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The global outbreak of the COVID-19 epidemic has become a major public

health problem. COVID-19 virus infection triggers a complex immune response.

CD8+ T cells, in particular, play an essential role in controlling the severity of the

disease. However, the mechanism of the regulatory role of CD8+ T cells on

COVID-19 remains poorly investigated. In this study, single-cell gene

expression profiles from three CD8+ T cell subtypes (effector, memory, and

naive T cells) were downloaded. Each cell subtype included three disease states,

namely, acute COVID-19, convalescent COVID-19, and unexposed individuals.

The profiles on each cell subtype were individually analyzed in the same way.

Irrelevant features in the profiles were first excluded by the Boruta method. The

remaining features for each CD8+ T cells subtypewere further analyzed byMax-

Relevance and Min-Redundancy, Monte Carlo feature selection, and light

gradient boosting machine methods to obtain three feature lists. These lists

were then brought into the incremental feature selection method to determine

the optimal features for each cell subtype. Their corresponding genes may be

latent biomarkers to determine COVID-19 severity. Genes, such as ZFP36,

DUSP1, TCR, and IL7R, can be confirmed to play an immune regulatory role

in COVID-19 infection and recovery. The results of functional enrichment

analysis revealed that these important genes may be associated with

immune functions, such as response to cAMP, response to virus, T cell

receptor complex, T cell activation, and T cell differentiation. This study

further set up different gene expression pattens, represented by

classification rules, on three states of COVID-19 and constructed several

efficient classifiers to distinguish COVID-19 severity. The findings of this

study provided new insights into the biological processes of CD8+ T cells in

regulating the immune response.
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1 Introduction

Caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has

cumulatively infected more than 400 million people. It is

mainly transmitted in the population through close contact,

and typical clinical symptoms are fever and cough (Sanyal,

2020). SARS-CoV-2 enters host cells through endocytosis by

binding to angiotensin-converting enzyme 2 (ACE2) receptor

on the cell surface (Samudrala et al., 2020). Several variants

have emerged, and the main ones are Alpha, Beta, Gamma,

Delta, Lambda, and Omicron (Araf et al., 2022; Fiolet et al.,

2022).

Viral infections involve a complex immune response

process, in which T lymphocytes, especially CD8+ T cells,

are crucial to the control and clearance of acute infections.

CD8+ T lymphocytes can selectively kill infected cells by

mediating adaptive cytotoxic T cell responses, thereby

eliminating the virus (Westmeier et al., 2020). CD8+ T cells

exert cytotoxic effects mainly through target cell lysis and

cytokine release (Slifka and Whitton, 2000). In the target cell

lysis pathway, target cells are lysed through the Fas/FasL

pathway or perforin, whereas the cytokine pathway is

associated with IFNγ and TNFα. Strong CD8+ T cell

responses specific to SARS-CoV-2 are associated with

worse disease severity; SARS-CoV-2 infection results in a

decrease in CD8+ T cell frequency, which becomes more

pronounced with increasing infection severity (Chen et al.,

2020). SARS-CoV-2-specific CD8+ T-cell responses are rarely

detected in patients with fatal COVID-19 (Dan et al., 2021)

because of CD8+ T-cell depletion after overactivation, which

ultimately reduces the host cellular immune response to the

virus (Zheng et al., 2020; Gong et al., 2021).

Cellular immunity involves the transformation of naive,

effector, and memory T cells. The proportion of CD8+ T cell

subsets correlates with COVID-19 severity (Westmeier et al.,

2020). Patients with moderate COVID-19 have a significantly

increased proportion of effector CD8+ T cells and effector

memory CD8+ T cells than healthy subjects and severely

infected patients (Fenoglio et al., 2021), whereas naïve CD8+

T cells are reduced in old people and negatively correlated with

patient age (Westmeier et al., 2020). Naïve CD8+ T cells

correlated with age and differed across infection status

(unexposed, acute, and recovering patients) (Grifoni et al.,

2020). In contrast, studies between groups of COVID-19

patients showed that those with severe infection exhibited

higher levels of naive CD8+ T cells and lower levels of effector

CD8+ T cells and effector memory CD8+ T cells compared with

patients with mild infection (Fenoglio et al., 2021), which may

imply a defective cytotoxic lymphocyte response in severe

infections. In addition, in COVID-19 patients, the dominant

effector CD8+ T cells were GzmA, GzmB, and perforin triple-

positive cells, compared with uninfected individuals; patients

expressing effector CD8+ T cells that produce multiple virulence

molecules exhibited milder symptoms (Westmeier et al., 2020),

which may indicate a potential protective mechanism.

As the viral infection subsides, some T cells differentiate into

memory T cells. Memory T cells can persist in patients for long

periods of time; thus, they play a protective role in preventing

viral reinfection (Nguyen et al., 2019). Compared with non-

hospitalized patients, hospitalized patients did not have a higher

frequency of memory CD8+ T cells, and the proportion tended to

be stable over time (Grifoni et al., 2020). SARS-CoV-2-specific

memory CD8+ T cells were related to less severe COVID-19

during infection, because SARS-CoV-2 memory T cells can limit

the accumulation of SARS- CoV-2 and viral load, thereby

reducing COVID-19 disease severity (Kotturi et al., 2007;

Francis et al., 2022). As CD8+ T cells are crucial to the

infection of SARS-CoV-2, studying the characteristics of

different types of CD8+ T cells in different infection states

provides a useful reference for finding potential targets for

treatment.

In this study, several computational methods were used to

investigate the gene expression profiles of three subtypes of

CD8+ T cells (effector, memory and naïve T cells) related to

COVID-19. Three disease states: unexposed, acute, and

convalescent, were included in the profiles on each cell

subtype. The profiles on each cell subtype were individually

analyzed in the same way. First, the profiles were analyzed by

Boruta feature selection method (Kursa and Rudnicki, 2010)

to exclude irrelevant gene features. Then, three feature

ranking algorithms: Max-Relevance and Min-Redundancy

(mRMR) (Peng et al., 2005), Monte Carlo feature selection

(MCFS) (Draminski et al., 2008), and light gradient boosting

machine (LightGBM) (Ke et al., 2017), were used to examine

remaining features, resulting in three feature lists. Each list

was fed into the incremental feature selection (IFS) method

(Liu and Setiono, 1998) to extract essential gene features,

construct efficient classifiers and set up classification rules.

The essential genes can be latent biomarkers and the rules can

indicate different expression patterns on three COVID-19

states, deepening our understanding on COVID-19.

2 Materials and methods

2.1 Datasets

The gene expression profiles of three subtypes of CD8+ T cells

related to COVID-19, including effector, memory, and naïve
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T cells, were obtained from the GEO database by accessing a

number of GSE188429 (Francis et al., 2022). These expression

profiles were obtained by isolating CD8+ T cells from individual

peripheral blood mononuclear cells (PBMCs) and quantifying

mRNA expression in the cells by single-cell transcriptome

sequencing techniques. CD8+ T cell responses in PBMCs from

three cohorts were studied, as follows: acute COVID-19,

convalescent COVID-19, and unexposed individuals. A total

of 145,293 cell samples were included in these profiles and the

number of samples under different cohorts for each CD8+ T cell

subtype is shown in Table 1. After filtering low expression and

low variance genes, 1046 genes were kept and deemed as features

in this study. We used the processed data in h5ad file acquired

from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE188429 for detailed analysis. For the next round of

machine learning computations, the datasets for each of the

three different cell subtypes were studied independently.

2.2 Boruta feature selection

Lots of gene features were used to represent each cell in three

subtypes of CD8+ T cells. Evidently, only a few of them are highly

related to distinguish the states of COVID-19. It is essential to

discover them. This task can be completed by some feature

analysis methods. Here, the Boruta feature selection method

(Kursa and Rudnicki, 2010) was adopted first to exclude

irrelevant features.

The Boruta feature selection method is a feature selection

wrapper algorithm, which can be used to assess the importance of

features using a tree classifier (e.g., random forest (RF) (Breiman,

2001)) and hence reject irrelevant features. The approach

particularly creates a shadow feature at random for each

original feature and then compares them with the original

features in terms of their importance generated by RF. An

original feature is selected when it is statistically more

important than the shadow features. Selected features are

removed from the current dataset and the dataset containing

remaining features is processed in the next round. Above

procedures repeat several times until the number of rounds

reaches the predefined value.

The present study used the Boruta program available at

https://github.com/scikit-learn-contrib/boruta_py to analyze

the datasets individually for three cell subtypes. It was run

with default parameters.

2.3 Feature ranking methods

Important features can be extracted through Boruta.

However, their importance was not clear. Three feature

analysis methods followed to investigate selected features,

including mRMR (Peng et al., 2005), MCFS (Draminski et al.,

2008) and LightGBM (Ke et al., 2017).

2.3.1 mRMR
The mRMR uses mutual information as a metric to achieve

the maximum correlation between features and class labels as

well as the minimum redundancy between features. After mRMR

analysis, features are ranked in a list. The list is produced by

repeatedly selecting a feature with maximum correlation to class

labels and minimum redundancy to already-selected features.

For convenience, this list was called the mRMR feature list.

2.3.2 MCFS
TheMCFSmethod is another effective feature selection method

in machine learning. The method evaluates the importance of

features by constructing a number of decision trees. Trees are set

up on some randomly generated feature groups and sample sets.

According to the occurrence of each feature in all trees, a relative

importance (RI) score is computed and assigned to the feature to

indicate its importance. With the decreasing order of RI scores,

features are ranked in a list, named MCFS feature list.

2.3.3 LightGBM
The LightGBM represents ensemble learning algorithms and

is a distributed gradient-boosting framework based on decision

tree algorithm. As the algorithm is based on a tree classifier, it can

be used to evaluate the importance of a feature by counting its

frequency in all trees. Likewise, features are ranked in a list with

the decreasing order of their frequencies. Such list was termed as

LightGBM feature list.

In this investigation, the mRMR program used is obtained

from http://home.penglab.com/proj/mRMR/. As for the MCFS

program, the software developed by Draminski et al. (2008) was

adopted, which can be accessed at http://www.ipipan.eu/staff/m.

TABLE 1 Sample size for the different categories under the datasets for three cell subtypes.

Cell subtype Acute COVID-19 Convalescent COVID-19 Unexposed individuals Total

Effector T cells 4832 23542 21288 49662

Memory T cells 6527 22031 28257 56815

Naïve T cells 5204 21504 12108 38816

Frontiers in Genetics frontiersin.org03

Lu et al. 10.3389/fgene.2022.1053772

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188429
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE188429
https://github.com/scikit-learn-contrib/boruta_py
http://home.penglab.com/proj/mRMR/
http://www.ipipan.eu/staff/m.draminski/mcfs.html
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1053772


draminski/mcfs.html. The LightGBM program was implemented

using the LightGBM library in python, which is available at

https://lightgbm.readthedocs.io/en/latest/. The default

parameters were used in all above three programs.

2.4 Incremental feature selection

After feature ranking, three feature lists for one subtype of CD8+

T cells were obtained. However, it was not easy to determine the

optimal features from these feature lists. In this step, the IFS method

(Liu and Setiono, 1998) was employed to determine the optimal

features in each list for a given classification algorithm. The

procedures were described as below. When the step size was set

to 1, the IFSmethod first generated a succession of feature subsets in

away that the first feature subset contained the first feature in the list,

and the second feature subset included the top two features, and so

on. For each feature subset, a classifier was built based on samples

represented by features in this subset. All classifiers’ performance

was tested using 10-fold cross-validation (Kohavi, 1995). Finally,

based on the performance indicators of each classifier, the classifier

with the best performance can be obtained. Such classifier was called

the optimal classifier and features used in this classifier were termed

as the optimal features.

2.5 SMOTE

As shown in Table 1, the sizes of different categories in the

gene expression profiles were of great differences, i.e., the profiles

were imbalanced, which may lead to the unstable performance of

the classifier on different categories. Therefore, the synthetic

minority oversampling technique (SMOTE) algorithm (Chawla

et al., 2002) was adopted to tackle this problem. It works by

linearly synthesizing new samples for minority categories using

the k-nearest neighbors concept, thereby ensuring that the

FIGURE 1
A diagram of the computational framework used in this study. We first analyzed the 3 T cell expression profiles of COVID-19 by different feature
selectionmethods inmachine learning. Then, we used the incremental feature selectionmethod to determine the optimal features, build the optimal
classifiers, and extract the important classification rules. The critical features obtained were enriched by GO and KEGG analysis to uncover their
biological implications.

FIGURE 2
Performance of different classification algorithms with
different number of features under the mRMR feature lists. (A)
effector T cells, (B)memory T cells, (C) naïve T cells. Random forest
provided the best performance on effector and memory
T cells, whereas k-nearest neighbor yielded the best performance
on naïve T cells.
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quantity of samples from different categories is almost equal.

This study used the SMOTE program available at https://github.

com/scikit-learn-contrib/imbalanced-learn and executed it with

default parameters.

2.6 Classification algorithms

As mentioned above, the IFS method needs a classification

algorithm. For wide tests, three classification algorithms:

k-nearest neighbors (kNN) (Cover and Hart, 1967), RF

(Breiman, 2001), and decision tree (DT) (Safavian and

Landgrebe, 1991), were attempted. These algorithms were

widely used to tackling various medical problems (Chen et al.,

2021; Chen et al., 2022; Ding et al., 2022; Li et al., 2022; Ran et al.,

2022; Tang and Chen, 2022; Wu and Chen, 2022; Zhou et al.,

2022; Wu and Chen, 2023).

2.6.1 kNN
This algorithm is one of the most classic classification

algorithms in machine learning. For a test sample, kNN

calculates its distance to all training samples and finds k

nearest training samples. According to the classes of these

training samples, the class of the test sample is determined.

Generally, the majority voting is adopted to make the

decision.

2.6.2 RF
RF is a classic algorithm in ensemble learning that first

resamples N subsets from the original dataset based on the

FIGURE 3
Performance of different classification algorithms with
different number of features under the MCFS feature lists. (A)
effector T cells, (B)memory T cells, (C) naïve T cells. Random forest
provided the best performance on effector and memory
T cells, whereas k-nearest neighbor yielded the best performance
on naïve T cells.

FIGURE 4
Performance of different classification algorithms with
different number of features under the LightGBM feature list. (A)
effector T cells, (B)memory T cells, (C) naïve T cells. Random forest
provided the best performance on effector and memory
T cells, whereas k-nearest neighbor yielded the best performance
on naïve T cells.
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bagging strategy and uses each subset to train a decision tree

classifier. Each tree is constructed by randomly selecting features.

For a test sample, each tree gives its prediction. RF integrates

these predictions with majority voting. Compared with decision

trees, RF is more accurate and has a high generalization

capability.

2.6.3 DT
This algorithm is quite different from kNN and RF. Although

above two algorithms can provide high performance, their

principles are hard to be understood. In this regard, DT has

its special merits. The classification procedures of DT are

completely open. In this case, it is possible for us to

understand its classification principle. Besides the tree form,

DT can also be represented by a set of if-then rules, each of

which contains a group of conditions and one result. The

conditions may indicate a special pattern for the result, giving

insights to understand essential differences of various categories.

In this study, all three abovementioned algorithms were

implemented via the scikit-learn library. These programs were

performed by using their default parameters.

2.7 Performance measurement

For multi-class classification, overall accuracy is the most

widely used measurement. It is defined as the proportion of

corrected predicted samples among all samples. However,

such measurement is not perfect when the dataset is

imbalanced. In this case, Mathews Correlation Coefficient

(MCC) (Matthews, 1975; Jurman et al., 2012; Liu et al.,

2021; Pan et al., 2022; Wang and Chen, 2022; Yang and

Chen, 2022) is more accurate to evaluate the performance

of classifiers. It can be computed by

MCC � cov(X,Y)
����������������
cov(X,X)cov(Y,Y)√ (1)

where X indicates the binary matrix of the true classes of all

samples, Y represents the binary matrix of the predicted classes of

all samples, and cov(.) denotes the correlation between two

matrices.

Besides, F1 score was used to evaluate the performance of

classifiers on each category in this study. The F1 score for one

category can be computed by

F1 score � 2 × TP

2 × TP + FN + FP
(2)

where TP, FN and FP stand for the true positive, false negative

and false positive of such category. In detail, TP is the number of

accurately predicted samples in this category, FN is the number

of wrongly predicted samples in this category and FP is the

number of samples that belong to other categories but are

predicted to be in this category. The F1 scores on all

categories can be integrated to give an overall evaluation on

classifiers’ performance. Generally, there are two forms to make

integrations. The first one is the direct mean of F1 scores on all

categories. Suchmeasurement is called macro F1. The second one

further considers the weights of categories, i.e., the weighted

mean of F1 scores on all categories. It is called weighted F1.

As different measurements can induce different results, a

major measurement should be determined in advance. Here, we

selected weighted F1 as the major measurement.

2.8 Biological function enrichment

Through the above computational analysis, some important

genes can be discovered from the profiles on each subtype of

CD8+ T cells. To uncover the biological meanings behind these

genes, the gene ontology (GO) and KEGG enrichment analysis

was employed. The clusterProfiler 4.0 tool (Wu et al., 2021) was

adopted to conduct the enrichment analysis. The threshold on

p-value was set to 0.05 for selecting enriched GO terms and

KEGG pathways.

TABLE 2 Detailed performance of the optimal classifiers obtained by using the mRMR, MCFS, and LightGBM methods for three cell subtypes.

Cell subtype Feature ranking method Classification
algorithm

Number of features ACC MCC Macro F1 Weighted F1

Effector T cells mRMR RF 95 0.809 0.670 0.748 0.806

MCFS RF 45 0.815 0.688 0.776 0.815

LightGBM RF 55 0.823 0.698 0.787 0.822

Memory T cells mRMR RF 239 0.821 0.694 0.786 0.818

MCFS RF 95 0.824 0.704 0.798 0.823

LightGBM RF 33 0.834 0.724 0.815 0.833

Naïve T cells mRMR kNN 29 0.841 0.755 0.826 0.845

MCFS kNN 37 0.844 0.761 0.828 0.849

LightGBM kNN 23 0.863 0.787 0.847 0.867
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FIGURE 5
Performance of the optimal classifiers for three CD8+ T cells subtypes on three categories. (A) effector T cells, (B) memory T cells, (C) naïve
T cells. The optimal classifiers on the LightGBM feature lists were better than those on other two feature lists.

FIGURE 6
Intersection results of the optimal feature sets based on different feature lists yielded by three feature ranking methods for three CD8+ T cells
subtypes. (A) effector T cells, (B) memory T cells, (C) naïve T cells.
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3 Results

In this study, we first downloaded COVID-19 expression

profiles for three CD8+ T cells subtypes, including effector,

memory, and naïve T cells from GEO. Irrelevant features in

the dataset on each CD8+ T cells subtype were excluded using

Boruta, and the retained features were ranked by using mRMR,

MCFS, and LightGBM in three feature ranking lists. These

feature lists were then used to identify the optimal features

and extract classification rules using the IFS method. The

entire computational framework is shown in Figure 1.

3.1 Results of feature selection on CD8+

T cells expression profiles

For the expression profiles on each CD8+ T cells subtype, the

Boruta method was first adopted to remove irrelevant features.

252 features remained for effector T cells. For memory and naïve

T cells, 241 and 153 features were kept, respectively. These

selected features were analyzed by mRMR, MCFS, and

LightGBM, respectively, resulting in three feature lists for each

CD8+ T cells subtype. These lists are provided in Supplementary

Tables S1–S3.

3.2 Recognition of key features to
distinguish COVID-19 severity on CD8+

T cells with the IFS method

Through the above step, three feature lists (mRMR, MCFS

and LightGBM feature lists) were obtained for each CD8+ T cells

subtype. However, important features for the classification task

are still difficult to determine. Therefore, the IFS method was

used to find the optimal features and construct the optimal

classifiers, which constructed a series of classifiers and

calculated their performance metrics. The IFS results for the

three CD8+ T cells subtypes using different feature lists are

provided in Supplementary Tables S4–S6. The IFS curves were

plotted to observe the trend of the classifiers’ performance,

measured by weighted F1, under the changing of feature

numbers, as shown in Figures 2–4.

For the IFS results on the mRMR feature lists of three CD8+

T cells subtypes (Supplementary Table S4), the IFS curves are

shown in Figure 2. For the effector T cells, DT, kNN and RF

reached the highest performance when the first 249, 14 and

95 features were used with weighted F1 values of 0.731, 0.746 and

0.806 (Figure 2A). For the memory T cells, three classification

algorithms yielded the maximum weighted F1 values of 0.736,

0.789 and 0.818 when first 155, 21 and 239 features were adopted

(Figure 2B). As for the naïve T cells, the highest weighted

F1 values for three classification algorithms were 0.786, 0.845,

and 0.842 (Figure 2C), which were obtained by using top 61,

29 and 25 features in the list. Clearly, for effector and memory

T cells, RF provided better performance than DT and kNN,

whereas kNN was best for the naïve T cells. Accordingly, we can

construct the optimal RF classifiers for effector and memory

T cells, and the optimal kNN classifier for the naïve T cells based

on the mRMR feature lists. The overall performance of the above

optimal classifiers, measured by ACC, MCC and macro F1, is

listed in Table 2. ACC and MCC values were all no less than

0.8 and 0.67, respectively, indicating the good performance of

these classifiers.

Of the IFS results on the MCFS feature lists of three CD8+

T cells subtypes (Supplementary Table S5), Figure 3 shows the

IFS curves. For the effector T cells, RF achieved the highest

weighted F1 of 0.815 using the first 45 features (Figure 3A). Other

two classification algorithms provided the highest weighted

F1 values of 0.731 and 0.760 when top 240 and 40 features

were adopted. For the memory T cells, the IFS curves of three

classification algorithms reached the highest points with the top

107, 26 and 95 features with weighted F1 values of 0.740,

0.799 and 0.823 (Figure 3B). For the naïve T cells, kNN

obtained the highest weighted F1 of 0.849 using the first

TABLE 3 Details of the optimal DT classifiers obtained for each cell subtype under different feature ranking methods and the number of rules
extracted.

Cell subtype Feature ranking method Number of features Weighted F1 Number of rules

Effector T cells mRMR 249 0.731 5394

MCFS 240 0.731 5412

LightGBM 98 0.741 5810

Memory T cells mRMR 155 0.736 6371

MCFS 107 0.740 6404

LightGBM 33 0.753 6959

Naïve T cells mRMR 61 0.786 3930

MCFS 44 0.786 4045

LightGBM 33 0.797 3931
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37 features (Figure 3C). DT and RF yielded the highest weighted

F1 values of 0.786 and 0.845 when top 44 and 28 features were

used. It was interesting that the performance of three

classification algorithms on the MCFS feature lists was similar

to that on the mRMR feature lists. RF was best on effector and

memory T cells, whereas kNN was best on the naïve T cells.

Likewise, three optimal classifiers can be built on three CD8+

T cells subtypes based on the MCFS feature lists. Their detailed

overall performance is also listed in Table 2. ACC and MCC

values were all higher than 0.81 and 0.68, respectively, suggesting

high performance of these classifiers.

For the IFS results on the LightGBM feature lists of three

CD8+ T cells subtypes (Supplementary Table S6), IFS curves are

illustrated in Figure 4. For the effector T cells, DT/kNN/RF

achieved the maximum weighted F1 of 0.741/0.791/0.822 when

the first 98/41/55 features were used (Figure 4A). For thememory

T cells, DT/kNN/RF peaked at 33/29/33 features with a weighted

F1 value of 0.753/0.833/0.833 (Figure 4B). For the naïve T cells,

DT/kNN/RF gained the maximum weighted F1 value of 0.797/

0.867/0.854 when the first 33/23/27 features were used

(Figure 4C). It was surprising that RF was still better than DT

and kNN on effector and memory T cells, and kNN was still

better than DT and RF on the naïve T cells, similar to the results

on mRMR and MCFS feature lists. This also increased the

reliability of our results. Likewise, three optimal classifiers on

three CD8+ T cells subtypes can be set up based on the LightGBM

feature lists. Table 2 lists the detailed overall performance of these

classifiers. ACC and MCC values were all higher than 0.82 and

0.69, respectively, indicating their high performance.

In Table 2, the overall performance of nine optimal classifiers

on different feature lists and cell subtypes is provided. We further

extracted their performance on three categories (acute,

convalescent and unexposed), measured by F1 score, which

are shown in Figure 5. It can be observed that on each cell

subtype, optimal classifier on the LightGBM feature list always

provided the highest performance on all categories, generally

followed by the optimal classifiers on the MCFS and mRMR

feature lists. Such results also conformed to their overall

performance (Table 2). Furthermore, all classifiers generally

yielded best performance on unexposed individuals, followed

by convalescent and acute COVID-19.

For each CD8+ T cells subtype, three optimal classifiers were

constructed based on three feature lists. The features used in

these classifiers (i.e., optimal features) can be obtained,

comprising three optimal feature sets. It is interesting to

investigate the intersection of these three optimal feature sets

using Venn diagrams. The Venn diagrams are provided in

Figure 6. The detailed intersection results are shown in

Supplementary Table S7. It can be observed that there were

23 important features in three optimal feature sets for effector

T cells (Figure 5A). For thememory T cells, 30 important features

were included in three optimal feature sets (Figure 5B). The three

optimal feature subsets under the naïve T cells had 14 essential

features intersected (Figure 5C). The biological mechanisms of

these important feature genes are described in the Section 4.

3.3 Classification rules for important
features in the CD8+ T cells profiles

On each CD8+ T cells subtype, DT always provided the

lowest performance under a given feature list. The performance

FIGURE 7
Distribution of rules yielded by decision trees on three categories in three CD8+ T cells subtypes. (A) effector T cells, (B)memory T cells, (C) naïve
T cells.
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is listed in Table 3. However, it has the special merit that is not

shared by kNN and RF. From the constructed DT, several

classification rules can be obtained, which implies the special

patterns on each category. Thus, we further employed DT to

investigate profiles on three CD8+ T cells subtypes. As

mentioned in Section 3.2, the optimal features for DT can be

found by executing IFS method on different feature lists of three

CD8+ T cells subtypes. With these optimal features, DT was

applied on all samples to learn a large tree, from which a group

of classification rules were obtained. These classification rules

on three CD8+ T cells subtypes and three feature lists are shown

in Supplementary Table S8. The number of rules on each CD8+

FIGURE 8
Results of the functional enrichment analysis on the optimal genes for different feature lists in the effector T cells. TopGO terms ((A): mRMR, (C):
MCFS, and (E): LightGBM) and KEGG pathways ((B): mRMR, (D): MCFS, (F): LightGBM) are shown.
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T cells subtype and feature list is listed in Table 3. A fair number

of rules were obtained, which provides informative reference

for revealing the relationships between expression patterns of

key feature genes and three categories. For each rule set, some

rules were for acute COVID-19, whereas others were for

convalescent COVID-19 or unexposed individuals. The

FIGURE 9
Results of the functional enrichment analysis on the optimal genes for the different feature lists in the memory T cells. Top GO terms ((A):
mRMR, (C): MCFS, and (E): LightGBM) and KEGG pathways ((B): mRMR, (D): MCFS, (F): lightGBM) are shown.
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number of rules for each category is illustrated in Figure 7. It

can be observed that convalescent COVID-19 was always

assigned most rules, whereas the rules on unexposed

individuals were the second most on effector and memory

T cells, and acute COVID-19 was assigned the second most

rules on Naïve T cells.

FIGURE 10
Results of the functional enrichment analysis on the optimal genes for the different feature lists in the naïve T cells. Top GO terms ((A): mRMR,
(C): MCFS, and (E): LightGBM) and KEGG pathways ((B): mRMR, (D): MCFS, (F): lightGBM) are shown.
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3.4 Immune functions for genes identified
in the optimal feature sets

To explore the biological functions and pathways involved in the

essential genes for each CD8+ T cells subtype, we performedGO and

KEGG enrichment analyses on the genes in the optimal feature sets

obtained under each feature ranking list for each subtype of CD8+

T cells. The results are provided in Supplementary Tables S9–S11.

The top five GO terms and KEGG pathways from the enrichment

results are shown in Figures 8–10. For the effector T cells, the main

biological functions enriched are response to virus, homeostasis of

number of cells, T cell receptor complex, and signaling pathways,

including apoptosis and salmonella infection (Figure 8). For the

memory T cells, the enrichment results contain T cell activation,

lymphocyte differentiation, mononuclear cell differentiation, and

signaling pathways, such as apoptosis and TNF signaling pathway

(Figure 9). For the naïve T cells, the enrichment results were for GO

terms, such as response to cAMP, response to organophosphorus,

and signaling pathways, e.g., B-cell receptor signaling pathway and

TNF signaling pathway (Figure 10). These critical biological

functions and signaling pathways are developed in the Section 4.

4 Discussion

For each CD8+ T cell subtype, we obtained three sets of

features that are important to distinguish the disease state of

patients with COVID-19 through three feature ranking

algorithms and IFS method. Next, we conducted GO and

KEGG enrichment analyses for all the genes in the three

groups of features to facilitate our interpretation of these key

genes. We discussed genes to confirm their important roles in

COVID-19 according to existing studies. The main discussion

results of each cell subtype were organized as follows.

4.1 Functional analysis of the key features
of CD8+ effector T cells

The effector CD8+ T cells that respond to antigen stimulation

proliferate and differentiate. Some will eventually differentiate

into memory CD8+ T cells. Among the features that can

distinguish CD8+ Effector T cells in different stages of

COVID-19 infection, we found that they mainly contain

cytotoxic genes (GZMA, GZMK, and PRF1), T cell receptor

(TCR)-related genes (TRBV4.2 and TRBV7.2), cytokine-related

genes (IFITM2, IL7R, and IL32), and others. At the same time,

our functional enrichment results also showed the relationship

between these genes and immune killing, as follows: GO:0009615

(response to virus), GO:0042101 (T cell receptor complex), GO:

0140375 (immune receptor activity), and hsa04210 (apoptosis).

CD8+ effector T cells are essential for adaptive immunity against

COVID-19 virus infection, and the cytotoxic response intensity of

CD8+ Effector T cells also corresponds to different stages of antiviral

immunity. Patients with COVID-19 infection have higher levels of

GZMs and PRF1 than healthy controls; they also have characteristic

expression changes during infection recovery (Wen et al., 2020;

Westmeier et al., 2020). During viral infection, TCRs recombine to

generate a functional and highly diverse TCR repertoire crucial for

CD8 effector T cells to identify and kill infected cells (Luo et al.,

2021). Therefore, the dynamic changes of genes, such as TRBV4.2,

TRBV7.2 (TCR components), and IL7R (associated with V(D)J

recombination), may be related to different periods of infection.

Other genes, such as FITM2, reportedly restrict the entry of COVID-

19 virus into cells (Winstone et al., 2021), but its expression in CD8+

Effector T cells and its dynamic characteristics at different stages of

infection have not been studied.

4.2 Functional analysis of the key features
of CD8+ memory T cells

There are two types of CD8+ memory T cells, namely, effector

memory T cells (Tem) and central memory T cells (Tcm). CD8+

Tcmmainly reside in secondary lymphoid organs and can rapidly be

converted into effector cells upon antigen stimulation, whereas

CD8+ Tem is mainly distributed in peripheral tissues and can

respond rapidly to stimulation by producing effector cytokines.

In different stages of infection, CD8+ Memory T cells have

different activation, proliferation, and secretion states

(Tavukcuoglu et al., 2021). GO/KEGG enrichment analysis for

the features in our results also revealed that many genes were

associated with T cell differentiation and effector activity, such as:

GO:0042110 (T cell activation), GO:0030217 (T cell differentiation),

hsa04062 (chemokine signaling pathway), and hsa04061 (viral

protein interaction with cytokine and cytokine receptor). In these

genes, features associated with cellular activation and differentiation

(B2M, IL7R, ZFP36, ZFP36L1, ZFP36L2, CD8A, KLF6, and

LGALS1) may be related to the function of CD8+ memory

T cells at different stages of infection, whereas features associated

with cell chemotaxis (SELL, CCL5, CXCR4, and NFKBIA) could be

linked to the recruitment of CD8+ memory cells (Xiong et al., 2020).

The COVID-19 virus may also escape the immune system through

chemokines (Khalil et al., 2021), suggesting that the expression of

chemokines may be associated with the different stages of infection.

4.3 Functional analysis of the key features
of CD8+ naïve T cells

The GO enrichment results of key genes show that they are

related to the response to multiple stimuli, such as: GO:0071216

(cellular response to biotic stimulus) and GO:0051591 (response to

cAMP). cAMP has been shown to play an important role in the initial

activation and effector differentiation of naïve CD8+ T cells

(Linnemann et al., 2009). At different stages of infection in
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COVID-19 patients, naïve CD8+ T cells responded to different levels

of antigenic stimulation (Wen et al., 2020; Fenoglio et al., 2021), which

resulted in different proportions and activation states of naïve CD8+

T cells; this phenomenonmay help distinguish different disease states.

In addition, a correlation was found between the proportion of naive

CD8+ T cells and infection severity (Moderbacher et al., 2020).

At the gene expression level, some genes showed important roles

in differentiating infection stages and were identified by all three

feature ranking algorithms. Among these genes, the protein product

of the ZFP36 gene belongs to the zinc finger family and has been

linked to the regulation of gene expression and cellular response to

growth factor stimulation. Studies on COVID-19 showed that

ZFP36 inhibited T cell activation, and proliferation during viral

infection and the expression level of ZFP36 changed dramatically

during infection (Xiong et al., 2020). DUSP1 was downregulated in

COVID-19 infection and may be associated with enhanced MAPK

pathway activation and steroid resistance (Sharif-Askari et al., 2021).

Our features also contained some inflammatory genes (FOS, JUN,

and KLF6), which may be related to the inflammatory state at

different disease stages; these genes have different expression levels

during COVID-19 infection and recovery (Wen et al., 2020).

5 Conclusion

In this study, the single-cell RNA-Seq datasets under three

subtypes of CD8+ T cells (effector, memory, and naïve T cells)

related to COVID-19 infection, convalescent, and unexposed were

deeply investigated. Several advanced computational methods were

applied on these datasets. Essential genes, interpretable classification

rules and efficient classifiers were obtained. The former two results

can deepen our understanding on the mechanism of the regulatory

role of CD8+ T cells on COVID-19. The last one can be useful tools

to distinguish patients’ COVID-19 severity in terms of CD8+ T cells.
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