressed genes between BRD and

non-BRD animals. The non-BRD/healthy control animals

were set as the reference group in the contrast analysis,

therefore, DE genes that were upregulated or

downregulated in BRD animals were relative to the non-

BRD animals.

Functional enrichment for the DE genes was performed

using the Ingenuity Pathway Analysis software (IPA; www.

Ingenuity.com) using their Ensembl gene ID and their log2
fold change as the inputs. In this study, biological functions

were considered significantly enriched if the p-value for the

overlap comparison test between the input gene list and the

knowledge base of IPA for a given biological function was less

than 0.05.

eQTL analysis and eQTL annotation

We further performed eQTL analysis to identify associations

between expression of differentially expressed genes and SNP

genotypes. Log transformed normalized counts (log2CPM) values

of 93 protein-coding DE genes on autosomes and 207,038 SNPs

were used in the eQTL analysis. The analysis of the linear model was

fitted to test the association of each single gene expression and

genotype classes of a SNP implemented in the R package

MatrixEQTL (Shabalin, 2012). “Feedlot”, “sequencing batch” and

“genomic breed composition of animals” were also fitted in the

model to correct for any variability in gene expression that could

have been due to these factors. SNPs located within 1 Mbp around

the gene transcription starting site (TSS) were tested for cis-

associations, while SNPs located further than 1Mbp or on other

chromosomes were tested for trans-associations. Only those

associations with FDR <0.05 were considered significant cis- or

trans-eQTLs. The significant eQTLs were then annotated as located

in the TSS-promoter, exonic, intronic, transcription termination site

(TTS) or intergenic regions using the annotatePeaks.pl script of

HOMER software (http://homer.ucsd.edu/homer/ngs/annotation.

html).

Sample preparation and nuclear magnetic
resonance spectroscopy

The plasma metabolome was generated at The Metabolomics

Innovation Centre (TMIC, Edmonton, AB, Canada). Samples

underwent a deproteinization step involving ultra-filtration as

previously described by Psychogios et al. (2011) to remove

proteins whose presence affects the identification of small

molecular weight metabolites by NMR spectroscopy. Prior to

filtration, 3 KDa cut-off centrifugal filter units (Amicon

Microcon YM-3) were rinsed five times each with 0.5 ml of

H2O and centrifuged (10,000 rpm for 10 min) to remove residual

glycerol bound to the filter membranes. Aliquots of each plasma

sample were then transferred into the centrifuge filter devices and

spun (10,000 rpm for 20 min) to remove macromolecules

(primarily protein and lipoproteins) from the sample. The

filtrates were checked visually for any evidence that the

membrane was compromised and for such samples the

filtration process was repeated with a different filter and the
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filtrate inspected again. The subsequent filtrates were collected,

and the volumes were recorded. If the total volume of the sample

was under 250 µL an appropriate amount of 150 mM KH2PO4

buffer (pH 7) was added until the total volume of the sample was

173.5 µL. Any sample that had to have buffer added to bring the

solution volume to 173.5 uL was annotated with the dilution

factor and metabolite concentrations were corrected in the

subsequent analysis. Subsequently, 46.5 µL of a standard

buffer solution (54% D2O:46% 1.75 mM KH2PO4 pH 7.0 v/v

containing 5.84 mM DSS (2,2-dimethyl-2-silcepentane-5-

sulphonate)) was added to the sample.

The sample (250 µL) was then transferred to a 3 mm

SampleJet NMR tube for subsequent spectral analysis. All
1H-NMR spectra were collected on a 700 MHz Avance III

(Bruker) spectrometer equipped with a 5 mmHCN Z-gradient

pulsed-field gradient (PFG) cryoprobe. 1H-NMR spectra were

acquired at 25°C using the first transient of the nuclear

Overhauser enhancement spectroscopy (NOESY) pre-

saturation pulse sequence (noesy1dpr), chosen for its high

degree of quantitative accuracy (Saude et al., 2006). All FID’s

(free induction decays) were zero-filled to 250 K data points.

The singlet produced by the DSS methyl groups was used as an

internal standard for chemical shift referencing (set to 0 ppm)

and for quantification all 1H-NMR spectra were processed and

analyzed using the Chenomx NMR Suite Professional

Software package version 7.1 (Chenomx Inc., Edmonton,

AB, Canada). The Chenomx NMR Suite software allows for

qualitative and quantitative analysis of an NMR spectrum by

manually fitting spectral signatures from an internal database

to the spectrum. Specifically, the spectral fitting for metabolite

was done using the standard Chenomx 700 MHz metabolite

library. Typically, 90% of visible peaks were assigned to a

compound and more than 90% of the spectral area could be

routinely fit using the Chenomx spectral analysis software.

Most of the visible peaks are annotated with a compound

name. Each spectrum was processed and analyzed by at least

two NMR spectroscopists to minimize compound

misidentification and misquantification.

Identification of significant metabolites
and their correlations with DE genes

Fifty-four metabolites were quantified by NMR analysis

followed by a logarithmic transformation to the raw data. The

transformed data followed a normal distribution and were

further adjusted by two fixed effects (feedlot and sex), and a

covariate of genomic breed composition in linear models. The

adjusted values were used to identify metabolites that had

concentrations significantly (FDR <0.05) different between

BRD and non-BRD animals using two independent sample

t-tests. Furthermore, the correlations between 31 significant

metabolites and 93 protein-coding DE genes were

computed in R.

Results

SNPs associated with BRD susceptibility

In this study, no significant SNPs remained after FDR

correction. However, two SNPs (Chr5:25858264 on

chromosome 5 and BovineHD1800016801 on chromosome

18) were above the suggestive line (p-value <1 × 10−5)

(Table 1; Supplementary Figure S2). Both SNPs are in intronic

regions of genes, i.e., SNP Chr5:25858264 is located in the first

intron of SMUG1 while BovineHD1800016801 is located in the

third intron of IGLON5.

Transcriptomic architecture of BRD
infection in feedlots

At the significance threshold of log2FC>2, logCPM >2 and

FDR <0.01, 101 genes were identified as differentially expressed

between BRD and non-BRD animals (non-BRD as the reference

FIGURE 1
Volcano plot of 7 down-regulated genes (blue) and 94 up-
regulated genes (red) for BRD animals.
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group), of which 7 and 94 were downregulated and upregulated

respectively in the infected animals (Figure 1). The full list of DE

genes with related descriptions and statistics is provided in

Table 2. Our result showed that interleukin 3 receptor subunit

alpha (IL3RA) was the most significant (FDR = 6.6 × 10−81)

upregulated gene, whereas hemoglobin subunit beta (HBB) was

the most significant (FDR = 1.25 × 10−24) downregulated gene

(Table 2). In terms of expression differences, leucine rich alpha-2-

glycoprotein 1 (LRG1) showed the highest expression (log2FC =

7.35) in the BRD animals relative to non-BRD animals, while

hemoglobin subunit alpha 1 (HBA1) showed the lowest

expression (log2FC = -3.19) in the same animal contrast

(Table 2).

Of the 101 DE genes, 88 were successfully mapped to the IPA

database for functional enrichment analysis. The DE genes were

significantly (p-value <0.05) involved in 17 immune response

related biological functions of which inflammatory response was

the most significant with 60 DE genes. The top 10 most enriched

functions are presented in Table 3, while all 17 functions are

presented in Supplementary Table S1. Within the inflammatory

response function, 3 DE genes (ARG1, ALOX15, and ALAS2)

were downregulated, and 57 DE genes (e.g., IL3RA, LRG1, BPI,

CFB, GPR84, MMP9, and CA4) were upregulated in the BRD

animals. Furthermore, within the inflammatory response

function, enriched innate immune response related processes

such as leukocyte immune response, activation and migration of

macrophages and neutrophils, and antimicrobial response were

predicted to be activated or upregulated in the BRD animals

(Figure 2). Adaptive immune response related processes such as

activation of antigen processing cells, and cellular immune

response were also identified as enriched, and predicted to be

activated in the BRD animals. Some of the key DE genes as

demonstrated by their involvement in numerous immune

functions included LCN2, S100A8, S100A9, S100A12, LTF,

IL12B, CHI3L1, and DEFB4A (Figure 2).

Gene expression and genotype
associations

At FDR <0.05, we identified 420 cis-eQTLs and 144 trans-

eQTLs associated with the expression of DE genes

(Supplementary Table S2, S3). Some cis-eQTLs and trans-

eQTLs were associated with more than one DE gene

associated with BRD. For example, the SNP Chr6:

110850346 was cis-eQTL associated with the expression of

the DE gene BST1 and a trans-eQTL associated with the

expression of another 6 DE genes (GPR84, NUPR1, ART5,

CFB, SLC6A2, and ADGRE1). Similarly, the expression of a

DE gene could also be associated with more than one cis- or

trans-eQTLs. Of note, the eQTL analysis showed that the SNP

(Chr5:25858264) with the smallest p-value in GWAS

(Table 1) was cis-eQTL associated with the expression of

the DE gene GPR84 (Supplementary Table S2, S3).

Additionally, 2 potential trans-eQTL hotspots

(rs207554348 on chromosome 3 and Chr2:118164919 on

chromosome 2) were observed (Supplementary Table S3).

Finally, the eQTL annotation showed that the eQTL SNPs

identified in this study were mostly located in intronic and

exonic regions rather than intergenic regions (Figure 3;

Supplementary Table S4). The high proportion of eQTLs

observed in intronic and exonic regions may be due to the

uneven distribution of SNPs used in this study, with 58.8% of

SNPs derived from RNA-seq data.

Metabolites associated with BRD infection
and correlations between metabolites and
DE genes

A total of 31 metabolites showed significant abundance

difference between BRD and non-BRD animals (Table 4).

Twenty metabolites had lower abundance in BRD animals

as compared to non-BRD animals, for example, citric acid

showed the most significant difference, and was significantly

more abundant in non-BRD animals (Table 4). However, we

also observed a few metabolites that were more strongly

abundant in BRD animals than non-BRD animals, such as

D-mannose, L-phenylalanine, and L-carnitine. In addition,

17 significant metabolites also showed significant

(FDR <0.05) correlations with the expression of DE genes

(Supplementary Table S5). It is worth noting that

15 metabolites had significant correlations with over 74 DE

genes, with citric acid, 3-hydroxybutyric acid, acetic acid,

L-glutamic acid, D-mannose, L-carnitine, showing

correlation with more than 90 DE genes. For those

metabolites that were more significantly associated with

BRD, they also have a greater number of correlations with

DE genes. With respect to DE genes, our results also showed

that most (88) of the DE genes had significant correlations

TABLE 1 SNPs significantly associated with BRD susceptibility.

SNP Chromosome Position (bp) Minor allele frequency b se p-value

Chr5:25858264 5 25858264 0.066 1.181 0.261 5.85 × 10−6

BovineHD1800016801 18 57400705 0.203 0.674 0.151 7.65 × 10−6
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TABLE 2 Differentially expressed genes between BRD and non-BRD animals.

Gene ID Gene name Log2 (fold change) Log counts per million p-value FDR

ENSBTAG00000054844 HBA1 −3.188 11.000 3.80 × 10−18 4.95 × 10−17

ENSBTAG00000051412 HBA −3.178 10.999 5.02 × 10−18 6.47 × 10−17

ENSBTAG00000037644 HBB −3.050 11.089 4.35 × 10−26 1.25 × 10−24

ENSBTAG00000013178 ALAS2 −2.542 5.314 2.27 × 10−20 3.70 × 10−19

ENSBTAG00000004824 REEP1 −2.419 2.113 1.02 × 10−14 9.21 × 10−14

ENSBTAG00000011990 ALOX15 −2.347 4.915 1.35 × 10−21 2.46 × 10−20

ENSBTAG00000012403 ARG1 −2.157 2.589 7.74 × 10−13 5.65 × 10−12

ENSBTAG00000011465 MYBPH 2.002 6.087 1.16 × 10−33 6.80 × 10−32

ENSBTAG00000010464 MN1 2.009 2.526 4.76 × 10−61 3.00 × 10−58

ENSBTAG00000006156 BST1 2.012 5.490 3.76 × 10−43 5.60 × 10−41

ENSBTAG00000020430 GLT1D1 2.020 3.082 5.24 × 10−43 7.63 × 10−41

ENSBTAG00000050072 2.047 2.427 1.30 × 10−24 3.23 × 10−23

ENSBTAG00000052465 2.048 6.792 2.32 × 10−37 1.97 × 10−35

ENSBTAG00000013368 ANKRD22 2.049 3.861 5.75 × 10−36 4.16 × 10−34

ENSBTAG00000002148 RAB3D 2.053 7.196 4.63 × 10−53 1.36 × 10−50

ENSBTAG00000023648 ART5 2.055 7.114 1.13 × 10−45 2.00 × 10−43

ENSBTAG00000011037 RBPMS2 2.067 2.973 1.10 × 10−39 1.16 × 10−37

ENSBTAG00000039556 WIPI1 2.076 4.455 4.77 × 10−48 1.05 × 10−45

ENSBTAG00000006921 ABCA6 2.081 6.472 2.33 × 10−49 5.61 × 10−47

ENSBTAG00000013555 ACVR1B 2.088 5.897 6.85 × 10−60 3.49 × 10−57

ENSBTAG00000000783 TGFA 2.093 2.667 1.94 × 10−36 1.47 × 10−34

ENSBTAG00000004150 NRG1 2.093 4.792 1.59 × 10−50 4.13 × 10−48

ENSBTAG00000022779 OLFM4 2.097 3.277 2.97 × 10−28 1.04 × 10−26

ENSBTAG00000006990 MYRF 2.114 2.578 2.04 × 10−25 5.47 × 10−24

ENSBTAG00000037826 2.115 2.446 5.59 × 10−33 3.01 × 10−31

ENSBTAG00000004716 RETN 2.133 5.036 1.76 × 10−19 2.63 × 10−18

ENSBTAG00000014046 BPI 2.135 5.648 1.67 × 10−15 1.64 × 10−14

ENSBTAG00000018016 NUPR1 2.184 5.146 1.94 × 10−26 5.74 × 10−25

ENSBTAG00000014122 FOXRED1 2.188 6.744 1.28 × 10−72 3.39 × 10−69

ENSBTAG00000054765 PGLYRP4 2.210 2.848 6.61 × 10−49 1.54 × 10−46

ENSBTAG00000011677 H1-2 2.226 6.778 4.82 × 10−46 8.87 × 10−44

ENSBTAG00000013290 DYSF 2.233 7.225 1.98 × 10−59 9.37 × 10−57

ENSBTAG00000002635 PGLYRP1 2.247 2.172 3.56 × 10−16 3.76 × 10−15

ENSBTAG00000018223 CHI3L1 2.257 8.313 4.32 × 10−57 1.59 × 10−54

ENSBTAG00000010065 TRPC5 2.278 3.910 3.87 × 10−44 6.10 × 10−42

ENSBTAG00000007169 P2RX1 2.298 4.356 1.25 × 10−34 7.89 × 10−33

ENSBTAG00000001051 OSCAR 2.324 7.220 6.67 × 10−45 1.12 × 10−42

ENSBTAG00000013205 IL1RAP 2.331 5.612 2.63 × 10−47 5.44 × 10−45

ENSBTAG00000006904 TNS2 2.332 2.086 4.01 × 10−36 2.92 × 10−34

ENSBTAG00000004741 IL12B 2.355 2.380 3.14 × 10−37 2.63 × 10−35

ENSBTAG00000008389 HTRA1 2.358 2.118 1.89 × 10−31 8.88 × 10−30

ENSBTAG00000001785 TGM3 2.362 9.942 1.06 × 10−40 1.23 × 10−38

ENSBTAG00000018446 GCA 2.363 3.848 1.22 × 10−30 5.35 × 10−29

ENSBTAG00000013201 ALOX5AP 2.407 6.937 6.31 × 10−47 1.23 × 10−44

ENSBTAG00000020257 PTPN5 2.423 4.813 5.81 × 10−49 1.37 × 10−46

ENSBTAG00000018134 AREG 2.446 2.160 3.37 × 10−58 1.31 × 10−55

ENSBTAG00000003920 TGM1 2.457 2.683 2.95 × 10−36 2.17 × 10−34

ENSBTAG00000010007 MAPK13 2.484 4.014 1.08 × 10−48 2.47 × 10−46

(Continued on following page)
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TABLE 2 (Continued) Differentially expressed genes between BRD and non-BRD animals.

Gene ID Gene name Log2 (fold change) Log counts per million p-value FDR

ENSBTAG00000003519 NOL3 2.487 2.563 1.27 × 10−59 6.23 × 10−57

ENSBTAG00000005668 SLC39A8 2.494 2.926 5.96 × 10−46 1.08 × 10−43

ENSBTAG00000012638 S100A12 2.520 11.601 2.66 × 10−55 8.20 × 10−53

ENSBTAG00000008428 UPP1 2.549 7.233 9.94 × 10−57 3.47 × 10−54

ENSBTAG00000003353 SLC6A2 2.576 2.389 1.48 × 10−45 2.58 × 10−43

ENSBTAG00000048737 DEFB10 2.576 3.856 1.00 × 10−29 4.06 × 10−28

ENSBTAG00000006523 SOD2 2.607 9.705 7.47 × 10−62 5.21 × 10−59

ENSBTAG00000016566 ITGA9 2.618 3.070 4.37 × 10−31 1.98 × 10−29

ENSBTAG00000049416 RAB20 2.654 5.400 3.32 × 10−70 7.33 × 10−67

ENSBTAG00000001292 LTF 2.658 3.642 9.82 × 10−17 1.10 × 10−15

ENSBTAG00000021887 DPYS 2.734 2.126 1.13 × 10−30 4.97 × 10−29

ENSBTAG00000019669 CD163 2.741 8.221 4.50 × 10−62 3.51 × 10−59

ENSBTAG00000046152 MGAM 2.775 5.328 7.60 × 10−44 1.16 × 10−41

ENSBTAG00000013706 MEGF9 2.820 5.633 4.75 × 10−60 2.52 × 10−57

ENSBTAG00000017969 CA4 2.873 3.695 2.72 × 10−69 5.15 × 10−66

ENSBTAG00000015592 GPR84 2.910 3.862 1.86 × 10−56 6.32 × 10−54

ENSBTAG00000017251 SLC26A8 2.925 2.737 6.38 × 10−57 2.28 × 10−54

ENSBTAG00000020406 GPC3 2.945 3.509 1.20 × 10−34 7.61 × 10−33

ENSBTAG00000018280 SLC28A3 2.975 6.619 4.28 × 10−45 7.27 × 10−43

ENSBTAG00000012640 S100A8 3.012 10.038 5.43 × 10−58 2.06 × 10−55

ENSBTAG00000020580 TCN1 3.017 8.629 2.11 × 10−58 8.74 × 10−56

ENSBTAG00000006505 S100A9 3.030 11.263 1.04 × 10−60 6.26 × 10−58

ENSBTAG00000031950 RAB3IP 3.040 6.690 1.64 × 10−75 1.09 × 10−71

ENSBTAG00000019330 PROK2 3.058 4.710 1.28 × 10−62 1.06 × 10−59

ENSBTAG00000002233 CPNE2 3.130 4.908 1.61 × 10−58 6.88 × 10−56

ENSBTAG00000021240 DCSTAMP 3.132 4.527 4.67 × 10−47 9.23 × 10−45

ENSBTAG00000006354 HP 3.149 9.301 3.26 × 10−48 7.32 × 10−46

ENSBTAG00000006221 ADGRG3 3.160 5.550 5.38 × 10−68 7.92 × 10−65

ENSBTAG00000006999 RYR1 3.309 5.942 1.85 × 10−60 1.02 × 10−57

ENSBTAG00000007239 TNFAIP6 3.348 3.882 3.97 × 10−55 1.20 × 10−52

ENSBTAG00000020676 MMP9 3.434 5.948 1.48 × 10−40 1.66 × 10−38

ENSBTAG00000014149 LCN2 3.446 6.952 8.55 × 10−44 1.29 × 10−41

ENSBTAG00000007901 ADGRE1 3.454 8.940 4.73 × 10−68 7.83 × 10−65

ENSBTAG00000000377 BMX 3.491 5.409 8.54 × 10−75 3.77 × 10−71

ENSBTAG00000002996 SHROOM4 3.491 3.225 2.38 × 10−65 2.63 × 10−62

ENSBTAG00000053557 DEFB4A 3.640 3.012 2.60 × 10−28 9.14 × 10−27

ENSBTAG00000009773 KREMEN1 3.696 6.824 8.66 × 10−64 8.20 × 10−61

ENSBTAG00000049808 IL3RA 3.894 6.830 4.98 × 10−85 6.60 × 10−81

ENSBTAG00000048720 4.248 2.863 5.64 × 10−24 1.32 × 10−22

ENSBTAG00000008951 ALPL 4.327 7.425 1.10 × 10−61 7.29 × 10−59

ENSBTAG00000046158 CFB 4.360 5.400 3.19 × 10−66 3.84 × 10−63

ENSBTAG00000050618 4.403 4.647 2.75 × 10−58 1.10 × 10−55

ENSBTAG00000019627 THY1 4.777 3.655 2.17 × 10−55 6.85 × 10−53

ENSBTAG00000052012 4.788 5.793 9.54 × 10−37 7.57 × 10−35

ENSBTAG00000010273 EREG 4.817 2.213 5.84 × 10−62 4.30 × 10−59

ENSBTAG00000054882 4.990 4.305 3.10 × 10−38 2.85 × 10−36

ENSBTAG00000051132 5.114 5.241 1.08 × 10−42 1.51 × 10−40

ENSBTAG00000039037 SERPINB4 5.203 6.364 3.02 × 10−51 8.00 × 10−49

(Continued on following page)
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with more than 10 metabolites associated with BRD. Seventy

percent of significant correlations between DE genes and

metabolites were negative. In other words, in general, BRD

animals had higher expression of DE genes and lower

concentrations of metabolites in blood tissues. However,

there are some interesting exceptions, such as D-mannose,

L-phenylalanine, and L-carnitine, which were positively

correlated with DE genes and also more abundant in BRD

animals.

Discussion

The BRD and non-BRD animals used in the current study

were fed and raised in the same feedlots under similar

management and environmental factors. It is therefore

expected that all animals in the study were equally exposed to

BRD causing pathogens, hence, all BRD animals are assumed to

be susceptible while non-BRD animals are resistant. Disease

susceptibility and resistance were defined in relation to BRD

TABLE 3 Ten topmost significantly enriched biological functions associated with differentially expressed genes.

Biological function p-value range Genes involved in the biological function

Inflammatory Response 3.22 ×
10−20–2.06 × 10−3

ADGRE1, ADGRG3, ALAS2, ALOX15, ALOX5AP, ALPL, AREG, ARG1, BMX, BPI, BST1, CA4, CD163, CFB,
CHI3L1, DEFB4A/DEFB4B, DPYS, DYSF, EREG, GCA, GPC3, GPR84, HP, HTRA1, IL12B, IL1R2, IL1RAP,
IL3RA, ITGA9, LCN2, LRG1, LTF, MAPK13, MGAM, MMP9, MYRF, NRG1, NUPR1, OLFM4, OSCAR,
P2RX1, PGLYRP1, PGLYRP4, PROK2, RAB3D, RETN, S100A12, S100A8, S100A9, SERPINB4, SLC39A8,
SLC6A2, SOD2, TCN1, TGFA, TGM3, THY1, TNFAIP6, TRPC5, UPP1

Connective Tissue Disorders 1.55 ×
10−14–1.62 × 10−3

ALAS2, ALOX15, ALOX5AP, ALPL, AREG, ARG1, BMX, BPI, CA4, CD163, CFB, CHI3L1, DCSTAMP, DPYS,
GCA, GPC3, HP, HTRA1, IL12B, IL1R2, IL3RA, ITGA9, KREMEN1, LCN2, LTF, MMP9, PGLYRP1, PROK2,
RETN, S100A12, S100A8, S100A9, SLC39A8, SLC6A2, SOD2, TGFA, TNFAIP6

Inflammatory Disease 1.55 ×
10−14–1.83 × 10−3

ADGRE1, ALAS2, ALOX15, ALOX5AP, ALPL, AREG, ARG1, BMX, BPI, CA4, CD163, CFB, CHI3L1, DEFB4A/
DEFB4B, DPYS, EREG, GCA, H1-2, HP, HTRA1, IL12B, IL1R2, IL3RA, ITGA9, LCN2, LRG1, LTF, MGAM,
MMP9, NRG1, OLFM4, PGLYRP1, PGLYRP4, PROK2, RETN, S100A12, S100A8, S100A9, SERPINB4,
SLC39A8, SLC6A2, SOD2, TCN1, TGFA, TGM3, THY1, TNFAIP6

Organismal Injury and
Abnormalities

1.55 ×
10−14–2.07 × 10−3

ABCA6, ACVR1B, ADGRE1, ADGRG3, ALAS2, ALOX15, ALOX5AP, ALPL, ANKRD22, AREG, ARG1, ART5,
BMX, BPI, BST1, CA4, CD163, CFB, CHI3L1, CPNE2, DCSTAMP, DEFB4A/DEFB4B, DPYS, DYSF, EREG,
FOXRED1, GCA, GLT1D1, GPC3, GPR84, H1-2, HBD, HP, HTRA1, IL12B, IL1R2, IL1RAP, IL3RA, ITGA9,
KREMEN1, LCN2, LRG1, LTF, MAPK13, MEGF9, MGAM, MMP9, MN1, MYBPH, MYRF, NOL3, NRG1,
NUPR1, OLFM4, OSCAR, P2RX1, PGLYRP1, PGLYRP4, PROK2, PTPN5, RAB20, RAB3D, RAB3IP, RBPMS2,
REEP1, RETN, RYR1, S100A12, S100A8, S100A9, SERPINB4, SHROOM4, SLC26A8, SLC28A3, SLC39A8,
SLC6A2, SOD2, TCN1, TGFA, TGM1, TGM3, THY1, TNFAIP6, TNS2, TRPC5, UPP1, WIPI1

Immunological Disease 3.58 ×
10−11–2.05 × 10−3

ADGRG3, ALAS2, ALOX15, ALOX5AP, ALPL, AREG, ARG1, BMX, BPI, CD163, CFB, CHI3L1, DEFB4A/
DEFB4B, GCA, GPC3, GPR84, HP, IL12B, IL1R2, IL3RA, ITGA9, LCN2, LTF, MGAM, MMP9, NRG1,
PGLYRP1, PROK2, RETN, S100A12, S100A8, S100A9, SERPINB4, SLC6A2, SOD2, TGFA, TGM3, TNFAIP6

Infectious Diseases 1.62 × 10−8–1.42 × 10−3 ALOX5AP, ALPL, BPI, CD163, CFB, DEFB4A/DEFB4B, DYSF, GCA, GPC3, H1-2, HP, IL12B, IL1R2, IL3RA,
LCN2, LTF, MGAM, MMP9, MYRF, NRG1, OLFM4, P2RX1, PGLYRP1, RAB3D, RETN, S100A12, S100A8,
S100A9, SLC6A2, TCN1

Respiratory Disease 1.62 × 10−8–1.73 × 10−3 ABCA6, ACVR1B, ALAS2, ALOX15, ALPL, ANKRD22, AREG, ARG1, BMX, BPI, BST1, CA4, CD163, CFB,
CHI3L1, CPNE2, DCSTAMP, DPYS, DYSF, EREG, FOXRED1, GLT1D1, GPC3, GPR84, H1-2, HP, HTRA1,
IL12B, IL1RAP, IL3RA, ITGA9, LCN2, LTF, MAPK13, MEGF9, MGAM,MMP9, MN1, MYBPH, MYRF, NOL3,
NRG1, NUPR1, OLFM4, PGLYRP1, PGLYRP4, PTPN5, RETN, RYR1, S100A12, S100A8, S100A9, SERPINB4,
SHROOM4, SLC6A2, SOD2, TCN1, TGFA, TGM3, THY1, TNFAIP6, TNS2, TRPC5

Antimicrobial Response 2.01 × 10−8–2.57 × 10−4 BPI, DEFB4A/DEFB4B, IL12B, LCN2, LTF, PGLYRP1, PGLYRP4, S100A12, S100A8, S100A9

Psychological Disorders 2.55 × 10−8–1.83 × 10−3 ALOX15, ARG1, CA4, CFB, CHI3L1, DYSF, HP, HTRA1, IL12B, IL1R2, LCN2, LRG1, LTF, MMP9, NRG1,
PTPN5, RYR1, S100A9, SLC6A2, SOD2, TGM1, THY1, UPP1

Metabolic Disease 1.81 × 10−7–7.5 × 10−4 ALOX15, ALOX5AP, ALPL, ARG1, BPI, CA4, CFB, CHI3L1, DYSF, GPC3, HBD, HP, HTRA1, IL12B, IL1R2,
IL3RA, LCN2, LTF, MGAM, MMP9, PTPN5, RETN, S100A8, S100A9, SLC6A2, SOD2, TGM1, THY1

TABLE 2 (Continued) Differentially expressed genes between BRD and non-BRD animals.

Gene ID Gene name Log2 (fold change) Log counts per million p-value FDR

ENSBTAG00000048835 5.317 7.656 8.80 × 10−48 1.91 × 10−45

ENSBTAG00000049569 5.372 6.973 1.99 × 10−49 4.88 × 10−47

ENSBTAG00000006343 IL1R2 5.595 7.513 4.97 × 10−56 1.61 × 10−53

ENSBTAG00000013356 CATHL3 6.087 4.373 5.49 × 10−33 2.97 × 10−31

ENSBTAG00000031647 LRG1 7.348 4.231 2.37 × 10−74 7.85 × 10−71
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in general as a multifactorial and multi-pathogen disease, and not

according to specific pathogens. Based on this assumption, two

SNPs (Chr5:25858264 and BovineHD1800016801) associated

with BRD susceptibility in beef cattle were identified through

GWAS (Table 1). The most significant SNP (Chr5:25858264)

explained 17% of the phenotypic variance for BRD susceptibility.

This implies that this SNP could be a major quantitative trait

nucleotide or in linkage disequilibrium with a major QTL for

BRD susceptibility in the studied population. However, the

proportion of phenotypic variance explained by significant

SNPs in the current study might have been overestimated

because of the limited number of animals used. In addition,

the low coverage depth of SNP calling and low minor allele

frequency of Chr5:25858264 may have also led to a false-positive

result. Thus, future research utilizing a larger sample size and

higher whole genome sequencing depth are warranted to provide

more power for fine mapping this QTL and identifying the causal

gene and mutation for BRD resistance.

In addition, results from our study revealed substantial

expression differences of 101 genes in the blood tissue of BRD

and healthy animals. About 93% of these DE genes were

upregulated in the BRD animals (Table 2). Among these

upregulated genes, IL3RA and LRG1 showed the strongest

association with BRD in terms of statistical significance and

fold change, respectively. IL3RA encodes the protein of

interleukin 3 receptor subunit alpha which is a cytokine

receptor protein for interleukin 3 (IL3), colony stimulating

factor 2 (CSF2/GM-CSF) and interleukin 5 (IL5) (Milatovich

et al., 1993). The cytokine IL3 is generated from T-cells and stem

cells, and is involved in macrophage activation and regulation of

FIGURE 2
The inflammatory response was identified as the most significant (p-value <0.05) immune-related function that DE genes were involved in.
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cytokine production (Frendl, 1992). On the other hand, IL-5 is

produced by CD4+ T-cells and causes B-cell growth factor and

differentiation, IgA selection, eosinophil activation, and

increased production of innate immune cells (Akdis et al.,

2011). This study also identified DE genes (IL1R2, IL1RAP,

and IL12B) related to interleukin-1 (IL-1) and interleukin-12

(IL-12) which cause lymphocyte activation, macrophage

stimulation, increased leukocyte adhesion and release of acute

phase proteins by the liver, or induced interferon gamma

production by T-cells and natural killer cells (Arena et al.,

1998; Akdis et al., 2011; Dinarello, 2018; Jiang et al., 2018). It

is worth noting that IL3RA and LRG1 have been reported to be

associated with BRD in previous transcriptomic studies (Tizioto

et al., 2015; Scott et al., 2020; Jiminez et al., 2021). LRG1 encodes

the protein of leucine rich alpha-2-glycoprotein one that has been

reported to be packaged into the granule compartment of human

neutrophils and secreted upon neutrophil activation (Druhan

et al., 2017). For downregulated genes, the top 3 genes (HBA1,

HBA, and HBB) are all related to hemoglobin–the oxygen-

carrying protein within red blood cells. Specifically, HBA1 and

HBA encode for α-globin, and HBB encodes β-globin, which are

the twomain globins that compose hemoglobin (Marengo-Rowe,

2006). Thus, the low expressed level of HBA1, HBA, and HBB

along with inflammation may indicate anemia of inflammation

in infected cattle (BRD susceptible cattle). Additionally, anemia

of inflammation could cause normal or sometimes increased

amount of iron stored in tissues, but a low level of iron in blood

(Nemeth and Ganz, 2014; Fraenkel, 2017). Iron homeostasis is

involved in oxygen transport, cellular respiration, and metabolic

processes (Ali et al., 2017). The regulation of iron concentration

in blood also plays an important role in modulating bacterial

infection and contributes to the progression of lung disease

(Roehrig et al., 2007; Ali et al., 2017), which could be one of

the factors associated with animal susceptibility to BRD. Future

studies should determine the relationship between iron levels and

susceptibility to BRD in feedlot animals to investigate this

hypothesis.

Some of the DE genes identified in the current study have

been identified as associated with BRD in beef cattle in other

similar studies investigating the lymph node tissue (Tizioto et al.,

2015) bronchial epithelial cells (N’jai et al., 2013), and blood

(Scott et al., 2020; Jiminez et al., 2021). For example, compared

with the results of Tizioto et al. (2015), 26, 35, 29, 39, 20, and 8 of

DE genes identified in this study were common with those

identified in the lymph node of animals who were challenged

by BRSV, IBR, BVDV, M. haemolytica, P. multocida, and M.

bovis, respectively (overlapping genes are shown in the

Supplementary Table S6). In addition to identifying DE genes

specific to individual challenges, Tizioto et al. (2015) found

25 genes expressed differentially in all the infections, of which

5 genes (S100A8, S100A9, MMP9, TGM3, and PGLYRP1) were

also identified as DE genes in the current study. These genes may

be differentially expressed in all pathogen challenges because they

TABLE 4 Significant metabolites between BRD and non-BRD animals.

Metabolite t-value p-value FDR

Citric acid −20.226 5.71 × 10−39 3.08 × 10−37

D-Mannose 12.979 1.28 × 10−21 3.45 × 10−20

Acetic acid −12.277 7.88 × 10−20 1.42 × 10−18

Isobutyric acid −11.291 2.62 × 10−17 3.54 × 10−16

L-Phenylalanine 97.038 2.89 × 10−14 3.12 × 10−12

3-Hydroxybutyric acid −94.871 1.01 × 10−12 9.12 × 10−12

L-Glutamine −89.717 1.97 × 10−11 1.52 × 10−10

L-Glutamic acid −86.547 1.20 × 10−10 8.08 × 10−10

Tyrosine −7.910 7.71 × 10−10 4.63 × 10−8

L-Carnitine 78.243 1.24 × 10−9 6.67 × 10−8

Betaine −71.983 3.65 × 10−7 1.79 × 10−6

L-Threonine −62.151 5.78 × 10−5 2.60 × 10−4

Isopropanol 38.856 1.58 × 10−4 4.27 × 10−4

Malonate −36.215 4.11 × 10−4 1.06 × 10−3

Glycine −35.156 5.95 × 10−4 1.46 × 10−3

L-Acetylcarnitine 57.995 4.39 × 10−4 1.82 × 10−3

L-Serine −32.186 1.61 × 10−3 3.78 × 10−3

Methionine −2.899 4.36 × 10−3 9.81 × 10−3

L-Proline −5.404 2.81 × 10−3 1.08 × 10−2

Dimethylglycine 27.494 6.78 × 10−3 1.42 × 10−2

Choline −27.472 6.82 × 10−3 1.42 × 10−2

2-Hydroxyisovalerate 27.148 7.48 × 10−3 1.50 × 10−2

L-Aspartate −26.911 8.01 × 10−3 1.54 × 10−2

L-Lactic acid 25.391 1.22 × 10−2 2.28 × 10−2

Valine −24.949 1.38 × 10−2 2.48 × 10−2

L-Leucine 24.787 1.44 × 10−2 2.51 × 10−2

Acetone 23.818 1.86 × 10−2 3.14 × 10−2

L-Lysine 22.934 2.34 × 10−2 3.82 × 10−2

Urea −22.647 2.51 × 10−2 3.99 × 10−2

L-Asparagine −50.932 1.14 × 10−2 4.11 × 10−2

Sarcosine −21.973 2.97 × 10−2 4.58 × 10−2

FIGURE 3
Histogram of the distribution of eQTLs by genic regions.
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are related to innate immune cells. For example, S100A8 and

S100A9 are expressed in neutrophils and monocytes (Edgeworth

et al., 1991) and are known danger-associated molecular patterns

that activate innate immune response by binding to pattern

recognition receptors of the innate immune cells in response

to pathogenic attacks (Schiopu and Cotoi, 2013). Additionally.

N’jai et al. (2013) reported the top 70 DE genes identified in

bovine bronchial epithelial cells, and three of these genes (CA4,

TNFAIP6, and HP) were identified in our current study, as well as

previous studies (Tizioto et al., 2015; Jiminez et al., 2021).

Comparing our results with DE genes identified in blood

samples from other studies (Scott et al., 2020; Jiminez et al.,

2021), more common DE genes, such as LRG1, CFB, and

ALOX15, were observed. This reveals that the DE genes

associated with BRD in different populations are relatively

consistent. Furthermore, BRD is a polymicrobial disease that

is usually the result of co-infection of several common viral and

bacterial pathogens (Dabo et al., 2008; Rice et al., 2008; Griffin

et al., 2010; Klima et al., 2014). The infection of different

pathogens may cause different immune responses and result

in related gene expression in the host (N’jai et al., 2013; Tizioto

et al., 2015). When comparing the results of this study to those of

Tizioto et al. (2015), the infection process in our population

seems to involve multiple pathogens as well. However, the

expression of some genes is associated with more than one

pathogen and some genes are expressed in response to all

pathogen infections (N’jai et al., 2013; Tizioto et al., 2015)

makes it difficult to distinguish specific pathogen infections

based on gene expression alone. In this study, the study

design and the objectives were to determine common immune

responses to BRD infection and to identify DE genes that could

be used in different populations and feedlots. Future studies to

evaluate the influence of specific pathogens on gene expression in

blood are recommended. This may help identify pathogen-

specific DE genes for better control and treatment of BRD.

Investigation into the biological involvement of the DE genes

revealed inflammatory response as the most significant enriched

function. In animals, inflammatory response is a biological

response of the immune system to injurious stimuli, such as

pathogen presence, damaged cells and toxic compounds

(Ferrero-Miliani et al., 2007; Medzhitov, 2010). This response

is aimed at clearing the immune insulting agents and initiating

healing (Ferrero-Miliani et al., 2007; Medzhitov, 2010). Upon

recognition of the pathogenic agents, the immune system

responds to such attack by recruiting and activating the

phagocytic cells such as macrophages and neutrophils, and

those phagocytes that are tasked with the immediate

destruction and clearing of the pathogenic agents from the

body (Ackermann et al., 2010; Mantovani et al., 2011).

Interestingly, activation and recruitment of both neutrophils

and macrophages were among the processes identified as

enriched within the inflammatory response in the current

FIGURE 4
Regional Manhattan plot (A) for all SNPs around 1 Mbp up- and down-stream of BPI. SNP rs209419196 (red dot) is the most significant SNP
associated with expression of BPI. Violin plot (B) of the effects of three genotypes (CC, CT, and TT) of rs209419196 on the expression of BPI. The
differences in BPI expression among CC, CT, and TT were significant (p-value <0.05).
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study (Figure 2). These processes were predicted to be activated

in the BRD animals compared to the non-BRD animals,

indicating that the inflammatory response plays a key role in

the defense against BRD pathogenic infection. Previous

transcriptome studies of blood and other immune organs also

demonstrated the significant association of the inflammatory

response with BRD status (N’jai et al., 2013; Scott et al., 2020).

Some of the interesting inflammatory response genes involved in

multiple innate immune responses include LCN2, S100A8,

S100A9, S100A12, LTF, IL12B, CHI3L1, DEFB4A, and MMP9.

In line with our results and our interpretation of these results,

Tizioto et al. (2015) reported DE genes and pathways that were

found to be common to all pathogen challenges that were

upregulated (e.g., S100A8, S100A9, and MMP9) in the

challenged (BRD) animals and appear to primarily be related

to the innate immune response. Additionally, we also observed

that some genes, such as LCN2 and LTF were predicted to be

involved in the cell-mediated immune response, indicating they

may be key genes to against viral infections. Therefore, functional

enrichment analyses of DE genes provided insights into the

biological background of BRD infection and host immune

response.

As BRD is caused by multiple viral and bacterial pathogens,

the identification of DE genes associated with immune responses

to pathogens was in line with our expectations. To study the

associations between DNA markers and gene expression, and

potential complex regulations of gene expression, we performed

eQTL analysis. The information obtained from eQTL analysis

could help to understand the GWAS results and illustrate the

causality between the significant SNP and BRD susceptibility. For

example, the SNP (Chr5:25858264) with the lowest p-value in

this GWAS showed a cis-effect on the DE gene GPR84

(Supplementary Table S2). The expression of GPR84 was

mainly observed in bone marrow, lung, and peripheral blood

leukocytes (Yousefi et al., 2001), and identified in cells of both the

innate and adaptive immune system, which plays a role in pro-

inflammatory responses, e.g., cytokine production (Alvarez-

Curto and Milligan, 2016; Zhang et al., 2016). The SNP Chr5:

25858264 is located downstream of GPR84, we speculate the

genomic region spanning the SNP might be hosting an enhancer

for GPR84 and hence modulate its expression. However, further

experimental evidence is needed to support this speculation. The

essential role of eQTL in explaining genetic variance and the

shaping of beef cattle phenotypes has been previously reported

(Xiang et al., 2022). Additionally, these results obtained from

eQTL analysis could help to pinpoint causal SNPs associated with

susceptibility to BRD. For example, Neibergs et al. (2014b)

reported a genomic region covering BPI as associated with

BRD susceptibility in Holstein calves, thus indicating that

variants within or near this gene have functional relevance in

modulating susceptibility to BRD in cattle. BPI was also a DE

gene associated with BRD in both the current and previous

studies (Tizioto et al., 2015; Jiminez et al., 2021). BPI encodes the

bactericidal permeability increasing protein, a critical protein

involved in neutralizing Gram-negative bacteria

lipopolysaccharide antigen while mediating and promoting

Gram-negative bacteria recognition by monocytes for

phagocytosis (Yu and Song, 2020). Through the eQTL

analysis, we further identified another likely causal SNP

among all variants within or near the gene BPI. The SNP

(rs209419196) was the most significant SNP (p-value <
2.1×10−6, FDR<0.006) among six cis-eQTLs associated with

the expression of BPI (Figure 4A), and the expression of BPI

was significantly (p-value <0.05) decreased as the number of “T”

alleles increased in the genotype (Figure 4B). According to the

eQTL annotation analysis, rs209419196 was predicted to be in

the promoter region of BPI, which is located 92 bp downstream

of the 5’ end of the transcription start site for the transcript

(ENSBTAT00000077785) of BPI. Therefore, the results for

eQTLs and their annotation not only provide important

reference information for GWAS interpretation and causal

SNP identification, but also provide additional insights into

potential molecular mechanisms of differential gene

expression related to disease state. Furthermore, the

identification of these SNP markers provides more functional

information that can be utilized to enhance genomic selection for

BRD resistance in beef cattle.

As BRD is a complex pathogenic interaction with multiple

etiologies and risk factors, it is difficult to control and prevent.

Conventionally, BRD diagnosis is based on clinical signs, and

varies among environment, calf caretakers, producers, and herd

veterinarians, often causing a high proportion of false-negative

and false-positive diagnoses (Moisá et al., 2019). Such diagnostic

inaccuracies lead to the progression of disease, misuse of

antimicrobials, production losses, and suboptimal animal

welfare outcomes (Moisá et al., 2019). Therefore, accurate

diagnostic methods for BRD are still needed. Blood

transcriptomic and metabolomic biomarkers have been

proposed to be used in the identification of BRD cattle in

feedlots (Blakebrough-Hall et al., 2020; Sun et al., 2020). In

this study, 101 DE genes were identified and the most

informative marker LRG1 has been previously identified as a

potential biomarker for different infections (e.g., active

tuberculosis) in humans (Wu et al., 2015; Fujimoto et al.,

2020; Yang et al., 2020; Ma et al., 2021). We also found

31 metabolites were significantly associated with BRD

infection, 13 of which were consistent with significant

metabolites (e.g., citric acid, D-mannose, and acetic acid)

identified by Blakebrough-Hall et al. (2020), even though the

metabolite profiles used in the two studies were not exactly the

same. In addition, 17 significant metabolites were significantly

correlated with DE genes and the majority of correlations were

negative (Supplementary Table S5), suggesting that generally

increased expression of DE genes could result in decreased

concentration/abundance of BRD-associated metabolites in

blood tissues of BRD animals, thereby negatively impacting
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the metabolism of sick animals. Therefore, we suggest that

combining such transcriptomic and metabolomic signatures

may be useful for BRD identification in feedlots. However,

validation in other independent beef cattle populations is

required before evaluating their performance and practicality.

Conclusion

Genomic, transcriptomic andmetabolomic data were applied

here to elucidate the genetic and molecular background of BRD

infection in feedlot beef cattle. Two SNPs associated with BRD

susceptibility were identified through GWAS. Transcriptomic

and functional analyses revealed 101 DE genes associated with

BRD infection. These genes were mainly involved in

inflammatory response processes such as recruitment and

activation of phagocytes. The most significant SNP (Chr5:

25858264) from the GWAS analysis was also a cis-eQTL

associated with a DE gene GPR84. This indicates that our

integrative analyses could help with the refining of GWAS

results and the identification of causal SNPs associated with

BRD susceptibility. Additionally, we found 31 metabolites

associated with BRD infection and 17 of them were correlated

with many DE genes, which indicated the potential biological

connections between DE genes and metabolites. Overall, this

preliminary multi-omics study illustrates the complex

relationships among different omics, which could improve the

understanding of genetic and molecular mechanisms underlying

the disease.
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