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Major fraction of the human genome is transcribed in to the RNA but is not

translated in to any specific functional protein. These transcribed but not

translated RNA molecules are called as non-coding RNA (ncRNA). There are

thousands of different non-coding RNAs present inside the cells, each

regulating different cellular pathway/pathways. Over the last few decades

non-coding RNAs have been found to be involved in various diseases

including cancer. Non-coding RNAs are reported to function both as tumor

enhancer and/or tumor suppressor in almost each type of cancer. Urothelial

carcinoma of the urinary bladder is the second most common urogenital

malignancy in the world. Over the last few decades, non-coding RNAs were

demonstrated to be linked with bladder cancer progression by modulating

different signalling pathways and cellular processes such as autophagy,

metastasis, drug resistance and tumor proliferation. Due to the

heterogeneity of bladder cancer cells more in-depth molecular

characterization is needed to identify new diagnostic and treatment options.

This review emphasizes the current findings on non-coding RNAs and their

relationship with various oncological processes such as autophagy, and their

applicability to the pathophysiology of bladder cancer. This may offer an

understanding of evolving non-coding RNA-targeted diagnostic tools and

new therapeutic approaches for bladder cancer management in the future.

KEYWORDS

non-coding RNA, autophagy, bladder cancer, drug resistance, miRNA and lncRNA

Introduction

Urothelial carcinoma of the urinary bladder is the second most commonly diagnosed

urogenital cancer (Saginala et al., 2020; Compérat et al., 2022). On initial presentation,

70–75% of patients with bladder tumors are categorized as non-muscle invasive bladder

cancer (NMIBC). The initial approach for the management of NMIBC is cystoscopy

followed by transurethral resection of the tumor. Approximately 47% of patients have

disease recurrence within 5 years of diagnosis of NMIBC and 9% of patients may progress

to muscle-invasive disease. At present, bladder cancer management is limited to surgery,
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chemotherapy, radiotherapy, and immunotherapy. Personalized

medicine may offer new windows for the management of bladder

cancer (Lemke and Shah, 2018; Pardo et al., 2020). The next-

generation sequencing (NGS) technology has discovered

extensive tumor heterogeneity in different cancer types.

Furthermore, RNA sequencing revealed upregulation of non-

coding RNA (ncRNA) specifically microRNA, and long non-

coding RNA (lncRNA) in bladder cancer (Cong et al., 2019). The

human genome is 98% transcribed, however, most of them do

not encode proteins, and are reported as ncRNAs (Pop-Bica et al.,

2017; Cong et al., 2019). ncRNAs have been demonstrated to

regulate gene expression as well as transcription, splicing, and

protein function (Pop-Bica et al., 2017; Liu et al., 2022a).

Recently, lncRNAs have been shown to regulate autophagy

(Ghafouri-Fard et al., 2022). Autophagy is a conserved

catabolic process in which intracellular components are

engulfed and degraded, serving various functions depending

upon the cellular conditions (Onorati et al., 2018; Ojha et al.,

2019; Ishaq et al., 2020). Under normal conditions, it protects the

cells from starvation by recycling damaged proteins and

organelles. On the other hand, defective autophagy in a cell

predisposes it to cancer (Ojha et al., 2015). Autophagy has been

shown to help in tumor survival and progression by reducing

ROS levels and providing nutrients (Ojha et al., 2014; Ishaq et al.,

2016; Ojha et al., 2019). However, the role of autophagy in cancer

is very complex and has been reviewed in detail somewhere else

(Poillet-Perez et al., 2015; Amaravadi et al., 2019). Role of lnc-

RNA in tumor progression via autophagy modulation is actively

being investigated. In a recent study by Tan et al. showed that a

set of seven autophagy related lnc-RNAs may predict the disease

prognosis in MIBC patients (Tan et al., 2022). Similarly, Lai et al.

set of 15 lnc-RNA related with autophagy were found to predict

the prognosis of bladder cancer. Using the bioinformatics, these

authors found that the 15-autophagy related lnc-RNA may

regulate bladder cancer progression by modulating cell cycle,

cell adhesion, DNA replication and WNT signalling pathways

(Lai et al., 2020).

In this review, we will discuss the applicability of ncRNA in

the progression and development of bladder cancer. We review

the regulation of autophagy by ncRNA, especially miRNA and

lncRNA, and the contribution of the ncRNA-autophagy axis in

inducing tumor growth and/or tumor suppression in bladder

cancer. Also, we will focus on the potential of exploring ncRNA

expression profiles for the diagnosis and treatment of bladder

cancer.

Bladder cancer and non-coding RNAs
(ncRNAs)

Bladder cancer is one of the most commonly diagnosed

malignancies of the urinary tract and is characterized by low

sensitivity to chemotherapy and a high recurrence rate (Saginala

et al., 2020; Compérat et al., 2022). Low-grade bladder cancer has

a slow progression rate and hardly presents a threat to patients.

On the other hand, high-grade bladder cancer has malignant

potential with a greater mortality rate (Berdik, 2017;

Daneshmand, 2020). Chemical agents, physical stimuli, and

some pathogens are among the common factors responsible

for the conversion of normal urothelial cells to the malignant

urothelium. 95% of the primary urothelial tumors are confined

within the bladder (Siracusano et al., 2020). Patients with this

disease need lifelong surveillance because of the high recurrence

rate, particularly if the tumor is within the bladder. Therefore,

bladder cancer is the most expensive cancer to manage and

because of this financial burden, bladder cancer is currently a

very important focus of research (Audenet et al., 2018). Almost

60–65% of all bladder cancer show loss of heterozygosity on

chromosome 9 and approximately 40% of bladder cancer show

loss of heterozygosity on chromosome 17. Loss of heterozygosity

on chromosome 9 is believed to be among the initial events in

bladder carcinogenesis (Anderson, 2018). In contrast, loss of

heterozygosity on chromosome 17 occurs late during cancer

development and is related to the aggressiveness of cancer.

Gene encoding p53 (TP53) is located on chromosome number

17 and most of the bladder cancer show loss of one allele of 17p

resulting in loss of tumor suppressor functions of p53 (Li et al.,

2021a). Mutations in the retinoblastoma (tumor suppressor)

gene have been also observed in muscle-invasive, high grade

and also in superficial bladder cancers (Li et al., 2021a). Bladder

cancer cells have a higher expression of anti-apoptotic proteins

Bcl-2 and Bcl-xL and the increased expression of these anti-

apoptotic proteins correlates with poor prognosis in bladder

cancer patients (Real and Malats, 2007). Bcl-2 overexpression

in bladder cancer has been also reported to play an important role

in cisplatin resistance (Cho et al., 2006). The very first study by

Zhong et al. has shown atypical/aberrant expression of ncRNAs

in bladder cancer might be exploited as bladder cancer

biomarkers (Zhong et al., 2019).

High-throughput next-generation sequencing has shown

that the human genome is approximately 90% transcribed.

However, the transcribed genome can encode only

20,000 proteins (Reuter et al., 2015). A non-coding RNA

(ncRNA) is a functional RNA molecule that is not translated

into a protein. Emerging evidence suggests that ncRNAs are

fundamental players in the regulation of gene expression and

play a key role in various pathological conditions (Churko et al.,

2013). Additionally, ncRNAs have been shown to mediate

mRNA degradation, remodeling of chromatin structure, and

also in cis and trans gene regulation (Fernandes et al., 2019;

Ning et al., 2019). There are mainly two types of ncRNA

characterized by their length: small ncRNAs and long

ncRNAs (lncRNAs). Small ncRNAs include ribosomal RNA

(rRNA), transfer RNA (tRNA), microRNA (miRNA), circular

RNA, and piwi-interacting RNA (piRNA) (Zhang et al., 2019a;

Papaioannou et al., 2021). lncRNAs include intergenic lncRNAs,
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intronic ncRNAs, and sense and antisense lncRNAs. Each type of

lncRNAs showing different genomic positions in relation to

genes and exons. lncRNAs regulate protein translation and

post-transcriptional levels (Statello et al., 2021). Circular

RNAs are different from linear mRNAs, however exact roles

and functions are not fully understood yet (Cech and Steitz,

2014). In the following sections, we will be focusing on the role of

miRNA and lncRNAs in different oncological processes in tumor

bladder cancer (Figures 1A, B).

miRNA and bladder cancer

miRNAs are single-stranded ncRNAs with a length of nearly

22 nucleotides (O’Brien et al., 2018). miRNAs are responsible for

regulating gene expression at the post-transcriptional level,

thereby modulating cellular processes like growth,

proliferation, differentiation, and apoptosis (Towler et al.,

2015). The miRNAs are produced from the conversion of pri-

miRNA to pre-miRNA by a protein complex consisting of Rosha

and the double-stranded RNA binding protein DiGeorge

Syndrome Critical Region 8 (DGCR8). Pre-miRNAs are

around 65 nucleotide-long RNA intermediates in the nucleus

and are transported to the cytoplasm by Exportin-5. After the

transportation, the pre-miRNA is cleaved by DICER and

integrated into an RNA-induced silencing complex (RISC).

When miRNA is complementary to the 3′UTR region of

target mRNA, RISC will inhibit the protein translation and

mRNA will be degraded by endonucleases (Michlewski and

Cáceres, 2019; Saliminejad et al., 2019; Rani and Sengar,

2022). The biology of miRNA processing and mechanism of

action have been explored well and is reviewed by Statello et al.

FIGURE 1
ncRNA and Autophagy in bladder cancer. (A) Steps of autophagosome formation. (B)Crosstalk between ncRNA, autophagy and bladder cancer.
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(Statello et al., 2021). Here we will be mainly focusing on the role

of miRNAs in various hallmarks of bladder cancer (Figure 2).

Tumor progression

MiR-616 is located on chromosome 12q13.3 and has been

shown to be upregulated in many cancers (Zhao et al., 2022).

Upregulated expression of miR-616 was shown to increase

bladder cancer cell progression by targeting SOX7 (SRY-

related HMG-box). SOX7 is a transcription factor belonging

to the SRY-related high mobility group (HMG) box family and is

known to function as a tumor suppressor. miR-616

downregulates the SOX7 expression by targeting its mRNA

for degradation. Inhibition of miR-616 decreased bladder

cancer cell proliferation abilities, induced cell cycle arrest in

the G2 phase, and enhanced apoptosis (Zhao et al., 2022). MiR-

495 is encoded by a gene located on chromosome 14 (q32.31).

miR-495 has been linked to various tumors, however, its

tumorigenic role is controversial. In bladder cancer,

overexpression of miR-495 increased bladder cancer

proliferation (Tan et al., 2017). MiR-657 expression was found

higher in bladder cancer tissue samples compared to the normal

bladder. Overexpression of miR-675 has been reported to

promote bladder cancer progression by promoting cell cycle

progression. Inhibition of miR-675 decreased p53 activation

and increased Bax/Bcl2 ratio and thereby inducing apoptosis

in bladder cancer cells (Liu et al., 2016). A high expression of

miR-294 was demonstrated in bladder cancer cell lines.

Mechanistically, authors have shown that miR-294 upregulates

NRAS expression to promote bladder cancer progression.

Additionally, overexpression of miR-294 increased the

phosphorylation of PI3K, AKT, JNK, and STAT1 (Li et al.,

2017a). An upregulated expression of MiR-21 was

demonstrated in bladder cancer tissue. MiR-21 overexpression

has been shown to increase Bcl2 expression and enhance Akt

phosphorylation to promote cell proliferation in bladder cancer

cells (Lin et al., 2020).

Tumor metastasis

miR-516a is located on chromosome 19q13 and has been

shown to be involved in different oncogenic processes. miR-516

expression directly correlated with the invasive properties of

bladder cancer cells. miR-516a promotes metastasis by regulating

the expression of Matrix metallopeptidase 9 (MMP9). miR-516a

decreases Surfeit locus protein 1 (SUMRF1) expression thereby

stabilizing and inhibiting the degradation of MMP9 by the

proteasomal pathway (Chang et al., 2020). Also, another study

by Zhu et al. has shown that miR-146b is upregulated in bladder

cancer tissues. Silencing of miR-146b inhibited bladder cancer

cell invasion by reducing MMP2 level expression by inhibiting its

transcription factor ETS2. Mechanistically, authors have

demonstrated that miR-146b inhibition stabilizes ARE/

poly(U)-binding/degradation factor 1 mRNA expression by

directly binding to its mRNA at 3′ UTR (Zhu et al., 2019).

Overexpression of miR-200c in bladder cancer cell line

UMUC3 decreases their invasive properties. The high

expression of miR-200c resulted in increased expression of

E-cadherin and decreased expression of Zinc finger E-box-

binding homeobox 1 and 2 (ZEB1) and ZEB2 at both mRNA

and protein levels. These authors showed that ZEB1 and

ZEB2 are the direct targets of miR-200 (Liu et al., 2022b).

Recently Yang et al., 2021, showed that miR-20a-5p

expression is highly upregulated in bladder cancer tissues.

Overexpression of miR-20a-5p not only increased bladder

cancer cell proliferation but also promoted epithelial-to-

mesenchymal transition (EMT). The overexpression of miR-

20a-5p inhibited the expression of epithelial markers

(E-cadherin) and increased the Vimentin expression

(mesenchymal marker) (Yang et al., 2021). This study showed

that miR-20a-5p selectively targets Nuclear Receptor Subfamily

four Group A Member 3 (NR4A3) and decreases its expression.

So, by targeting this nucleus receptor protein NR4A3-miR-20a-

5p regulates the migration, invasion, and metastasis of bladder

cancer cells (Yang et al., 2021). On the contrary, there are some

miRNAs such as miR-433, miR-323a-3p, and miR-613 that have

inhibitory effects on EMT. miR-433 expression was shown to be

downregulated in bladder cancer tissue samples. Overexpression

of miR-433 decreased migratory and EMT properties of bladder

cancer cells by modulating the c-MET-Akt pathway. MiR-433

directly binds to c-MET and CAMP responsive element binding

protein 1 (CREB1) at 3′-UTR and inhibits its mRNA as well as

FIGURE 2
miRNA and Autophagy in bladder cancer.
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protein expression (Xu et al., 2016). The miR-323a-3p level was

found to be downregulated in bladder cancer tissue samples as

well as in cell lines. These authors demonstrated that the two key

oncogenes Suppressor of Mothers against Decapentaplegic 3

(SMAD3) and MET are the direct targets of miR-323a-

3p. Also, miR-323a-3p upregulation was shown to inhibit

EMT progression in bladder cancer cells by targeting the

AKT- Glycogen synthase kinase-3β (GSKB) axis (Li et al.,

2017b). Just like miR-323a-3p, the expression of miR-613 is

downregulated in bladder cancer cell lines and tumor tissues.

miR-613 overexpression abrogated EMT via increasing the

expression of E-cadherin and decreasing that of Vimentin and

Snail. miR-613 was found to exert its inhibitory effects on EMT

via blocking the expression of Sphingosine kinase 1 (Sphk1) (Yu

et al., 2017a).

Chemoresistance

The recurrence rate in bladder cancer is of common

occurrence particularly due to the cancer cells developing

resistance towards standard drugs like gemcitabine, cisplatin,

etc. (Lemke and Shah, 2018). There are various mechanisms by

which cancer cells develop resistance towards any anti-cancer

drug, but recently microRNAs have been also added to that list

(Taheri et al., 2020). The role of miRNAs in drug resistance was

first studied by Fojo et al., who showed that miRNA profile can

play a key role in chemosensitivity or chemoresistance (Fojo,

2007). In bladder cancer, the first identified drug-resistance-

related miRNAs belonged to the miR-200 family. MiR-200

overexpression in bladder cancer cells increases their

sensitivity towards the epidermal growth factor receptor

(EGFR) inhibitors via regulating the expression of ERBB

receptor feedback inhibitor 1 (ERRF1) (Adam et al., 2009).

MiR-21 has been shown to be highly upregulated in bladder

cancer cells and contributes to doxorubicin resistance. MiR-21

enhanced resistance towards doxorubicin was mediated by

increased expression of anti-apoptotic protein Bcl2 (Tao et al.,

2011). miR-203 was associated with cancer progression and poor

prognosis of bladder cancer patients who received cisplatin-

based adjuvant chemotherapy (Zhang et al., 2015). In contrast

to miR-21, miR-203 expression is highly reduced in bladder

cancer patients. Overexpression of miR-203 in bladder cancer

cells increased their sensitivity to cisplatin by inducing apoptosis.

In their study, Zhang et al. showed that two pro-apoptotic

proteins, Bcl-w and Survivin are the direct targets of miR-203

(Zhang et al., 2015). MiR-193a-3p has been found to be more

highly expressed in resistant cell lines than in sensitivity cell lines.

Interestingly, miR-193a-3p was shown to promote multi-drug

resistance in bladder cancer cells. The mechanism by which miR-

193a-3p enhanced drug resistance was shown to be the inhibition

of Serine/arginine-rich splicing factor 2 (SRSF2) and lysyl

oxidase-like 4 (LOXL4) expression in bladder cancer cells

(Deng et al., 2014). In a very interesting study, miR-218 was

reported to enhance the cisplatin sensitivity of bladder cancer

cells by targeting Glut1 (glucose transporter isoform 1).

Glut1 expression was shown to be significantly decreased in

miR-218 overexpressed cells. This is very important; because

restricting the availability of glucose during chemotherapy has

been shown to enhance drug sensitivity in different cancer

models (Li et al., 2017c). MiR-222 increases resistance towards

cisplatin by regulating Protein Phosphatase 2 Regulatory Subunit

Balpha (PPP2R2A)/Akt/mTOR pathway. PPP2R2A is a

regulatory subunit of phosphatase 2A and is known to play a

role in cancer progression. One of the direct targets of PPP2R2A

is Akt. In fact, the overexpression of miR-222 was shown to

increase the Akt phosphorylation and activates its downstream

target mTOR (Zeng et al., 2016). miR-27A is downregulated in

bladder cancer tissue samples and is involved in enhancing

cisplatin resistance by regulating the expression of Solute

Carrier Family 7 Member 11 (SLC7A11). SLC7A11 is highly

overexpressed in cells that are resistant to cisplatin. SLC7A11 is a

component of cysteine/glutamate exchanger and is an important

factor regulating glutathione (GSH) production. Overexpression

of miR-27A significantly decreases SLC7A11 expression and

enhances sensitivity to bladder cancer cells toward cisplatin

(Drayton et al., 2014). In a recent study, CD44 has been

shown to be targeted by miR-34a in muscle-invasive bladder

cancer during cisplatin treatment. An increased expression of

CD44 has been shown to effectively reverse the effects of miR-34a

on bladder cancer cell proliferation and chemosensitivity of

muscle invasive-bladder cancer cells (Li et al., 2022a).

Autophagy

Autophagy is an umbrella process for the degradation of

aggregated proteins and organelles including mitochondria,

endoplasmic reticulum, ribosomes, and nucleus (Dikic and

Elazar, 2018). The contribution of autophagy in cancer

development is well established although still controversial

(Ojha et al., 2015; Ishaq et al., 2020). The role of autophagy is

highly dependent on the cancer type, mutational status, and

developmental stage of cancer (Onorati et al., 2018;

Amaravadi et al., 2019). The regulatory networks involved

in autophagy induction and/or inhibition have been well

characterized. MiRNAs are the latest addition to the long list

of autophagy regulators (Xu et al., 2012; Shan et al., 2021).

Inhibition of autophagy via selective targeting of Beclin1 by

miR30a was the first report, highlighting the role of miRNAs

in autophagy and cancer (Zhu et al., 2009). The role of

miRNAs in autophagy regulation was first discovered in

2009 when Beclin1 (BECN1), an autophagy gene, was

shown to be regulated by miR30A (Cai et al., 2021). miR-

221 induces cell proliferation of colorectal cancer (CRC) via

the downregulated of autophagy by targeted Tumor protein
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53-induced nuclear protein 1 (TP53INP1) (Liao et al.,

2018a).

Autophagy has been associated with both chemoresistance

and chemosensitivity (Li et al., 2019a). MiR-222 has been shown

to inhibit cisplatin-induced cell death by preventing autophagy

induction. MiR-222 inhibits autophagy induction via the

activation of the Akt/mTOR signaling axis. mTOR is one of

the key negative regulators of autophagy involved in cancer

progression (Tsikrika et al., 2018). Tsikrika et al. have

reported that bladder cancer patients with high expression of

miR-221 have a higher short-term recurrence rate. Moreover,

miR-221 overexpression has also been reported to be an

independent prognostic value for bladder cancer patients

(Tsikrika et al., 2018). Liu et al. have shown that the

downregulation of miR-221 enhances autophagy activation via

increasing TP53INP1. In addition, the miR-221/TP53INP1/

p-ERK axis has been shown to regulate autophagy in bladder

cancer (Liu et al., 2020a). miR-24-3p is also overexpressed in

bladder cancer cells and has been shown to promote autophagy

by inhibiting domain-containing protein (DEDD). Autophagy

induction viamiR-24-3p helped bladder cancer cell proliferation

by apoptosis inhibition (Yu et al., 2017b). Luo et al. have shown

that miR-139-5p inhibited bladder cancer cell proliferation by

direct binding Bmi-1. Inhibition of Bmi-1 has been demonstrated

to increase ATP reduction and AMPK-activated autophagy (Luo

et al., 2017). Wang et al. has reported that sodium butyrate

inhibited bladder cancer cell migration and induced AMP-

activated protein kinase (AMPK)-mTOR axis-dependent

autophagy and ROS-mediated apoptosis via the miR-139-5p/

Bmi-1 pathway (Wang et al., 2020). Interestingly, Zhang et al.

have shown that miRNA-mediated autophagy downregulation

has been shown to inhibit bladder cancer cell progression. miR-

154 has been shown to downregulate bladder cancer tissue

samples. Overexpression of miR-145 inhibits bladder cancer

cell proliferation, invasion, and migration by preventing

ATG7 expression (Zhang et al., 2019b).

In, multiple myeloma (MM), miR-126 mediates the

induction of autophagic flux and HIF1α stabilization

(Tomasetti et al., 2016). In bladder cancer, miR-221

expression was shown to be positively regulated by TGFβ1.
Inhibition of miR-221 rescued TGFβ1-induced EMT by

increasing E-cadherin and decreasing vimentin, Fibronectin,

and N-cadherin. Moreover, miR-221/TP53INP1/p-ERK axis

expression was shown to induce autophagy and reported to be

positively correlated with the malignant property of bladder

cancer cells (Shen et al., 2021). The level of miR-133b was

found to be reduced in bladder cancer patient tissues and in

exosomes from the serum of bladder cancer patients. Exosomal

miR-133b leads to the inhibition of cancer cell viability by

upregulating dual-specificity protein phosphatase 1 (DUSP1)

and an escalation of apoptotic cell death in bladder cancer

cells (Cai et al., 2020). Small nucleolar RNA host gene 1

(SNHG1) is another lncRNA (lncRNA), which negatively

regulates tumor suppressor genes. Increased expression of

SNHG1 has been shown to enhance bladder cancer

progression and autophagy via miR-493-5p/ATG14/autophagy

pathway (Guo et al., 2021). This finding highlights the potential

role of SNHG1 as a target for the management of bladder cancer.

miR-21 shows a grade-dependent increase in bladder cancer

cells. This study has demonstrated that, in 31 patients, miR-21

was significantly up-regulated, and PTEN level was significantly

inhibited in bladder tumor tissue compared to the normal

bladder mucosa (Yin et al., 2019). Furthermore, patients with

recurrence had a significantly higher miR-21 expression as

compared to non-recurrent patients. Also, miR-21

overexpression has been reported to decrease autophagy and

promote the metastatic properties of bladder cancer cells (Zhang

et al., 2020). This study is interesting because we have also shown

that autophagy induction is grade dependent in bladder cancer

(Ojha et al., 2014). The grade dependency of miR-21 and

autophagy may be unrelated but needs to be experimentally

verified.

Tumor suppression

miR-381 was shown to be downregulated in bladder cancer.

Increased expression of miR-381 was demonstrated to inhibit the

proliferation and tumor formation capacity of bladder cancer cell

lines T24 and RT4 cells. In addition, miR-381 was found to bind

B cell-specific Moloney murine leukemia virus integration site 1

(BMI1). The tumor-suppressing properties of miR-381was

shown to be blocked by overexpression of BMI.

Overexpression of miR-381 decreased RhoA phosphorylation

and Rho-associated protein kinase (ROCK2) activation (Chen

et al., 2021a). miRNA-145 was significantly downregulated in

patients with bladder cancer. miRNA-145 markedly inhibited the

ability of bladder cancer cells to migrate and invade.

Furthermore, N-cadherin was identified as a target of

miRNA-145 in bladder cancer cells. MMP9, acting

downstream of N-cadherin, was downregulated in bladder

cancer cells by miRNA-145 (Zhang et al., 2018). The

expression of miR-146a-3p was found to be downregulated in

bladder cancer tissue samples. MiR-146a-3p overexpression has

been shown to downregulate the metastatic potential of bladder

cancer cells. MiR-146a-3p directly binds to 3′UTR of an

oncogene Pituitary tumor-transforming gene 1 (PTTG1)

(Xiang et al., 2017). A decreased expression of miR-539 was

reported in bladder cancer. Overexpression of miR-539 inhibits

bladder cancer cell proliferation. This study showed that IGF1R

is a direct target of miR-539. The mimic of miR-539 decreased

IGF1R expression via binding to its 3′UTR region. In addition,

authors have shown that silencing of miR-539 attenuated the

phosphorylation of AKT and ERK. This leads to the inhibition of

bladder cancer growth and invasion by the AKT-ERK-IGF1R

axis (Liao et al., 2018b).
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Long non-coding RNA and bladder
cancer

Long non-coding RNAs (lncRNAs) are RNA molecules of

more than 200 nucleotides that are not translated. LncRNAs are

transcribed by RNA Polymerase-II and are mainly localized to

the nucleus. Although lncRNAs are abundant in the nucleus, they

are less stable than their cytoplasm-localized counterparts.

LncRNAs are stabilized either by polyadenylation or by the

formation of secondary structure triple helices at their 3′ end.
These 3′end sequences help in the nuclear export of lncRNAs

(Nojima and Proudfoot, 2022). LncRNA expression is usually

low but shows stronger tissue-specific expression, indicating

lncRNAs play an integral role in tissue-specific processes

(Aznaourova et al., 2020). Various studies have reported the

role of lncRNAs in carcinogenesis as well as other pathologies

(Yao et al., 2019a). The role of lncRNA in bladder cancer

progression, proliferation, and metastasis has been shown in

several studies (Zhang et al., 2021a; Chen et al., 2021b; Li et al.,

2021b). In the following section, we will discuss the role of

lncRNAs in different oncogenic processes in bladder cancer

(Figure 3).

Tumor progression

Urothelial cancer associated 1 (UCA1) is one of the lncRNA

associated with bladder cancer progression. UCA1 is located on

chromosome 19p13.12 (Mirzaei et al., 2022). The ectopic

expression of UCA1 influences bladder tumor progression,

revealing UCA1 as an oncogenic player in bladder

carcinogenesis (Ding et al., 2021). The role of UCA1 in

bladder cancer tumorigenesis has been reported in various

studies (Ghafouri-Fard et al., 2022). UCA1 has been

demonstrated to increase EMT by zinc finger E-box binding

homeobox 1 and 2 (ZEB1 and ZEB2) upregulation in bladder

cancer cells (Xue et al., 2016). UCA1 is known to be transported

via exosomes and leads to bladder cancer progression under

hypoxic conditions (Xue et al., 2017). In a contrast study, Lebrun

et al. showed that in a particular type of bladder cancer

UCA1 expression is decreased (Lebrun et al., 2018).

Homeobox transcript antisense RNA (HOTAIR) genes

reside in the HOXC cluster, located on the human

chromosome 12q13.1 (Tang and Hann, 2018). HOX cluster is

an important key factor in embryonic development. Suppression

of the HOX genes has been demonstrated in tumor progression

(Gupta et al., 2010). HOTAIR inhibited p53 expression and the

phosphatase and tensin homolog (PTEN) expression, thereby

aggravating cancer progression (Zhang et al., 2019c). HOTAIR

expression also significantly correlates with the activation of the

Wnt/β-catenin pathway (Zhang et al., 2021b). H19 is one of the

first discovered ncRNAs, which is located at chromosome

11p15.5. H19 is highly expressed during human embryonic

development but is suppressed in adults (Wu et al., 2021).

However, H19 has been shown to reactivate during

tumorigenesis and play a crucial role in various cancer

including bladder cancer (Raveh et al., 2015; Ghafouri-Fard

et al., 2020). H19 has been shown to enhance bladder cancer

cell proliferation via the upregulation of an inhibitor of DNA

binding 2 (ID2) (Luo et al., 2013a). The ID2 upregulation

attenuates retinoblastoma protein (Rb) effects on

E2F1 expression, thereby promoting bladder cancer

progression (Mao et al., 2021). Similarly, H19 has been shown

to induce upregulation of p53 protein thereby leading to bladder

cancer progression (Atala, 2013). Metastasis-associated lung

adenocarcinoma transcript 1 (MALAT1) has been first

identified as the prognostic marker in lung cancer and has

been reported to have a positive association with many other

cancers including prostate cancer and hepatic cancer (Amodio

et al., 2018; Sun and Ma, 2019). The overexpression of

MALAT1 enhances bladder cancer progression and migration

(Xie et al., 2017a; Li et al., 2017d; Liang et al., 2021). Additionally,

MALAT1 has been shown to inhibit apoptotic cell death and

thereby promote bladder cancer progression.

Tumor Metastasis

UCA1 by regulating the highmobility group box 1 (HMGB1)

pathway enhances the properties of bladder cancer invasion and

metastasis. HMGB1, a member of the high mobility group box

subfamily, has been demonstrated to be associated with various

cancer (Wu and Zhou, 2018). HMGB1 acts as an EMT inducer in

many human cancer cells (Dong et al., 2022) and is significantly

FIGURE 3
IncRNA and Autophagy in bladder cancer.
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upregulated higher in bladder cancer cells than in normal

urothelial cells (Hajjari and Salavaty, 2015). Several studies

have reported that HOTAIR is the main player in various

malignancies including bladder cancer, colon cancer, lung

cancer, and breast cancer (Chi et al., 2019). Liu et al. showed

that silencing of HOTAIR inhibits the invasive properties of

bladder cancer by downregulating epithelial-to-mesenchymal

(EMT), suggesting HOTAIR’s role in regulating metastasis

(Liu et al., 2015). In addition, the inhibition of HOTAIR has

been demonstrated to regulate Notch1-mediated EMT pathways

in bladder cancer and thereby promoting metastatic properties of

bladder cancer (Berrondo et al., 2016).

In addition, H19 upregulated expression has been

demonstrated to play a vital role in bladder cancer metastasis.

Authors have shown that H19 overexpression increased the

migratory properties of bladder cancer cells by interaction

with EZH2 which leads to activation of Wnt/β-catenin
signaling and therefore led to EMT induction (Atala, 2013;

Luo et al., 2013b). Zhu et al. has also shown that

H19 overexpression leads to enhancing the metastatic

properties via EMT pathways (Zhu et al., 2018). The

expression of MALAT1 was shown to be higher in invasive

and metastatic bladder cancer compared to normal tissue.

Additionally, MALAT1 expression was higher in high-grade

patients compared to low-grade bladder cancer patients (Li

et al., 2017d). Silencing of MALAT1 has an inhibitory effect

on the metastatic properties of bladder cancer cells.

MALAT1 downregulates ZEB1, ZEB2, and Wnt signaling

proteins, while it upregulates E-cadherin (Ying et al., 2012;

Fan et al., 2014a). These results indicate that MALAT1 has a

key role in initiating metastatic properties in bladder cancer.

Recently, LINC02470 was reported to enhance bladder cancer

cell viability, migration, and invasion. LIN02470 was

demonstrated to activate the SAMD3-TGF β-mediated EMT

process in bladder cancer (Huang et al., 2022). Similarly,

Haung et al. has shown that two exosome-derived lncRNAs;

LINC00960 and LINC02470 increased the malignant properties

of bladder cancer cells by upregulating EMT, β-catenin, NOTCH,

and SMAD signaling in high-grade bladder cancer (Huang et al.,

2020).

Chemoresistance

There are only a few reports where lncRNAs have been

shown to facilitate drug resistance in bladder cancer (Liu et al.,

2020b). The overexpression of UCA1 was shown to abrogate

apoptotic cell death and facilitate acquired resistance during anti-

cancer therapy in bladder cancer cells (Wang et al., 2017). This

study has demonstrated that increased overexpression of

UCA1 decreased the sensitivity of tamoxifen and silencing of

UCA1 mediates/enhances drug sensitivity by induction of

apoptosis and cell cycle arrest during tamoxifen treatment

(Liu et al., 2019). Mechanistically, UCA1 was shown to

physically interact with EZH2, which blocked the

p21 expression through histone methylation, and parallelly

UCA1 expression mediates phosphorylation of CAMP

responsive element binding protein (CREB) and PI3K/AKT

and thereby facilitates tamoxifen-mediated resistance (Fan

et al., 2014b). In addition, UCA1 has also been shown to

mediate resistance during cisplatin treatment by Cytochrome

P450 Family 1 Subfamily B Member 1 (CYP1B1)-mediated

apoptosis via miR-513a-3 upregulation (Li et al., 2022b).

UCA1 expression was shown to be positively related to

CYP1B1 expression. UCA1 binds with miR-513a-3p to induce

CYP1B1 expression. UCA1 silencing promotes chemosensitivity

and enhances apoptosis during cisplatin treatment, suggesting

the UCA1/miR-513a-3p/CYP1B1 axis plays a key role in

mediating chemoresistance (Cheng et al., 2021). The role of

UCA1 in colorectal cancer cells (CRC) has also been studied.

A study by Liu et al. demonstrated that the UCA1-Wnt/β-catenin
axis in CRC plays an imperative role in regulating metastasis and

autophagy in vivo (Liu et al., 2019).

Autophagy

Stress is a common feature of tumors, which include hypoxia,

and deficiency of nutrient growth factors due to insufficient

vasculature (Hanahan, 2022; Ojha et al., 2022). Autophagy is

one of the main cellular processes which is induced in many

tumors under various stress conditions like hypoxia and

starvation (Mulcahy Levy and Thorburn, 2020). For the first

time, our group (Ojha et al.) showed that autophagic flux

increases in a grade-dependent manner in bladder cancer.

AMPK is the key factor for regulating autophagy in bladder

cancer cells and functionally autophagy plays a cytoprotective

role in these cells (Ojha et al., 2014). Moreover, inhibition of

autophagy by both pharmacological and siRNA enhanced the

chemotherapeutic effects in bladder cancer cells (Ojha et al.,

2016). Gambogic acid, a potent anticancer agent, also has been

shown to induce autophagic flux by reactive oxygen species

(ROS) mediated JNK activation in the bladder cancer cells

(Ishaq et al., 2014).

Autophagy has been demonstrated to be regulated by

several mechanisms in cancer cells. Among the known

mechanisms, the recently validated mechanism is ncRNAs

(Yang et al., 2017). Several miRNAs and lncRNAs have been

described to regulate autophagy via distinct mechanisms (Yao

et al., 2019b). Various genetic and biochemical studies have

illustrated that the inhibition of MEG3 expression enhances

autophagy and blocks apoptosis (Xiu et al., 2017). A study by

Ying et al. has shown that MEG3 expression was markedly

reduced in bladder cancer compared with normal bladder

tissues, however, an increased autophagy level was

significantly found in tumor tissue compared to normal
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bladder tissue. Inhibition of MEG3 expression blocked

apoptosis and increased cell proliferation while autophagy

inhibition augmented MEG3-silencing-mediated apoptosis

(Ying et al., 2013). These findings accentuate the

significance of MEG3 in tumor suppression and the

potential use of targeting MEG3 in the management of

bladder cancer. A study by Xiu et al., 2017 has

demonstrated that upregulated expression of

MEG3 inhibited tumorigenesis in vivo by upregulating

ATG3 expression (Xiu et al., 2017). In addition, MEG3 has

been shown to protect ATG3 mRNA from degradation during

actinomycin D treatment. P53 activation has been

demonstrated to regulate MEG3 expression to protect

against tumor proliferation (Xiu et al., 2017).

MEG3 overexpression has been shown to downregulate

miR-96 while upregulating α-tropomyosin 1 (TPM1), which

reduced bladder cancer cell viability by increasing apoptotic

cell death (Liu et al., 2018).

The overexpression of H19 was found to inhibit GTP-

binding protein Di-Ras3 (DIRAS3) expression and induce

phosphorylation of mTOR, which leads to the inhibition of

autophagy in cardiomyocytes (Zhuo et al., 2017). Treatment

of bladder cancer cells with exosomes isolated from tumor-

associated macrophages enhances H19 expression and

autophagic response. Inhibition of H19 in TAMs-exosomes

blocked autophagy flux (Guo et al., 2022). This study suggests

that H19 plays a role in autophagy induction in bladder cancer

cells and targeting TAMs-Exosomes-H19 is an encouraging

therapeutic approach for the management of bladder cancer.

Overexpression of GAS5 induced chemoresistance to

cisplatin, which was not rescued by 3-MA-mediated

inhibition of autophagy, signifying that GAS5 promotes

chemosensitivity in an autophagy-independent manner (Xu

et al., 2020). Silencing of GAS5 decreased cancer cell viability

and reduced autophagy via regulating miR-23a expression (Li

et al., 2018). The results suggested that the GAS5-miR-23a

complex might be involved in the regulation of autophagy.

Collectively, these results indicated that GAS5 participates in

carcinogenesis by stimulating the autophagy response. To the

best of our knowledge of GAS5 and autophagy in bladder

cancer is not studied yet. HOTAIR was shown to increase

autophagy and promote imatinib sensitivity of

gastrointestinal stromal tumors (GIST). This study has

shown that miR-130a and HOTAIR have downstream

target autophagy-related protein 2 homolog B (ATG2B).

Downregulation of ATG2B blocks the effect of HOTAIR on

imatinib sensitivity in GIST (Zhang et al., 2021b). In addition,

inhibition of HOTAIR has been demonstrated to enhance the

sensitivity to radiotherapy by inhibiting autophagy through

the downregulation of the Wnt signaling pathway in cervical

cancer (Trujano-Camacho et al., 2021). To the best of our

knowledge, there are no reports about the role of HOTAIR in

regulating autophagy in Bladder cancer.

Tumor suppressor

Growth arrest-specific 5 (GAS5) was initially shown to

regulate cell proliferation and cell cycle during embryogenesis

and tumor progression (Yu and Hann, 2019; Xu et al., 2020).

However, several studies have demonstrated that the

downregulation of GAS5 is potentiating tumor progression in

various cancers including bladder cancer (Cao et al., 2016).

Similarly, GAS5 has been demonstrated as a tumor suppressor

role in bladder cancer via inhibiting EZH2 expression and

augmenting apoptosis (Kaur et al., 2022). GAS5 has been also

shown to inhibit Calcium-Activated Chloride Channel 1

(CCLA1) expression and thus contributes to the suppression

of cancer growth (Jia et al., 2015). Additionally, genetic studies

have demonstrated that GAS5 suppresses cell division protein

kinase 6 (CDK6), thereby inhibiting bladder cancer progression

(Wang et al., 2012). Furthermore, GAS5 has been reported to

promote apoptosis by suppressing EZH2 transcription via the

recruitment of transcription factor E2F4 to EZH2 promoter in

bladder cancer cells (Cao et al., 2016). Altogether, these studies

suggest that GAS5 could use for bladder cancer patient’s

treatment. However, GAS5 silencing was reported to reduce

apoptosis via glucocorticoid receptors during nutrient

deprivation (Kino et al., 2010).

Maternally expressed gene 3 (MEG3) is highly expressed

in human tissue and has been demonstrated to play as a

tumor suppressor (He et al., 2017). MEG3 expression has

been shown to inhibit bladder cancer progression (He et al.,

2017). Ying et al. have reported that MEG3 expression was

downregulated in bladder cancer compared with normal

tissue (Liu et al., 2018). Further genetic studies

demonstrated the silencing of MEG3 increases autophagy

and abrogated apoptosis in vitro (Ying et al., 2013). These

studies underscore the significance of MEG3 in tumor

suppression in bladder cancer treatment.

Clinical relevance of non-coding RNA

The clinical use of ncRNAs has recently gained

momentum because of some advantages over the currently

used drugs. First, ncRNAs are synthesized by the cells

themselves, so will not be treated as alien molecules.

Second, ncRNAs usually target a set of different mRNAs,

which encode proteins regulating a specific process.

However, so far only one ncRNA, Prostate Cancer

Associated 3 (PCA3) is used in clinical settings as a

biomarker for prostate cancer. Various ncRNAs are under

clinical trials for different pathologies including cancer.

However, the effective use of ncRNAs in therapeutics is

limited because of issues like; delivery to target regions,

bioavailability, and specificity (Wang et al., 2019; Winkle

et al., 2021). In the following section we will be
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highlighting the clinical relevance of ncRNAs in bladder

cancer.

Clinical utility of miRNA: Diagnosis and
prognosis

Various biomarker studies have demonstrated the potential

of miRNAs in bladder cancer diagnosis, for example high

expression of the miR-200 family correlated with better

overall and recurrence-free survival (Table 1). Mei et al.

concluded that high expression of the miR-200 family is

strongly associated with better prognosis in bladder cancer

patients and may significantly improve bladder cancer

management (Mei et al., 2020). Similarly, higher expressions

of hsa-miR-663a and hsa-miR-3648, and lower expression of

hsa-miR-185-5p, hsa-miR-30c-5p, hsa-miR-1270, hsa-miR-

200c-3p, and hsa-miR-29c-5p, significantly correlated with

shorter overall survival of bladder cancer patients (Homami

and Ghazi, 2016; Lin et al., 2019). A combination of

7 miRNAs (7-miRNA panel: miR-6087, miR-6724-5p, miR-

3960, miR-1343-5p, miR-1185-1-3p, miR-6831-5p and miR-

4695-5p) was shown to accurately discriminate bladder cancer

from non-cancer and other types of tumors with the high

specificity (Usuba et al., 2019). Another study showed that the

combination of four miRNAs; miR-181b-5p, miR-183-5p, miR-

199-5p and miR-221-3p can be used as a stable biomarker for

bladder cancer diagnosis (Li et al., 2022c).

Recent studies showed circulating miRNA by liquid biopsy

could be the potential biomarker for bladder cancer. Mitesh et al.

found miR-7-5p, miR-22-3p, miR-29a-3p, miR-126-5p, miR-

200a-3p, miR-375, and miR-423-5p in urine could serve as

TABLE 1 miRNAs in bladder cancer.

Name of
miRNA

Target Signaling pathways Function Level Clinical
significance

miR-10b ----- ------ Tumor progression Increased Diagnostic,
prognostic

miR21 P53, AKT, PTEN, Maspin,
VEGF-C

PI3K/AKT, and miR-21/
maspin/VEGFC pathway

Apoptosis, and mesenchymal transition,
promote tumor progression

Increased Diagnostic,
prognostic

miR-23a FOXO3, IL6R PI3K-AKT signaling pathway Cancer Progression Decreased Therapeutic target

miR-124 ROCK1 ------- Migration and invasion Decreased Diagnostic,
prognostic

miR-126 ADAM9 ------ Tumor suppressor Increased Therapeutic target

miR129 GALNT1 and SOX4 ------ Provide drug resistance Increased Diagnostic,
prognostic

miR133b BCl-w Akt Tumor suppressor Increased Diagnostic,
prognostic

miR-141-3p PTEN Cell cycle Metastasis Increased Diagnostic,
prognostic

miR-145 FSCN1 EMT inhibition Tumor suppressor Decreased Therapeutic target

miR-155 DMTF1 DMTF1-Arfp53 Tumor progression

miR-200 ----- ZEB1 and ZEB2 EMT and metastasis Decreased Diagnostic,
prognostic

miR-205-5p ZEB1, ZEB2, PTEN, AKT,
VEGF

Adherent junctions, focal
adhesion

tumorigenesis, invasion and metastasis Increased Prognostic,
therapeutic target

miR210 E2F3, FGFRL1, HOXA1 ------ Cell growth, migration, apoptosis Increased Diagnostic,
prognostic

miR221 ----- JAK-STAT Bladder tumor progression Increased Diagnostic,
prognostic

miR-222 ----- ------ Associated with unfavorable clinical
features and poor survival

Increased Diagnostic,
prognostic

miR409 c-Met and c-Fos ------ Migration and invasion Decreased Prognostic

miR-590-3p TFAM, (PI3K), AKT,
MMP2 and MMP9

------- Tumorigenesis Decreased Therapeutic target
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TABLE 2 Summary of lncRNAs used as diagnostic and prognostic biomarkers of bladder cancer.

LncRNA Expression
level

Target Function Clinical
parameters

Clinical utility

UCA1 Upregulated BMP9/pAKT/UCA1, miR-1/
UCA1

Tumor progression and
Metastasis

Tumor metastasis TNM staging

UCA1/mTOR-STAT3/HK2

UCA1/CREB/miR-196a-5p

UCA1/BRG1/p21

C/EBPα/UCA1, UCA1/
(CDKN2B)

H19 Up-regulation H19/miR-29b-3p/DNMT3B Tumor progression Tumor size Diagnosis, Prognosis

H19/miR-675/p53

HOTAIR Upregulation HuR/HOTAIR/miR-1 Resistance Tumor recurrence Diagnosis, prognosis

HOTAIR/miR-205/Cyclin J Therapeutic target

MALAT1 Upregulation MALAT1/miR-124/foxq1 Tumor progression Tumor size Diagnosis, Prognosis

DUXAP8 Up-regulation DUXAP8/PTEN Tumor progression Tumor size Diagnosis, Prognosis

TUG1 Up-regulation TUG1/HMGB1 Tumor progression Tumor size Diagnosis, Prognosis

TUG1/miR-29c, miR-142/ZEB2

DUXAP8 Upregulation DUXAP8/PTEN Metastasis Tumor metastasis TNM staging

ZEB1-AS1 Upregulation ZEB1-AS1/miR-200b/FSCN1 Metastasis Tumor metastasis TNM staging

GAPLINC
ZFAS1
NORAD
SNHG5
SNHG16
PCAT-1
MALAT1

CAT266 CAT1297
CAT1647
UBC1

LSINCT5

Upregulation Not known Tumor progression Tumor size Diagnosis, Prognosis

CDKN2B-AS
PVT1

SNHG16 Linc00857
FOXD2-AS1

Upregulation Not known Tumor metastasis Tumor size Diagnosis, Prognosis

MEG3 Downregulation MEG3/miR-96/TPM1 Tumor suppression Tumor size Diagnosis and
prognosis

MEG3/miR-494/PTEN

MEG3/LC3-I/II

MEG3/miR-27a/PHLPP2

TP73-AS1/(vimentin

MMP-2/9, snail

E-cadherin)

CASC2 Downregulation CASC2/Wnt-catanin Tumor suppression Stage and grade of tumor TNM staging

GAS5 Downregulation GAS5/miR21/PTEN Tumor suppression Drug resistance Therapeutic target

GAS5/(CCL1, Bcl2, CDK6)

TP73-AS1 Downregulation Not known Tumor suppression Drug resistance Therapeutic target

PTENP1
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non-invasive biomarkers for bladder cancer (Mitash et al., 2017).

Lian et al. found miR-148b-3p, miR-3187-3p, miR-15b-5p, miR-

27a-3p, and miR-30a-5p in serum samples could be the potential

biomarkers for the prognosis of bladder cancer (Lian et al., 2018).

A study by Xie et al. identified seven miRNAs were up-regulated

in bladder serum cancer samples compared to control samples,

including hsa-miR-185-5p, hsa-miR-663a, hsa-miR-30c-5p, hsa-

miR-3648, hsa-miR-1270, hsa-miR-200c-3p, and hsa-miR-29c-

5p (Xie et al., 2017b; Li et al., 2022c). The dysregulation of these

miRNAs correlated with the advanced stage and overall survival

in bladder cancer patients.

Clinical utility of long non-coding RNA:
Diagnosis and prognosis

Just like miRNAs, lncRNAs have been explored as possible

diagnostic biomarkers for tumor bladder cancer (Table 2).

UCA1 is among the well-studied and good candidates for

bladder cancer biomarkers. UCA1 mRNA expression shows a

significant association with the stage and grade of bladder

cancer (Lebrun et al., 2018). Yu et al. have shown increased

expression of UCA1 in urine samples of high-grade bladder

tumor patients (Yu et al., 2020). UCA1 has been shown to have

high sensitivity for the T2-T4 stage of bladder cancer,

suggesting that UCA1 may be considered a marker for the

better prognosis of bladder cancer (Avgeris et al., 2019).

Expression of lncRNAs H19 and HOTAIR are significantly

increased in bladder cancer tissues compared to normal

bladder tissues (Wang and Yin, 2017). High expression of

HOTAIR and GAS5 was shown to be associated with poor

survival in bladder cancer (Li et al., 2019b). A study by

Lodewijk et al. has demonstrated that UCA1, HOTAIR, and

MALAT1, can be used as urinary biomarkers for bladder

cancer patients (Lodewijk et al., 2018). Another study

showed that overexpression of HOTAIR, MALAT1 and

LINC00477 was found in urine exosomes of high-grade

muscle-invasive bladder cancer patients. Irregular

expression of HOTAIR, UBC1, H19, and GAS5 has been

reported to be related to overall survival in bladder cancer

(Berrondo et al., 2016) however, more confirmative studies are

needed to make a definite conclusion. HOTAIR expression

was shown to be associated with prognosis, and poor disease-

free survival in bladder cancer (Heubach et al., 2015). Another

study by Yan et al. demonstrated a correlation between

HOTAIR high expression with histological grade and

recurrence rate (Zhang et al., 2022). Additionally, HOTAIR

was also shown to be enriched in urinary exosomes of high-

grade muscle-invasive bladder cancer (Berrondo et al., 2016).

Another lncRNA GAS5 was found to be decreased in bladder

cancer. Downregulated expression of GAS5 was shown to be

related to poor disease-free survival (Cao et al., 2016).

H19 expression was also found to correlate with overall

survival (Luo et al., 2013b). MALAT1 overexpression was

reported to have a significant association with the grade

and metastasis in bladder cancer (Amodio et al., 2018),

indicating that MALAT1 may be used as a prognostic

biomarker in bladder cancer.

Future perspectives

With advancing research, it has been well established that

ncRNAs are linked to tumor progression, metastasis, and

chemoresistance (Cho et al., 2006; Real and Malats, 2007).

Several clinical studies have indicated that upregulated or

downregulated expression of ncRNAs is associated with the

grade, stage, and metastatic potential of cancer cells.

Therefore, ncRNAs can be utilized for the early detection

and better management of bladder cancer (Real and Malats,

2007). However, the functional role of ncRNAs is still

perplexing due to the intricacy and multiplicity of their

expression profiles and targeting proteins. Both miRNA

and lncRNAs interact with mRNAs which affect different

cellular processes like immune response, proliferation, and

autophagy (Ning et al., 2019). The effects of ncRNAs as

autophagy inducers or inhibitors have been studied;

however, there is a prerequisite for more experimental

studies in preclinical and clinical settings. It is worth

noting that autophagy plays a dual role in cancer, acting

not only as a tumor suppressor but also tumor enhancer

process. Therefore, the relationship between autophagy and

ncRNAs may not be simple. The effect of autophagy

inhibitors in combination with targeted knockdown or

overexpression of specific ncRNAs on bladder cancer

progression needs to be explored. Blocking autophagy has

been shown to sensitize the bladder cancer cells to

gemcitabine and cisplatin. In the future, ncRNAs which

are strong inhibitors of autophagy can be used in

combination with these standard drugs to increase their

efficacy in bladder cancer patients. Since autophagy is a

key process in developing chemoresistance, targeted

inhibition of autophagy by ncRNAs may sensitize these

cells toward the standard chemotherapeutic drugs. The

diagnostic, therapeutic, and prognostic value of the

ncRNA and autophagy in urologic cancers needs to be

further investigated for the better treatment and

management of bladder cancer. In addition to specific

proteins and the corresponding signaling pathways, some

other factors, such as tumor microenvironment and tumor

immunity also play roles in the development of urologic

cancers. The role of ncRNAs in these processes will be really

interesting to study. The molecular mechanism of the

ncRNA-autophagy-immunity axis and its role in urologic

tumorigenesis must be further clarified and explored. The

answer to these questions may be helpful for finding new
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diagnostic biomarkers and innovative

therapeutic alternatives in urologic malignancies.

Conclusion

Various studies have clearly established the role of

ncRNAs in tumor progression, mediating metastatic

potential and drug resistance in bladder cancer. Also, the

role of ncRNAs as diagnostic and prognostic markers for

bladder cancer has been demonstrated by several studies.

Once the role of ncRNAs is well explored, the therapeutic

strategies can be precisely tailored for the effective treatment

of bladder cancer. For example, by targeting a specific

ncRNA the sensitivity towards routine drugs can be

significantly increased. In addition, the combinatorial

intervention of targeting both ncRNAs and autophagy

might be a favorable therapeutic strategy for bladder

cancer. With the help of new cutting-edge technologies,

the role of ncRNA will be crucial for the development of

precision medicine.
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