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The high cosine similarity between some single-base substitution

mutational signatures and their characteristic flat profiles could suggest

the presence of overfitting and mathematical artefacts. The newest version

(v3.3) of the signature database available in the Catalogue Of Somatic

Mutations In Cancer (COSMIC) provides a collection of 79 mutational

signatures, which has more than doubled with respect to previous

version (30 profiles available in COSMIC signatures v2), making more

critical the associations between signatures and specific mutagenic

processes. This study both provides a systematic assessment of the de

novo extraction task through simulation scenarios based on the latest

version of the COSMIC signatures and highlights, through a novel

approach using archetypal analysis, which COSMIC signatures are

redundant and more likely to be considered as mathematical artefacts.

29 archetypes were able to reconstruct the profile of all the COSMIC

signatures with cosine similarity >0.8. Interestingly, these archetypes

tend to group similar original signatures sharing either the same aetiology

or similar biological processes. We believe that these findings will be useful

to encourage the development of new de novo extraction methods avoiding

the redundancy of information among the signatures while preserving the

biological interpretation.
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Introduction

Somatic mutations in cancer are caused by a wide range of endogenous (i.e.

genome instability or deficiency in a DNA repair mechanism) or exogenous

(environmental exposures such as ultraviolet radiation or tobacco smoking)

mutagenic agents, which stratify over time. It has been hypothesised that a

mutational pattern in the genome can be deconvolved considering different

generative processes, each of them associated with a specific mutational signature

represented by 96 somatic mutation frequencies of six single nucleotide variants (C >
A: G > T, C >G: G > C, C > T: G > A, T > A: A > T, T > C: A > G, T >G: A > C) flanked by
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one nucleotide on each side (Alexandrov et al., 2013). The

latest version of the Catalogue Of Somatic Mutations In

Cancer (COSMIC) (Bamford et al., 2004) hosts 79 single-

base substitution (SBS) signatures extracted from

2,780 genomes of the Pan Cancer Analysis of Whole

Genomes (PCAWG) (as described in https://cancer.sanger.

ac.uk/signatures/sbs/) using SigProfilerExtractor (Islam et al.,

2022), an updated version of the original method based on

Non-Negative Matrix Factorization (NMF) proposed by

Alexandrov et al. (2020).

Although signature extraction analysis is becoming a

routine, there are some issues that should be further

investigated. Recently, some studies have highlighted

caveats and warnings in using these representations for

clinical applications (Maura et al., 2019; Koh et al., 2021).

Omichessan et al. (2019) did an empirical evaluation of the

main de novo extraction tools showing that the identification

of signatures is more difficult for tumours characterised by

multiple signatures having a small contribution, and pointing

out that different signatures might have very close cosine

similarity, as it was observed between COSMIC signatures

(cosine similarity > 0.8). Huang et al. used two

complementary approaches to assess the confidence and

stability of the resulting decomposition, showing that some

mutagenic signatures (e.g., the signatures related to APOBEC

activity) are more stable with respect to others, whose

instability can be explained, in part, by the fact that these

signatures can be decomposed into a linear combination of

other signatures with a very small error (Huang et al., 2018).

This was further tested by Schumann et al. (2019), who clearly

showed that COSMIC signatures are, by construction, non-

orthogonal, and this aspect affects the stability of the

exposures. In particular, they computed the error between

each COSMIC signature profile and its reconstruction using

all the other signatures, finding four signatures with cosine

similarity higher than 0.95 with respect to their reconstructed

profile.

Lal et al. (2021) pointed out that state-of-the-art NMF-

based methods aim to minimise the residual error after fitting

the data with the discovered signatures to fit the data perfectly,

which may generate overfitting issues by including stochastic

noise in the data as part of the signatures, or multiple similar

signatures for the same underlying process. Indeed, the goal of

the signature discovery is not only to fit the data as well as

possible, but also to identify signatures that truly reflect

separate biological processes and the current version (3.3)

of COSMIC database shows several signatures with no

experimentally-validated aetiological causes associated yet,

suggesting possible mathematical artefacts due to

overfitting rather than distinct mutagenic processes (Koh

et al., 2021). These issues become more critical when the

signature extraction is highly dependent on the number of

samples available, which complicates the correct identification

of the true components, jeopardising the stability of the

results. In addition, the studies of Maura et al. (2019) and

Lal et al. (2021) highlighted that the presence of flat signatures,

showing similar frequencies across all the 96 mutational

classes, could represent a source of background noise and

collinearities, making the de novo signature extraction task

difficult and ambiguous.

These issues are expected to become more critical in the

newest version of COSMIC catalogue, which considers

79 signatures compared to the 30 signatures of the previous

versions investigated in the above studies. Therefore, the

proposed study will focus on two main goals: 1) to provide a

systematic approach to assess to which extent the extraction of

the newest version of COSMIC signatures can be affected by the

high similarity among the signatures in the same catalogue, the

presence of flat signatures and the number of available samples;

2) to provide a compact representation of the current catalogue

by prioritising the identification of those profiles representing

extreme patterns in the data so that all the observations can be

reproduced as mixtures of their extremes. To this aim,

Archetypal Analysis (Cutler and Breiman, 1994) was applied

to represent how the information from COSMIC can be

projected into a reduced number of dimensions and to

explain potential instability issues in specific extraction

scenarios. Figure 1 displays a summary of the workflow

analysis proposed in this study.

Materials and methods

Similarity of COSMIC signatures

Analyses were performed on COSMIC catalogue

v3.3 considering the 79 SBS mutational signature profiles

on the reference genome GRCh37 identified by

SigProfilerExtractor (Islam et al., 2022). Among these, we

removed 19 signatures classified by the catalogue as

sequencing artefacts (https://cancer.sanger.ac.uk/signatures/

sbs/). Of the remaining 60 signatures considered, 19 neither

have a direct association with an experimentally validated

mutagenic process nor are they supported by statistical

association with a specific process.

We first quantified the pairwise level of similarity in the

signature catalogue. Therefore, for each pair of signatures si and

sj we calculated the cosine similarity:

cos si, sj( ) � si · sj
‖si‖‖sj‖ (1)

obtaining a pairwise cosine distance matrix D ∈ Rd×d, where

D(i,j) = 1-sim(i,j) and d = 60 represents the number of signatures

considered. We then built a cluster map to simulate different de

novo extraction scenarios by applying to the D distance matrix a

Hierarchical Clustering (Johnson, 1967) with average linkage.
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Flatness of COSMIC signatures

SBS3, SBS5, SBS40 and SBS8 are often referred to as flat

signatures given their relative featureless profile, almost

uniformly distributed across the 96 mutational classes.

However, to the best of our knowledge, no quantitative

definition of flatness has ever been provided. To fill this gap

we formulated a simple definition of signature flatness by

calculating the cosine similarity between the signature and the

uniform distribution. Therefore the flatness of a signature si can

be defined as:

flatness si( ) � cos si, su( ) (2)

Where su, in the case of SBSmutational signatures, consists of

a signal uniformly distributed over the 96 mutational classes.

Hence, the flatness is a score ranging from 0 to 1, where 1

represents a perfectly flat profile. Since the presence of flat

signatures in a catalogue can complicate the extraction task, a

FIGURE 1
Summary of the analyses performed in this study. Firstly, we systematically assessed to which extent the extraction of the newest version of
COSMIC signatures (v3.3) can be affected by the high similarity among the signatures in the same catalogue, the level of flatness of the signatures and
the number of available samples, assessing the de novo extraction across five different scenarios (upper panel). Then, Archetypal Analyses was
applied to provide a compact representation of the current catalogue by prioritising the identification of those profiles representing extreme
patterns in the data so that all the observations can be reproduced as mixtures of their extremes (lower panel).
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quantitative definition of flatness can be useful to build robust de

novo extraction methods and to test their capabilities to correctly

extract multiple signatures with different levels of flatness. In this

regard, we designed scenarios with different levels of similarity

and flatness.

De novo extraction scenarios

To assess both the reliability and the feasibility of the de

novo extraction procedure, several synthetic catalogues were

generated considering COSMIC mutational signatures as

underlying generative processes. The function create_mut_

catalogues from SigsPack R package (https://github.com/

bihealth/SigsPack) was used to generate 10 synthetic

mutational catalogues for each extraction scenario to take

into account statistical fluctuations (Schumann et al., 2019).

In particular, create_mut_catalogues takes samples, mutations

(per sample) and signatures as input and it generates

mutational catalogues with exposures to the specified

signatures by sampling the mutations from a distribution of

those signature profiles. The contribution of each signature

(exposure) is randomly drawn from a uniform distribution for

each sample. Different ranges between a minimum of 200 and

a maximum of 10,000 samples were set according to the

chosen scenario and the number of signatures considered.

The number of mutations in each tumour sample was set to

5,000 for each scenario, based on the PCAWGmedian number

of sample mutations. All the simulated scenarios are

summarised in Table 1 and the generated catalogues are

available at the Github repository https://github.com/

compbiomed-unito/archetypal-analysis-cosmic.

De novo extraction analysis was applied to each scenario

using the gold-standard approach SigProfilerExtractor (Islam

et al., 2022) (https://github.com/AlexandrovLab/SigProfiler),

with the aim of evaluating the extraction performance from

catalogues with groups of similar latent signatures, varying in

number and flatness score. To choose the optimal number of

latent signatures, SigProfilerExtractor performs a repeated NMF

for a range of k operative signatures. For each value of k, this

algorithm applies a custom partition clustering based on the

Hungarian algorithm to the signature matrices resulting from the

repeated NMF, so that a final consensus signature matrix is

obtained. The number of NMF repetitions can be specified by the

user. In our experiments this value was set to 30. All the other

default parameters were used. To efficiently run

SigProfilerExtractor, computational resources from HPC4AI

center (Aldinucci et al., 2018) and Occam cluster (Aldinucci

et al., 2017) were used, for a total of 64 CPUs and 6 GPUs.

Evaluation metrics

Four metrics were considered for the performance

evaluations:

• Frequency (F) of simulation runs where all the signatures

are correctly identified:

F � N° of successful runs
N° of total runs

(3)

• Mean square error (MSE) between simulated and

reconstructed catalogues:

MSE � ∑n
i�1∑

m
j�1 xi,j − x̂i,j( )

2

n ·m (4)

where xi,j and x̂i,j are the matrix elements of the original

X ∈ Rn×m and the reconstructed X̂ ∈ Rn×m catalogues,

respectively.

• Average stability (Cmean) measured by the mean silhouette

coefficient score of the signature clusters generated by

SigProfilerExtractor:

Cmean � ∑K
k�1∑

N
i�1cik

K ·N � ∑K
k�1Ck

K
(5)

cik is the silhouette coefficient of the i−th sample which belongs to

cluster k. N is the number of NMF runs performed by

SigProfilerExtractor, K is the number of cluster labels, and Ck

is the mean silhouette score of the k−th cluster.

cik is given by:

TABLE 1 Summary of the de novo extraction scenario. For each simulated scenario, the number of active signatures, the cosine similarity level. the flatness
level and the n° of samples.

Scenario No of latent Signatures Median Similarity Median Flatness No of Samples

1 6 0.73 0.76 200,500

2 5 0.83 0.34 200,500

3 11 0.50 0.64 200,500,1000,3000,5000,10000

4 11 0.22 0.44 200,500,1000,3000,5000

5 20 0.22 0.45 1000,3000,5000,10000
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cik � bik − aik
max aik, bik( ) (6)

where aik is the mean intra-cluster distance and bik is the

mean nearest-cluster distance of the i-th sample which belongs to

cluster k.

• Minimum stability (Cmin), represented by the minimum

silhouette coefficient score of the signature clusters

generated by SigProfilerExtractor:

Cmin � min Ck{ }, with k � 1, . . . , K (7)

Archetypal analysis

Archetypal analysis (AA) is an unsupervised learning

method that aims to represent data points as sparse convex

combinations of their extreme elements. More formally, let

X ∈ Rp×q be a matrix whose row vectors are xi ∈ Rq and let

Z ∈ Rr×q be another matrix, whose column vectors zk ∈ Rq

represent the archetypes. AA reconstructs X through a linear

combination of archetypes zk, which are themselves convex

combinations of the X rows xi. Therefore, AA solves the

following constrained equation:

minimize ∑
p

i�1
‖xi −∑

r

k�1
αikzk‖2 with zk � ∑

q

j�1
βkjxj (8)

where αik ≥ 0;∑r
k�1αik � 1 and βkj ≥ 0;∑q

j�1βkj � 1 ensure that the

archetypes fall on the convex hull of X.

In this study, AA was applied directly to the COSMIC

signature matrix M ∈ R60×96 where, as reported above, 60 is

the number of COSMIC SBSmutational signatures and 96 are the

mutation contexts. Since AA is a matrix decomposition

technique, the number of basis elements has to be chosen,

which in our case corresponds to the number of archetypes.

This number was set in order to explain the 95% of the variance.

AA was performed using the Python-based Archetypal Analysis

Package freely available at https://data.csiro.au/collection/csiro:

FIGURE 2
Cluster map of COSMIC SBS Mutational Signatures. Pairwise cosine similarity displayed for the 60 SBS signatures from COSMIC catalogue.
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40600v1 (Motevalli Soumehsaraei and Barnard, 2019). The code

and the archetypal profiles are available at the Github repository

https://github.com/compbiomed-unito/archetypal-analysis-

cosmic.

Results

COSMIC cluster map

The cluster map on COSMIC v3.3 catalogue revealed that there

are several groups of signatures showing pairwise cosine similarity

> 0.8 (Figure 2). The first group in the top-left corner consists of six

signatures and it includes those signatures which are commonly

referred to as flat, i.e. presenting a relatively featureless profile

distributed over all the 96 mutational contexts, as the well-

known SBS3 experimentally associated with defective

homologous recombination-based DNA damage repair and the

clock-like SBS5, statistically associated with age. The median

pairwise similarity is 0.73, with a maximum equal to 0.88 for the

pairs SBS3-SBS40 and SBS5-SBS92, while the median flatness,

calculated through Eq. 2, is 0.76. These six signatures were used

to build up the first extraction scenario presented in Table 1.

A second notable group is characterised by a high pairwise

cosine similarity among signatures but with a low level of flatness

and it includes SBS36, SBS18 and the three signatures SBS10a,

SBS10c and SBS10d associated with an altered activity of polymerase

(polymerase epsilon exonuclease domain mutations and defective

POLD1 proofreading), which were considered for the second

extraction scenario. The median pairwise similarity is 0.83 with a

maximum equal to 0.91 between SBS36 and SBS18while themedian

flatness is 0.34. In the third extraction scenario the synthetic

catalogues were generated from the signatures used in the first

and the second scenario together (11 signatures). Finally, in the

fourth and fifth extraction scenarios, 11 and 20 signatures with a low

flatness score were considered, respectively, where each signature

has at least another similar one (cosine similarity > 0.8). The

complete list of signatures used in each scenario and the list of those

signatures with a cosine similarity > 0.8 were reported in

Supplementary Tables S1 and S2, respectively. In Supplementary

Figure S1 we reported the pairwise similarity distribution for each

scenario compared with the full set of non-artefactual COSMIC

signatures. The first and second scenarios have a very high similarity

level as they were built by taking the two largest clusters of the

similarity-based cluster map. The others are gradually less similar

since the considered number of signatures increases but the number

of similar signatures in each cluster decreases.

Flatness analysis

To overcome the qualitative description of flatness, in Eq. (2)

(Methods section) we defined a simple way to quantitatively

assess the flatness of the signatures, being in line with the

qualitative description. Indeed, as shown in Supplementary

Table S3, the known flat signatures SBS3, SBS40 and

SBS5 show the highest degree of flatness, but a similar level to

SBS5 can be found for SBS25 and SBS89. In addition, this

definition of flatness appears to be well distributed within

COSMIC from a minimum of 0.15 (SBS1) to a maximum of

0.87 (SBS3), showing that this metric can emphasise the

differences in shape between the various signatures in

COSMIC, as shown in Figure 3. As mentioned in the previous

section, the extraction scenarios, built to highlight possible issues

in the de novo extraction process, differ in the number of

signatures involved, the pairwise similarity between profiles,

and the level of flatness. In Supplementary Figure S2, the

flatness distribution for each scenario is shown.

De novo signature extraction

The SigProfilerExtractor performance for each scenario is

shown in Table 2. MSE, Cmean and Cmin are reported as their

corresponding median values across 10 repetitions, together with

their inter-quartile range. When considered separately,

signatures involved in scenarios 1 and 2 were almost always

correctly extracted at 200 samples (F = 0.9), regardless of the high

level of similarity in each group.

However, when the extraction was performed by combining

these two scenarios (scenario 3), SigProfilerExtractor was never

able to identify the correct number of signatures up to a high

number of samples (5,000) and only at 10,000 samples it

succeeded 80% of the times (F = 0.8). In this scenario it is

worth noticing that, as the number of available samples increases,

while the MSE decreases and the average stability decreases but

remaining relatively high, the minimum stability dramatically

FIGURE 3
Distribution of the COSMIC flatness. On the x axis the flatness
defined in Eq. 2, on the y axis the density for each flatness level.
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decreases. As expected, by further increasing the number of

samples, both the mean and minimum stability values rise

again. However, given that obtaining 10,000 tumour samples

is often unfeasible in practice, this scenario highlights well a

limitation of the NMF-based extraction process. Indeed, this

scenario is particularly complex since it considers two main

subgroups, highly similar internally (median pairwise cosine

similarity 0.73 and 0.83, respectively) but one at high and the

other one at low flatness score (0.76 and 0.34, respectively, as

shown in Table 1). Therefore, this difference in the flatness levels

makes the extraction process much more difficult if there is not a

very large number of samples. As shown in Supplementary

Figure S3, the algorithm starts to differentiate similar

signatures inside each of these two groups at 3,000 samples,

but still failing at differentiating them well even at 5,000 samples.

On the other hand, considering again 11 signatures but

with a lower level of similarity and flatness (scenario 4), the

algorithm required at least 1,000 samples to identify the

signatures with F = 0.9 (Supplementary Figure S3). Finally,

when 20 signatures were considered (scenario 5), the

algorithm always failed even at 5,000 samples, and it only

succeeded 10% of the times at 10,000 samples. It is worth

highlighting that the maximum number considered is

significantly higher compared to the 2,780 genomes from

PCAWG used to build the gold-standard catalogue of

mutational signatures available in COSMIC.

Archetypal analysis

The application of AA to theCOSMIC SBSmutational signature

matrix M ∈ R60×96, revealed that 29 archetypes zk ∈ R96 (k = 1, ..,

29) were able to explain the 95% of the variance (Supplementary

Figure S4) and that through a combination of them it is possible to

reconstruct each COSMIC signature profile with cosine similarity

> 0.8 (Supplementary Figure S5).

The archetypal profiles are summarised in Figure 4. Most

of the archetypal profiles coincide almost perfectly with some

of the COSMIC signatures. Specifically, 26 out of

29 archetypes correspond to at least one COSMIC signature

with cosine similarity of at least 0.97 (Supplementary Figure

S6). These results suggest that a subset of signature profiles

represents extreme patterns of the catalogue and that a

combination of them is capable of reconstructing the entire

TABLE 2De novo signature extraction performance. For each simulated scenario, the frequency of runs with all the signatures correctly identified F), themean
square error (MSE) between simulated and reconstructed catalogues, the average Cmean andminimum Cmin stability scores of signature clusters are displayed.

Scenario Number of samples F MSE Cmean Cmin

1 200 0.9 45.59 (45.45, 46.34) 0.88 (0.86–0.89) 0.78 (0.74–0.82)

500 1 46.64 (46.41, 46.89) 0.93 (0.9–0.94) 0.86 (0.75–0.88)

2 200 0.9 27.75 (27.62, 28.05) 0.84 (0.83–0.86) 0.67 (0.54–0.69)

500 1 28.11 (27.85, 28.45) 0.87 (0.86–0.89) 0.69 0.65–0.72

3 200 0.0 124.36 (120.66, 127.48) 0.98 (0.97–0.98) 0.96 (0.94–0.97)

500 0.0 129.08 (126.64, 130.17) 0.99 (0.99–0.99) 0.98 (0.97–0.99)

1,000 0.0 90.49 (41.68, 127.92) 0.90 (0.81–0.99) 0.80 (0.58–0.98)

3,000 0.0 41.05 (40.89, 41.28) 0.81 (0.8–0.82) 0.47 (0.41–0.5)

5,000 0.0 40.18 (38.99, 41.38) 0.81 (0.80–0.82) 0.35 (0.26–0.49)

10000 0.8 35.58 (35.55, 35.72) 0.81 (0.80–0.81) 0.36 (0.33–0.47)

4 200 0.0 101.93 (85.45, 103.0) 0.88 (0.84, 0.9) 0.76 (0.68–0.81)

500 0.1 40.38 (38.24, 41.01) 0.82 (0.82–0.83) 0.38 (0.3–0.45)

1,000 0.9 33.20 (32.81, 33.42) 0.83 (0.81–0.85) 0.52 (0.47–0.58)

3,000 1 32.58 (32.56, 32.69) 0.86 (0.85–0.87) 0.58 (0.53–0.62)

5,000 1 32.54 (32.36, 32.69) 0.89 (0.87–0.89) 0.67 (0.6–0.7)

5 1,000 0.0 68.98 (67.01, 70.04) 0.83 (0.81–0.86) 0.49 (0.33–0.59)

3,000 0.0 37.42 (37.16, 37.68) 0.81 (0.81–0.82) 0.33 (0.26–0.39)

5,000 0.0 37.01 (36.94, 37.12) 0.81 (0.80–0.82) 0.34 (0.29–0.39)

10000 0.1 36.63 (36.44, 36.77) 0.81 (0.81–0.82) 0.38 (0.32–0.4)
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catalogue with a high level of accuracy. The relationship

between signatures and archetypes can be better understood

considering the α coefficients of Eq (8). In particular, the

coefficients aik represent the weights that each archetype zk has

in the reconstruction of the i−th signature xi.

Figure 5 shows the association between the COSMIC

signatures and the archetypes through the α coefficients. The

heatmap was consequently clustered to find those signatures

which share a common reconstruction pattern through the

archetypes. It can be seen that 19 archetypes reconstruct only

FIGURE 4
Summary of the 29 archetypal profiles.
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one signature, indicating a one-to-one relationship between

them. Others were found to contribute in more than one

signature at different weights, as well as there are groups of

reconstructed signatures that are mainly represented by the same

archetype, highlighted by different colours in Figure 5.

Interestingly, AA tends to group similar profiles together

fairly well, since the signatures belonging to the same group

usually share either the same aetiology or similar biological

processes. In Supplementary Figure S7 we further explored the

relationship between the mutational signatures and the

archetypes by plotting the pairwise cosine similarity

distribution of the α coefficients for different categories of

pairwise cosine similarity between the original signatures. It is

possible to clearly observe that, as the pairwise cosine similarity

between the signatures increases, the cosine similarity between α

coefficients increases. This confirms that, while providing a more

compact representation of the COSMIC signatures, the

archetypal analysis is able to maintain a good consistency

with the original profiles.

Table 3 summarises some of the qualitative information that

can be extracted from the heatmap, showing the relationships

between the reconstructed signatures and the archetype that

contributed most to them. Each signature was reported with

its aetiology, and whether it had been validated experimentally or

by statistical association (i.e. unclear evidence for real signature,

as reported in COSMIC).

It is possible to observe that seven signatures (SBS6, SBS14,

SBS15, SBS20, SBS21, SBS26, and SBS44), experimentally associated

with mismatch repair (MMR) deficiency, are divided into three

groups: Blue, Silver Blue and Pink. The Blue group includes two

signatures associated with the concurrent effect of MMR deficiency

and DNA polymerase (POLD1 and POLE), showing a profile

FIGURE 5
Heatmap highlighting the associations between archetypes and the reconstructed signatures. Different colors highlight groups of
reconstructed signatures that are mainly represented by the same archetype. For a better visualisation, α coefficients < 0.2, even if used for
clustering, were not displayed.

Frontiers in Genetics frontiersin.org09

Pancotti et al. 10.3389/fgene.2022.1049501

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1049501


TABLE 3 Aetiological information related to each archetype. For each archetype, the corresponding reconstructed signatures and, when available, their
associated aetiologies are reported, indicating the validation studies supporting the biological interpretation.

Color Main Archetype Signature Aetiology Validation

Blue A17 SBS14 MMR deficiency + POLE Experimental Hodel et al. (2020)

SBS20 MMR deficiency + POLD1 Experimental Meier et al. (2018)

Purple A11 SBS19 Unknown -

SBS23 Unknown -

Red A16 SBS16 Unknown -

SBS88 Colibactin Exposure Experimental Pleguezuelos et al. (2020)

Orange A9 SBS11 Temozolomide treatment Experimental Kucab et al. (2019)

SBS32 Azathioprine treatment Statistical Inman et al. (2018)

Yellow A20 SBS7b UV exposure Experimental Nik-Zainal et al. (2015)

SBS30 BER deficiency Experimental Drost et al. (2017)

Salmon A22 SBS18 Damage by ROS Experimental Kucab et al. (2019)

SBS24 Aflatoxin exposure Experimental Chawanthayatham et al. (2017)

SBS29 Tobacco chewing Statistical Alexandrov et al. (2015)

Grey A28 SBS31 Platinum chemiotherapy Experimental Boot et al. (2018)

SBS35 Platinum chemiotherapy Experimental Boot et al. (2018)

Silver Blue A7 SBS6 MMR deficiency Experimental Meier et al. (2018)

SBS15 MMR deficiency Experimental Meier et al. (2018)

SBS44 MMR deficiency Experimental Drost et al. (2017)

SBS84 AID activity Statistical Kasar et al. (2015)

Pink A19 SBS12 Unknown -

SBS21 MMR deficiency Experimental Meier et al. (2018)

SBS26 MMR deficiency Experimental Meier et al. (2018)

Brown A26 SBS87 Thiopurine treatment Experimental Li et al. (2020)

SBS89 Unknown -

Green A22 SBS4 Tobacco smoking Experimental Nik-Zainal et al. (2015)

SBS8 HR/NER deficiency Statistical Alexandrov et al. (2013)

SBS36 BER deficiency (ROS damage) Experimental Pilati et al. (2017)

SBS94 Unknown -

Light grey A26 SBS3 HR deficiency Experimental Zámborszky et al. (2017)

SBS5 Aging/Tobacco/NER deficiency Statistical Alexandrov et al. (2013)

SBS9 Polymerase eta hypermutation Statistical Alexandrov et al. (2013)

SBS25 Unknown Chemiotherapy Statistical Alexandrov et al. (2015)

SBS39 Unknown -

SBS40 Unknown -

SBS93 Unknown -
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mainly polarised on C>A mutations, whereas the Silver Blue and

Pink groups have mutational peaks at C>T and T>C, respectively.

Thus, although all these seven signatures are involved in MMR

deficiency, they probably refer to different types of deficiency in

MMR genes. The Silver Blue group, in addition to MMR deficiency

associated signatures, also includes SBS84, which is statistically

associated with AID activity, found in the immunoglobulin genes

and other regions in lymphoid cancers. Although theMMRpathway

is generally involved in repairing errors that can occur in DNA

during the replication and the recombination, it was found to

cooperate with the AID enzyme to generate DNA mutations as

part of the antibody diversification process (Martin and Scharff,

2002; Liu and Schatz, 2009; Zanotti and Gearhart, 2016). Thus,

MMR pathway and AID mechanism are closely related. In this

context, it is very interesting to note that SBS6, although it is

implicated in several tumour types, was mainly found in B-Cell

Non-Hodgkin Lymphoma samples https://cancer.sanger.ac.uk/

signatures/sbs/sbs6/ and that SBS84 is associated with the AID

activity in B-Cell Non-Hodgkin Lymphoma. This might suggest

that SBS6 relates to an MMR deficiency for genes involved in the

development of antibody specificity that cooperates with AID

activity. On the other hand, in the Pink group, in addition to the

two signatures SBS21 and SBS26 associated with MMR deficiency,

there is also SBS12 that was mainly found in liver cancer-related

tissue; the high similarity (0.93, Table 2) between the signatures

SBS26 and SBS12 and the unknown aetiology could suggest that

either SBS12 is also related to MMR deficiency or that these two

could actually correspond to the same signature. A cluster formed by

these two signatures was also highlighted by Degasperi et al. (2020)

by performing an organ-wise mutational signature extraction.

Another interesting group is the Grey one, including SBS31 and

SBS35, both referring to platinum chemotherapy. TheOrange group

(SBS11 and SBS32) refers to two treatments as well: Temozolomide,

an alkylating agent used as treatment for high-grade brain tumors

and melanoma, and Azathioprine, an immunosuppressant. Both

these treatments were shown to induce myelosuppression (Connell

et al., 1993; Sylvester et al., 2011). The associated signatures are

mainly represented by archetype A9, whose profile is characterised

by high frequency of C>T mutations. The Yellow group includes

SBS7b and SBS30, which are both characterised by C>T mutations

and linked with ultraviolet (UV) radiation and base excision repair

(BER) deficiency. Recently, it was found that BER increases cellular

tolerance to UV independently of nucleic excision repair (Saha et al.,

2020). The Salmon group consisted in three signatures (SBS18,

SBS24 and SBS29) associated with reactive oxygen species (ROS)

damage, aflatoxin exposure and tobacco chewing, respectively.

These three signatures are linked together by oxidative stress

processes, since it is known that aflatoxin biosynthesis is linked

with ROS (Shen et al., 1996; An et al., 2017; Dey and Kang, 2020;

Huang et al., 2020), as well as the cytotoxic effects from tobacco

chewing are mediated by ROS production (Stich and Anders, 1989;

Bagchi et al., 2002). The Green group is composed of SBS4, SBS8,

SBS36 and SBS94. These signatures are mainly represented by the

archetype A22 as the Salmon group. Indeed SBS29 (Salmon group)

associated with tobacco chewing seems to be “complementary” to

SBS4 since it was found in some liver and lung cancers where SBS4,

related to tobacco smoking, has not been detected. In addition, also

SBS36 is associatedwith BER deficiency includingDNAdamage due

to ROS, as SBS18 in the Salmon group. SBS8 is statistically associated

with HR/NER deficiency. Purple, Red and Brown groups include

mainly signatures with unknown aetiology and therefore it was not

possible to establish qualitative associations between their signatures.

Finally, the Light Grey group includes mainly signatures with a high

level of flatness (SBS3, SBS5, SBS25 and SBS40) or at least with

mutations distributed over all the 96 mutational contexts. Indeed,

these signatures are mostly represented by A26, whose profile is in

turn homogeneously distributed over all the contexts.

Discussion

This study investigates the extraction stability issues among the

SBS mutational signatures of the most recent version of COSMIC

catalogue (3.3). Through a series of simulations considering different

scenarios, we showed that high levels of similarity combined with

some peculiar (e.g., showing high levels of flatness) signature profiles

considerably complicate the de novo extraction.Most of the previous

studies evaluated stability issues on COSMIC signatures version 2,

which includes 30 signatures. However, here we showed that these

issues are becomingmore critical in the newest version by evaluating

60 non-artefactual signatures. Although SigProfilerExtractor has

been proven to be a robust method for signature extraction, even

when the number of samples was high (i.e. up to 5,000), it failed in

identifying the correct number of signatures and it succeeded 80% of

times with 10,000 samples when we simulated a combined set of six

similar signatures at high level of flatness and five similar signatures

at a lower level of flatness (scenario 3). Similarly, in scenario 5,

considering a higher number of latent signatures (20) with at least

each signature highly similar (i.e. pairwise cosine similarity > 0.8) to
another one, it always failed up to 5,000 samples and with

10,000 samples it succeeded only 10% of the times.

Although the mutational signatures are not orthogonal by

definition, the presence of highly similar signatures, together with

the fact that some have a very high level of flatness and there is a

lack of an aetiology for many of them, cast some doubts on the

real existence of some of these, suggesting that they may be the

result of overfitting and hence a mathematical artefact. Several

studies already pointed to this issue (Maura et al., 2019; Koh et al.,

2021). However, to the best of our knowledge, the most recent

assessment of the signature stability observed among COSMIC

signatures was performed by Schumann et al. (2019), where they

considered the second version of this database, therefore working

on half the number of signatures compared to our study and

without exploring different scenarios in terms of number of

samples, cosine similarity and flat vs non-flat signatures. A

limitation of the catalogues used in this work, realised with
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SigsPack functions, is represented by the random exposure

assigned to each latent signature to create the count matrices,

subsequently extracted by SigProfilerExtractor. Hence, simulated

catalogues may not represent realistic cancer samples. However,

this does not affect the technical evaluations of the limitations in

the extraction process highlighted by our simulations.

A novelty introduced by this study was the application of AA

to investigate whether the information contained in the COSMIC

catalogue could be represented more compactly. AA was shown

to be an intuitive and straightforward approach to interpret the

data like the clustering, but including the flexibility of the matrix

factorization (Mørup and Hansen, 2012; Chen et al., 2014). In

contrast to the common distance-based approaches, archetypes

characterise extremal rather than average properties of the given

data and therefore lead to a more compact representation (Abrol

and Sharma, 2020). AA is a type of decomposition where convex

combinations of extremal points lie on the convex hull of the data

and are themselves restricted to being convex combinations of

individual observations (Cutler and Breiman, 1994; Mørup and

Hansen, 2012). In our study, by applying AA to the COSMIC

catalogue, it was possible to identify 29 archetypes able to explain

95% of the variance. Interestingly, it emerged that most of the

archetypes correspond almost perfectly (similarity> 0.97) to

some signatures and that, through a combination of them, it

is possible to reconstruct with a certain degree of accuracy the

other signatures of the COSMIC catalogue. As further validation

of the reconstruction process, Supplementary Table S4 shows the

refitting performance for the simulated catalogues in Scenario

1 with 500 samples, comparing the archetypes to the original

COSMIC signatures using MutationalPatterns (Blokzijl et al.,

2018). As expected, since the simulated catalogues are generated

based on the original signatures, these latter showed high cosine

similarity and low mean absolute error (MAE), i.e. 0.967 and

6.2 on average, respectively. However, keeping in mind that the

archetypes explain the 95% of the variance in the simulated

catalogue, they were able to perform well by achieving

average cosine similarity and MAE equal to 0.958 and 9.91,

respectively.

However, it is worth highlighting that archetypes do not

substitute the COSMIC signatures, but emphasise the

importance of considering alternative approaches able to

reduce redundant information. These observations,

together with the lack of known aetiology and

experimental validation for many signatures, suggest the

need to reformulate the COSMIC catalogue using

representations including sparsity constraints in latent

vectors during the extraction procedure without loss

of information. In the future, archetypal analysis can be

also considered to evaluate sparse representations of

signatures not only in the context of single base

substitutions but also for other types of variants like copy

number variations and structural variants (Heller et al., 2020;

Steele et al., 2022).
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