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Background and Objective: This study aims to find the key immune genes and

mechanisms of low bone mineral density (LBMD) in ankylosing spondylitis (AS)

patients.

Methods:AS and LBMDdatasets were downloaded from theGEOdatabase, and

differential expression gene analysis was performed to obtain DEGs. Immune-

related genes (IRGs) were obtained from ImmPort. Overlapping DEGs and IRGs

got I-DEGs. Pearson coefficients were used to calculate DEGs and IRGs

correlations in the AS and LBMD datasets. Louvain community discovery was

used to cluster the co-expression network to get gene modules. The module

most related to the immunemodule was defined as the keymodule. Metascape

was used for enrichment analysis of keymodules. Further, I-DEGswith the same

trend in AS and LBMD were considered key I-DEGs. Multiple machine learning

methods were used to construct diagnostic models based on key I-DEGs. IID

database was used to find the context of I-DEGs, especially in the skeletal

system. Gene–biological process and gene-pathway networks were

constructed based on key I-DEGs. In addition, immune infiltration was

analyzed on the AS dataset using the CIBERSORT algorithm.

Results: A total of 19 genes were identified I-DEGs, of which IFNAR1, PIK3CG,

PTGER2, TNF, and CCL3 were considered the key I-DEGs. These key I-DEGs

had a good relationship with the hub genes of key modules. Multiple machine

learning showed that key I-DEGs, as a signature, had an excellent diagnostic

performance in both AS and LBMD, and the SVM model had the highest AUC

value. Key I-DEGs were closely linked through bridge genes, especially in the
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skeletal system. Pathway analysis showed that PIK3CG, IFNAR1, CCL3, and TNF

participated in NETs formation through pathways such as the MAPK signaling

pathway. Immune infiltration analysis showed neutrophils had the most

significant differences between case and control groups and a good

correlation with key I-DEG.

Conclusion: The key I-DEGs, TNF, CCL3, PIK3CG, PTGER2, and IFNAR1, can be

utilized as biomarkers to determine the risk of LBMD in AS patients. They may

affect neutrophil infiltration and NETs formation to influence the bone

remodeling process in AS.

KEYWORDS

ankylosing spondylitis, low bone mineral density, bioinformatics, machine learning,
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Introduction

Ankylosing spondylitis (AS) is a inflammatory rheumatic

disease, mainly affecting the axial skeleton, causing characteristic

inflammatory back pain, leading to structural and functional

disorders and declining quality of life (Braun and Sieper, 2007).

The enthesitis of AS increases new bone formation and spinal

ankylosis. Meanwhile, the loss of bone trabecula in the vertebral

body of AS patients lowered local bone mineral density and

caused osteoporosis (Klingberg et al., 2012; Nam et al., 2021).

Interestingly, the opposite trend of bone metabolism reduced the

spinal ability to resist impact and strain, increasing the risk of

spinal fracture, then increasing the probability of spinal cord and

nerve root injury and mortality in patients with AS.

As an essential risk factor for vertebral fracture and a common

complication of AS, low bonemineral density (LBMD) has attracted

the attention of many scholars. Generally speaking, LBMD or

osteoporosis occurs mainly in postmenopausal women. In

contrast, secondary osteoporosis induced by AS primarily occurs

in young and middle-aged men (Sieper and Poddubnyy, 2017),

indicating that, in addition to age and hormone levels, reduced BMD

in AS has its distinct mechanism (Bessant and Keat, 2002). The

LBMDof the femoral neck and lumbar vertebrae in patients with AS

was associated with disease activity (Magrey and Khan, 2010; Kang

et al., 2018). Previous studies have found that LBMD in AS was

related to local inflammation (Liu et al., 2022). Disorders of redox

biomarkers, such as increased advanced oxidation protein products

and decreased glutathione peroxidase, also affect the level of LBMD

(Wang et al., 2015).

Recent studies on the mechanism of LBMD caused by AS have

focused on immunity and inflammation. There was a significant

correlation between LBMD and bone turnover markers,

osteoprotegerin, proinflammatory cytokines, and acute phase

reactants such as CRP and ESR in AS patients, suggesting that

inflammatory mediators may be involved in the pathogenesis of

LBMD in AS (Kim et al., 2006; Ranganathan et al., 2017; Wu et al.,

2021; Rademacher et al., 2022). It has been demonstrated that

cytokines, such as IL-6 and TNF, play a vital role in AS

inflammation and may be involved in bone destruction in AS

(Lee et al., 2022; Rademacher et al., 2022). In addition, IL-17, a

T-cell cytokine that promotes osteoclast production and bone

resorption, is proposed as one of the mechanisms of increased

bone destruction in AS (Tsukazaki and Kaito, 2020). Unfortunately,

the mechanism by which AS induces LBMD is not fully understood.

Therefore, exploring the role of immune-related genes in AS-

induced LBMD is helpful in accurately judging the fracture risk

of AS patients, guiding drug development and clinical management.

The purpose of our study is to comprehensively use

bioinformatics methods to explore the specific mechanism of

immune-related genes in AS-induced LBMD and its relationship

with immune cells. At the same time, machine learning methods

were used to establish diagnostic models to evaluate the risk of

LBMD in AS patients and guide clinical treatment. The flow

chart of our study is shown in Figure 1.

Materials and methods

Data download and preprocessing

We obtained the AS datasets (GSE25101, GSE73754) and the

LBMD datasets (GSE56815, GSE2208) from the GEO database

(Table 1). All analyses were performed using R software

(version 4.0.2).

Overlapping genes between each disease dataset were identified.

For AS, the intersection of the genes analyzed in GSE25101 and

GSE73754 was determined, and the same for LBMD (GSE56815,

GSE2208). The expression of these overlapping genes was extracted

from each dataset. We used the ComBat method to eliminate batch

bias using the sva package (version 3.36.0).

Identification of DEGs and I-DEGs

The corrected AS and LBMD datasets were subjected to

differential expression analysis (DEA) by the limma package
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(version 3.44.3). We defined the genes with p-values < 0.05 as

differential expressed genes (DEGs). The ggplot2 package

(version 3.3.2) and pheatmap package (version 1.0.12) were

used to depict gene expression by heatmaps and volcano plots.

The immune-related genes (IRGs) were obtained from the

ImmPort database (Bhattacharya et al., 2018). The AS DEGs,

LBMD DEGs, and IRGs were taken intersection to obtain the

dysregulated IRGs in both AS and LBMD, and we called them

immune-DEGs (I-DEGs).

Correlation analysis and co-expression
network construction

The correlation between I-DEGs and DEGs in AS and LBMD

was analyzed by calculating the Pearson coefficient in the Hmisc

package (version 4.4.1). The DEGs related to I-DEGs were

obtained with moderate correlation (p-values < 0.05 and | r

| > 0.40). In addition, we constructed a co-expression network of

I-DEG-related DEGs with strong correlation (p-values < 0.05 and

| r | > 0.70).

Community discovery analysis

Louvain is a clustering algorithm frequently employed in

network clustering, notably in human PPI networks, intending

to decrease external connections while encouraging intra-

community connections (Smith et al., 2020). We clustered

the co-expression network using the Louvain algorithm in

the igraph package (version 1.2.5), where the weight was set

to | r |. The modules with less than 30 genes were deleted, and

the Cytoscape software (version 3.9.0) was used for

visualization.

Correlation analysis of modules

Module eigengenes (MEs) were defined as the genes in the

first principal component of gene modules using the PCA

algorithm. The I-DEGs were defined as the immune module

as a whole. The correlation between the MEs of I-DEG-related

FIGURE 1
Flow-chart of datasets analysis in this paper.

TABLE 1 The information of datasets.

Datasets Disease Platform Control Case

GSE25101 AS GPL6947 16 16

GSE73754 AS GPL10558 20 52

GSE56815 LBMD GPL96 40 40

GSE2208 LBMD GPL96 10 9
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DEGs modules and the ME of the immune module was analyzed

by the Pearson correlation coefficient and visualized by the

corrplot package (version 0.84). Among them, the modules

with the highest correlation were considered the key modules

and studied in subsequent analyses.

Functional enrichment analysis

The Metascape database (Zhou et al., 2019) was used to

perform GO and KEGG functional enrichment analysis for the

key module genes. The criteria of the analyses were p-values <
0.01, min (overlap) = 3, and min (enrichment) = 1.5, and the

outcomes were visualized using heatmaps.

PPI network construction and hub genes
identification

The PPI network of the key modules was constructed by the

STRING database (Szklarczyk et al., 2021) and visualized by

Cytoscape. The cytohubba plug-in was used to find the top10 hub

genes of the key modules.

The I-DEGs with the same expression trend in AS and LBMD

were considered the key I-DEGs. They were imported into the

STRING database with the hub genes and visualized by

Cytoscape to explore the relationship between the key I-DEGs

and hub genes.

Construction of diagnostic model by
machine learning

To explore the function of key I-DEGs as a whole in more

depth, we designated them as the key signature. The AS and

LBMD datasets were split into training and testing sets with a 7:

3 ratio. The Glmnet package (version 4.0.2), randomForest

package (version 4.6.14), XGBoost package (version 1.4.1.1)

and e1071 package (version 1.7.3) were used to construct the

diagnostic model with the key signature. We get the LASSO

model and the corresponding feature coefficients by performing

the least absolute shrinkage and selection operator (LASSO)

binomial analysis in the Glmnet package. The penalty

parameter (λ) was decided by the minimum criteria. The

randomForest package was used to build a random forest

model for the key signature, and the decreasing accuracy

method (Gini coefficient method) was used to obtain the

feature importance values. The XGBoost package was used to

build the XGBoost model. The XGBoost model was a tree-based

algorithm that can provide each feature importance score and

rank them. The e1071 package was used to build the support

vector machine (SVM) model, a typical supervised machine

learning method.

In-depth study of key I-DEGs

To explore the interaction context of key I-DEGs, especially

in the skeletal system, we imported key I-DEGs into the IID

database and constructed the PPI network in all tissue and bone.

We called the genes that connected key I-DEGs bridge genes,

which may help us understand the context of key I-DEGs and

make the gene interaction connection abundant.

To investigate the pathogenic mechanism and better

comprehend the function of key I-DEGs, the key I-DEGs were

imported into the GO (Carbon et al., 2009) and KEGG database

(Kanehisa and Goto, 2000) to obtain human biological processes

and pathways comprising at least two genes. To provide a better

explanation for the findings, the biological processes acquired were

combined and clustered by ClueGo (Bindea et al., 2009). KEGG

database was utilized to explore the common pathways map,

getting potential key I-DEG and pathway associations.

Immune infiltration

The CIBERSORT (Newman et al., 2015) algorithm was used

to acquire the immune infiltration matrix in the AS datasets.

Using the ggplot2 package, each sample and group’s immune

infiltration was shown graphically. The differences between the

two groups were examined by the Wilcoxon test. Using the

corrplot package, we plotted correlation heatmaps to

demonstrate the association between the 22 immune cells and

between key I-DEGs and immune cells.

Result

Identification of DEGs and I-DEGs

After batch correction, the differences between samples in AS

and LBMD datasets were significantly reduced (Figure 2). Based

on DEA, we got DEGs of AS and LBMD, including 1,492 up-

regulated and 1818 down-regulated genes in AS, and 730 up-

regulated and 454 down-regulated genes in LBMD. Figure 3

showed the expression of DEGs. From the ImmPort database, we

obtained 1793 IRGs (Supplementary Table S1). Figure 4 showed

that a total of 19 I-DEGs were identified. They were not only

common DEGs of AS and LBMD, but also IRGs. These I-DEGs

were used for our subsequent analysis in depth.

Co-expression network construction and
analysis of modules discovery and
correlation

Through the Pearson correlation analysis, we obtained

2,227 DEGs related to I-DEGs in AS and 735 in LBMD
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(Supplementary Table S2). Furthermore, the co-expression

networks of these genes were constructed in AS and LBMD,

respectively. By the Louvain community discovery algorithm, the

gene modules with less than 30 genes were deleted, and the gene

co-expression network of AS was re-clustered into seven

modules. Similarly, LBMD was re-clustered into three

modules (Figures 5A,B). Density is an assessment metric for

measuring the connectivity degrees of the network. The density

of these modules was shown in Table 2. It was noted that the

density of these modules was higher than that of the co-

expression network (AS: 0.01673044, LBMD: 0.05024927). It

demonstrated that the multilevel algorithm’s partitioning

result was reliable. Figures 5C,D showed that M4 was the

most related to the immune module in AS and M3 in LBMD.

These modules were called key modules and were closely

related to immunity which may play an essential role in AS

and LBMD.

Functional analysis of key modules

Figure 6A showed that the genes of AS key module AS-M4

were mainly involved in several GO BPs, for example, cellular

carbohydrate metabolic process, leukocyte activation, secretion,

protein phosphorylation, positive regulation of cell death,

myeloid leukocyte activation, and inflammatory response.

Meanwhile, AS-M4 genes were mainly enriched in several

pathways (Figure 6B), Neutrophil extracellular trap formation,

Lipid and atherosclerosis, Necroptosis, Yersinia infection,

Pathways in cancer, Non-small cell lung cancer, Legionellosis,

Osteoclast differentiation, Proteoglycans in cancer, Apoptosis.

This module was closely related to immunity, such as immune

cell activation and inflammatory response. Interestingly,

osteoclast differentiation was one of its significant pathways,

confirming its vital role in affecting bone homeostasis.

Figure 6C showed that the biological processes of LBMD key

module LBMD-M3 were mainly enriched in mRNA processing,

ncRNA processing, regulation of cellular amide metabolic

process, regulation of mRNA metabolic process, organelle

fusion, cellular response to organonitrogen compound,

translation, regulation of I-kappaB kinase/NF-kappaB

signaling, RNA 3′-end processing, regulation of circadian

rhythm, cell division, protein localization to organelle, cellular

response to chemical stress, etc. Meanwhile, LBMD-M3 genes

were mainly enriched in several pathways (Figure 6D), mRNA

surveillance pathway, Insulin resistance, Ubiquitin mediated

proteolysis and Spliceosome. Interestingly, we found this

module participated in the regulation of I-kappaB kinase/NF-

kappaB signaling, while the receptor activator of NF-kappaB

(RANK) had been fully recognized as causing the osteoclast

FIGURE 2
(A) PCA analysis results of AS before batch correction; (B) PCA analysis results of AS after batch correction; (C) PCA analysis results of LBMD
before batch correction; (D) PCA analysis results of LBMD after batch correction.
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precursor to differentiate into a preosteoclast, which was an

essential mechanism of bone destruction (Weitzmann, 2017).

Identification of hub genes and key I-DEGs

The PPI network of AS-M4 was obtained from the STRING

database, including 289 nodes and 787 edges, and the PPI network of

LBMD-M3, including 56 nodes and 89 edges (Supplementary

Figures S1A,C). The top10 hub genes were identified by the

cytohubba plug-in (Supplementary Figures S1B,D).

We further explored the expression of I-DEGs and found that

five genes (TNF, CCL3, IFNAR1, PIK3CG, and PTGER2)

showed the same trend in AS and LBMD. By examining the

expression of IRGs in AS and LBMD, we found that CCL3,

PTGER2, and TNF showed a common down-regulation trend in

both diseases, while IFNAR1 and PIK3CG showed a common

up-regulation trend. These five genes were considered key

I-DEGs.

By building the PPI networks of key I-DEGs and hub genes,

respectively (Figure 7), we found that key I-DEGs had a good

relationship with AS-M4 hub genes, while TNF can be related to

UBE2N and TIA1 in LBMD.

FIGURE 3
(A) The heatmap plot of AS DEGs; (B) The volcano plot of AS DEGs; (C) The heatmap plot of LBMD DEGs; (D) The volcano plot of LBMD DEGs.

FIGURE 4
Venn diagram of DEGs and IRG.

Frontiers in Genetics frontiersin.org06

Zhang et al. 10.3389/fgene.2022.1054035

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1054035


Diagnostic model construction

In AS, the LASSO model composed of five features was

constructed according to the optimal λ value (LASSO score:

1.92exp (CCL3) + 2.42exp (IFNAR1) + 1.25exp (PIK3CG) +

0.2exp (PTGER2)-4.84exp (TNF) (Figures 8A,B). In LBMD, four

features constituted the LASSO model (LASSO score: 0.52exp

(IFNAR1) + 1.93exp (PIK3CG)-0.65exp (PTGER2)-2.31exp

(TNF)) (Figures 8F,G).

We found that key I-DEGs as a whole had a good

diagnostic value in LBMD, among which the SVM model

had the highest AUC value of 0.76 (Figure 8H). Interestingly,

the signature also had an excellent diagnostic value in AS

(Figure 8C), further illustrating the critical relationship

between AS and LBMD. The specific AUC values of the

four models were shown in Table 3.

In LBMD RF and XGBoost models, we found that both TNF

and PIK3CG were the top2 most important feature (Figures

8D,E), and PIK3CG was the most important in AS RF and

XGBOOST models, and TNF was the second in RF and the

fourth in XGBoost (Figures 8I,J). It undoubtedly confirmed the

role of TNF and PIK3CG in AS and LBMD, and was worthy of

in-depth discussion.

Connections between key I-DEGs

We identified that key I-DEGs potentially can interact with

one another through bridge genes (Figure 9A). Furthermore, it

was found that IFNAR1, PIK3CG, TNF, and PTGER2 can

interact in the skeletal system (Figure 9B). This

complements the interaction between key I-DEGs, especially

in bone homeostasis.

FIGURE 5
(A) The community discovery clustering network of AS; (B) The community discovery clustering network of LBMD; (C)Correlation between the
immune module and AS modules; (D) Correlation between the immune module and LBMD modules.

TABLE 2 The density of each module.

Disease Module Graph density

AS 1 0.034032719

2 0.510005528

3 0.074860982

4 0.06239988

5 0.23943662

6 0.301886792

7 0.116526611

LBMD 1 0.417004049

2 0.299722479

3 0.077452668
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To get a deeper understanding of the function of key I-DEGs,

we integrated them into the GO database and identified

305 biological processes, including at least two key I-DEGs

(Supplementary Table S3). The results of ClueGO indicated

that 305 biological processes were fused into 131 based on the

relationship between GO terms, withMAPK cascade and positive

control of acute inflammatory response comprising the majority

(Figure 10A).

To further investigate the specific mechanism of key I-DEGs,

the key I-DEGs were imported into the KEGG database, and we

identified 24 pathways comprising at least two genes after

filtering. (Figure 10B). Interestingly, TNF and IFNAR1 were

FIGURE 6
(A) TOP20 GO BP terms of AS key module; (B) TOP20 KEGG pathways of AS key module; (C) TOP20 GO BP terms of LBMD key module; (D)
TOP4 KEGG pathways of LBMD key module.
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FIGURE 7
(A) The PPI network of key I-DEGs and AS key module’s hub genes; (B) The PPI network of key I-DEGs and LBMD key module’s hub genes.

FIGURE 8
(A) LASSO regression of five genes in AS; (B) Cross-validation for tuning the parameter selection in the LASSO regression of AS; (C) ROC curve
analysis ofmodels in AS; (D) The importance of each feature in RF of AS; (E) The importance of each feature in XGBoost of AS; (F) LASSO regression of
four genes in LBMD; (G) Cross-validation for tuning the parameter selection in the LASSO regression of LBMD; (H) ROC curve analysis of models in
LBMD; (I) The importance of each feature in RF of LBMD; (J) The importance of each feature in XGBoost of LBMD.
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involved in osteoclast differentiation, suggesting that key I-DEGs

may cause bone mass loss in AS.

As the most significant pathway of the AS key module,

neutrophil extracellular traps (NETs) formation attracted our

attention. By viewing the map of NETs formation pathway in the

KEGG database, we found that there were four pathways,

including PI3K-Akt signaling pathway, NOD-like receptor

signaling pathway, Toll-like receptor signaling pathway, and

MAPK signaling pathway, participating in NETs formation,

and also closely related to the four key I-DEGs (PIK3CG,

IFNAR1, CCL3, and TNF) (Figure 10C). NETs formation was

not only involved in the pathogenesis of AS, but may also be the

key to these key I-DEGs connections.

Immune infiltration

We analyzed the immune infiltration of AS datasets using the

CIBERSORT algorithm to further investigate immune cells’

function in AS and the impact of key I-DEGs on it.

Figure 11A provided immune infiltration of the samples. Five

immune cell subpopulations revealed significant differences

between case and control groups (p-values < 0.05). Compared

with the control group, the case group contained a higher

proportion of neutrophils, lower T cells CD8, T cells gamma

delta, NK cells activated and mast cells activated, and neutrophils

were the most significant (p-value < 0.001) (Figure 11B).

Figure 11C showed that all the key I-DEGs negatively

correlated with macrophage M2, and IFNAR1, PIK3CG,

PTGER2 and TNF were positively correlated with macrophage

M1. It was a rather interesting outcome indicating key I-DEGs

can cause an imbalance of macrophages M1/M2 cells in AS,

which has been shown to be associated with bone loss (Wang

et al., 2022). It suggests that key I-DEGs can affect bone

remodeling by regulating macrophage polarization in AS.

From the correlation between immune cells, we found a

negative correlation between Macrophages M1 and

Macrophages M2, which confirms the imbalance of M1/

M2 on the other hand (Supplementary Figure S2). Meanwhile,

CCL3, PIK3CG, PTGER2 and TNF negatively correlated with

neutrophils. Considering that NETs formation was the most

significant pathway in AS key module, neutrophils seem to

become more remarkable.

Discussion

In this study, the immune mechanism of LBMD in AS was

studied by bioinformatics, community discovery and machine

learning. Five immune genes, IFNAR1, PIK3CG, PTGER2, TNF,

and CCL3, were defined as the key I-DEGs to illustrate the

relationship between AS and LBMD. The signature composed of

these had an excellent diagnostic effect on both diseases. We

speculate that NETs formation may be the mechanism of AS-

induced LBMD. These findings will serve as the foundation for

the subsequent discussion.

TNF, also known as TNF-α, is a key regulator of

inflammatory response. It has been detected in sacroiliac

joints in patients with AS, especially in the early stages of

disease activity (Braun et al., 1995; François et al., 2006).

Higher serum levels of TNF were associated with the disease

activity of AS and played a vital role in the pathogenesis of LBMD

in AS (Lange et al., 2000). Moreover, a recent study through the

network pathway analysis of differentially abundant proteins

indicated disorders of inflammatory signaling pathways in

LBMD patients, including the TNF signaling pathway (Al-

Ansari et al., 2022). TNF blockers have been widely used in

treating AS (Cessak et al., 2014). Denosumab can target RANKL,

which is known as TNFSF11 in the TNF superfamily, and treat

osteoporosis, which fully illustrates the link between AS and

LBMD (Croft et al., 2013). Interestingly, the SNP rs3102734 of

the TNF family gene TNFRSF11B was found to be the

susceptibility locus of LBMD (Kanehisa and Goto, 2000),

genetically confirming the crucial role of TNF, which may be

the key to bone loss in AS (Wang et al., 2012).

PIK3CG, also known as PI3Kγ, is a member of the

phosphoinositide3-kinase (PI3K) family. It can be activated by

G protein-coupled receptors (GPCR) to participate in leukocyte

chemotaxis and other immune responses (Barberis and Hirsch,

2008). A recent study demonstrated that PI3KCG stimulates

MLCK210, a high molecular weight type of myosin light chain

kinase, which activates Rap1 GTP loading and modifies the

conformation of integrin α4β1, which promotes tumor

inflammation and progression (Schmid et al., 2022). Although

the role of PIK3CG in AS has not been confirmed, its inhibitors

played an important role in treating autoimmune diseases such as

rheumatoid arthritis (Oka et al., 2013), and its role in AS seemed

credible. PIK3CG can inhibit the activation of NF-kappaB

through Akt and mTOR, thus promoting inflammation

(Kaneda et al., 2016). Interestingly, NF-kappaB and its ligand-

related RANKL/RANK/OPG system can induce osteoclast

differentiation and function in bone resorption (Ono et al.,

2020). In addition, it has been confirmed that PIK3CG can

act as a mediator of macrophage phagocytosis (Kresinsky

et al., 2016) and regulate the release of inflammatory

cytokines in macrophages (Lanahan et al., 2022). In our study,

PIK3CG was highly expressed and positively correlated with

macrophage M1 and negatively correlated with M2. It indicated

TABLE 3 AUC of each model in AS and LBMD.

Model As LBMD

LASSO 0.65 0.68

RF 0.65 0.69

SVM 0.7 0.76

XGBoost 0.675 0.69
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that the increased expression of PIK3CG in patients with AS led

to an imbalance in the proportion of M1/M2, while the bone

homeostasis tilted to resorption, coinciding with previous

studies. It is possible, therefore, that PIK3CG may be involved

in NF-kappaB and regulate the function of macrophages to affect

bone homeostasis.

FIGURE 9
(A) The PPI network of key I-DEGs connected by bridge genes; (B) The PPI network of key I-DEGs connected by bridge genes in the skeletal
system.
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CCL3, as a member of the CC chemokine family, can induce

the transport and aggregation of immune cells (Schaller et al.,

2017). Under the endothelial-leukocyte interaction, the

production of CCL3 was an important mechanism for

maintaining cell recruitment during inflammation (Lukacs

et al., 1994). Recently, it has been found that the levels of

CCl2 and CCl3 in the peripheral blood of patients with

rheumatoid arthritis are increased and are positively

correlated with rheumatoid factor, which means they have

good predictive value for the occurrence, curative effect and

prognosis of rheumatoid arthritis (Guo et al., 2021). In the

clinical study of AS, CCL3 was widely used to study the

disease activity of AS (Akbulut et al., 2010; Pishgahi et al.,

2020; Li et al., 2022). CCL3 was the main osteoclast-

promoting factor in multiple myeloma, which was mediated

by CCR1 (Coniglio, 2018). In vitro experiments have shown

that high expression of CCL3 in multiple myeloma cells can

promote osteoclast maturation in a RANKL-independent

manner (Han et al., 2001). It suggests that osteoclast

maturation induced by CCL3 may be the mechanism of

LBMD in AS.

PTGER2, commonly known as EP2, is the most widely

produced prostaglandin in the human body and has multiple

effects on various organs, including inflammation, bone healing,

and bone formation (Li et al., 2007). Interestingly, AS, a disease

characterized by inflammation and new bone formation, is

inextricably linked to prostaglandins. A recent study showed

that PTGER2 is a crucial potential biomarker of osteogenic

differentiation of mesenchymal stem cells, which confirms the

osteogenic effect of PTGER2 (Feng et al., 2022). The siRNA of

PTGER2 can regulate the expression of sclerosing proteins

related to new bone formation in AS (Genetos et al., 2011;

Tsui et al., 2014). Genetic polymorphism of the same family

gene PTGER4, which was closely related to PTGER2, was

associated with AS susceptibility (Chai et al., 2013), and its

abnormal expression led to the accumulation of pathogenic

Th17 cells and was associated with high disease activity in AS

patients (Klasen et al., 2019). PTGER2 also plays a vital role in

bone remodeling. It can act as a paracrine factor to affect

osteoblasts and osteoclasts, and mediate osteoclast formation

with PTGER4 (Jiang et al., 2022). Moreover, PTGER2 can

activate PI3K, participate in the Wnt pathway, and prevent

osteocyte apoptosis (Kitase et al., 2010).

IFNAR1 (interferon α/β receptor 1) can bind to type

1 IFN, participate in the JAK-STAT transduction cascade,

initiate IFN-mediated intracellular signal cascade and regulate

immune response (Uzé et al., 2007). IFN pathway is closely

related to the pathogenesis of rheumatoid arthritis and

induces IFN response genes in synovial fibroblasts after

TNF stimulation (Burja et al., 2020). As autoimmune

FIGURE 10
(A) ClueGO fusion and cluster result of biological processes involved in key I-DEGs; (B) Key I-DEGs-pathway networks; (C) The relationship
between NETs formation pathway and key I-DEGs.
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diseases, the pathogenesis of AS and RA is similar, and under

this premise, its role in AS seems credible. Ubiquitination of

IFNAR1 can limit inflammation-induced tissue damage

(Bhattacharya et al., 2014). In addition, the IFN pathway

played an inhibitory role in osteoclast formation

(Takayanagi et al., 2005). The BMD decreasing and

osteoclast production increasing were detected in Ifnar1-

deficient mice (Place et al., 2021). In our study,

IFNAR1 can participate in osteoclast differentiation,

consistently with previous studies, and the role of

IFNAR1 in bone balance seems credible.

In addition to the above genes, neutrophil extracellular traps

(NETs) formation has attracted our attention as an essential

mechanism of AS. On the one hand, in our research, NETs

formation was the most significant pathway of the AS key

module, and it was the key to the connection between key

I-DEGs. On the other hand, our specific immune infiltration

in AS showed that neutrophils had the most significant

differences between case and control groups and a good

correlation with CCL3, PIK3CG, PTGER2, and TNF. NETs

are a network of histones, elastases, myeloperoxidase (MPO),

and cathepsin G released by neutrophils, which can participate in

the process of tumors, infections, autoimmune diseases, and

other diseases (Castanheira and Kubes, 2019). NETs can act

as an autoantigen to coordinate congenital and adaptive immune

disorders, participate in the self-magnifying cycle of autoimmune

inflammation, and produce cell and tissue-specific damage in

autoimmune diseases such as rheumatoid arthritis and systemic

lupus erythematosus (Fousert et al., 2020; Goel and Kaplan,

2020). Similarly, NETs production increased in AS and was

associated with AS inflammation and activity (Ruiz-Limon

et al., 2018; Zambrano-Zaragoza et al., 2021).

NETs are also closely related to bone remodeling as a vital

participant in innate immunity. Carbamylated proteins in NETs can

enhance pathogenic immune response, promote osteoclast

differentiation and enhance bone resorption (O’Neil et al., 2020).

It has been found that Raloxifene, a drug used to prevent and treat

postmenopausal women’s osteoporosis, can inhibit NETs

production by targeting nuclear estrogen receptors ERα and ERβ
(Muchmore, 2000; Hansdóttir, 2008; Flores et al., 2016). Notably, IL-

17A-modified NETs can promote MSCs to differentiate into

osteoblasts in AS patients (Papagoras et al., 2021). The role of

FIGURE 11
(A) Immune infiltration of each sample; (B) Comparison of immune cells between the two groups (p: p-value < 0.05, pp: p-value < 0.01, ppp:
p-value < 0.001); (C) Correlation between immune cells and key I-DEGs.
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NETs in AS seems to be dialectical. On the one hand, it may

promote bone destruction. On the other hand, it may lead to new

bone formation in AS. The mechanism is worth further exploring.

In short, immunity seems to be an essential mechanism for

connecting AS and LBMD. The key I-DEGs, TNF, CCL3,

PIK3CG, PTGER2, and IFNAR1, not only affect neutrophils

infiltration, but also participate in neutrophil extracellular traps

formation through the pathway such as the MAPK signaling

pathway, to involve the bone remodeling process of AS. In

addition, the machine learning model composed of key

I-DEGs has good diagnostic value for both LBMD and AS,

which can guide drug development and clinical management.

Strengths and limitations

This is the first research to use bioinformatics to evaluate the

function of immune-related genes in AS-induced LBMD and

investigate the mechanism. Innovative methods such as

community discovery and machine learning make the

research more exhaustive. We created a comprehensive

combination of key I-DEGs and their associated mechanism,

filling the gap of the mechanism in previous research and

generating novel concepts for future research. Nonetheless,

this work was essentially performed by computer technology

such as bioinformatics and machine learning, and further

experimental validation of this hypothesis is required.

Conclusion

The key I-DEGs, TNF, CCL3, PIK3CG, PTGER2, and

IFNAR1, can be utilized as biomarkers to determine the risk of

LBMD in AS patients. They may affect neutrophil infiltration and

NETs formation to influence the bone remodeling process in AS.
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