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Background:Cancer-associated fibroblasts (CAFs) play an important role in the

tumorigenesis, immunosuppression and metastasis of colorectal cancer (CRC),

and can predict poor prognosis in patients with CRC. The present study aimed

to construct a CAFs-related prognostic signature for CRC.

Methods: The clinical information and corresponding RNA data of CRC patients

were downloaded fromTheCancer Genome Atlas (TCGA) andGene Expression

Omnibus (GEO) databases. The Estimation of STromal and Immune cells in

MAlignant Tumor tissues (ESTIMATES) and xCell methods were applied to

evaluate the tumor microenvironment infiltration from bulk gene expression

data. Weighted gene co-expression network analysis (WGCNA) was used to

construct co-expressionmodules. The keymodulewas identified by calculating

the module-trait correlations. The univariate Cox regression and least absolute

shrinkage operator (LASSO) analyses were combined to develop a CAFs-related

signature for the prognostic model. Moreover, pRRophetic and Tumor Immune

Dysfunction and Exclusion (TIDE) algorithms were utilized to predict

chemosensitivity and immunotherapy response. Human Protein Atlas (HPA)

databases were employed to evaluate the protein expressions.

Results: ESTIMATES and xCell analysis showed that high CAFs infiltration was

associated with adverse prognoses. A twenty-gene CAFs-related prognostic

signature (CAFPS) was established in the training cohort. Kaplan-Meier survival

analyses reveled that CRC patients with higher CAFs risk scores were associated

with poor prognosis in each cohort. Univariate and multivariate Cox regression

analyses verified that CAFPS was as an independent prognostic factor in

predicting overall survival, and a nomogram was built for clinical utility in

predicting CRC prognosis. Patients with higher CAFs risk scores tended to
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not respond to immunotherapy, but were more sensitive to five conventional

chemotherapeutic drugs.

Conclusion: In summary, the CAFPS could serve as a robust prognostic

indicator in CRC patients, which might help to optimize risk stratification

and provide a new insight into individual treatments for CRC.

KEYWORDS

colorectal cancer, cancer-associated fibroblasts, tumormicroenvironment, prognosis,
WGCNA

Introduction

Colorectal cancer (CRC) is globally the third most commonly

diagnosed cancer and the second leading cause of cancer-related

deaths (Bray et al., 2018). Although 39% of patients diagnosed

with localized CRC present 90% 5-year survival, this decreases to

71% for patients with tumors that have spread regionally and is

less than 14% in those with advanced distant metastases

(Thompson et al., 2022). According to the Global Cancer

Observatory (https://gco.iarc.fr/today), there were 555,628 new

cases and 283,751 deaths from CRC in China in 2020. The

occurrence and development of CRC is a multi-step and complex

process with multiple genes involved. Colorectal cancer cells have

an extraordinary biological ability to adapt themselves to adverse

environments, leading to their strong invasive and metastatic

characteristics (Kleppe et al., 2018). Conventional assessment,

including methods based on tumor-node-metastasis (TNM)

staging and pathology, is intrinsically subjective and not

sufficient to predict treatment response and prognosis. The

development of a novel prognostic model is therefore

imperative for CRC. Prognostic prediction models are widely

utilized both in the clinic and research to predict the probability

or the risk of a specific events or future outcomes (Toll et al.,

2008).

Cancer arises from the accumulation of gene mutations

within cancer cells, while both tumorigenesis and patients’

response to therapies are strongly regulated by non-mutant

cells and the extracellular matrix (ECM) within the tumor

microenvironment (TME). Cancer-associated fibroblasts

(CAFs) are a special type of fibroblasts that surround

tumors and form a key part of the TME. In recent years,

CAFs have received increasing attention due to their crucial

roles in tumor invasion, angiogenesis, and ECM remodeling

by promoting cell-cell interaction and the secretion of pro-

invasive factors (Villaronga et al., 2018; Bertero et al.,

2019). Targeting CAFs by altering their numbers,

subtype or biological functionality is emerging as an

attractive avenue to improve therapeutic strategies for

cancer.

In this study, we identified the infiltration score of CAFs in

CRC as a risk factor. The bulk transcriptome RNA-seq and

relevant clinical data of CRC patients were obtained from The

Cancer Genome Atlas (TCGA) datasets through the UCSC

Xena browser (https://xenabrowser.net/datapages/).

(Goldman et al., 2020) In addition, through a variety of

bioinformatics methods, we aimed to discover promising

CAFs-targeting therapeutic hallmarks and constructed a

robust CAFs-related gene signature to predict the prognosis

and drug response of CRC patients. Figure 1 illustrates the

workflow of the study.

Materials and methods

Data source and preprocessing

Data that containing the RNA expression profiles and

relevant clinical information of colon adenocarcinoma

(COAD) and rectal adenocarcinoma (READ) patients were

accessed through TCGA datasets. Following the removal of

the batch effects, the two parts of data were merged using the

“limma” R package (version 3.52.2). The GSE159216 and

GSE72968 datasets were obtained from the Gene Expression

Omnibus (GEO) data portal (https://www.ncbi.nlm.nih.gov/

geo/) for further validation. In total, the data of 771 patients

from the TCGA cohort, 283 patients from the

GSE159216 cohort, and 585 patients from the

GSE72968 cohort were recorded for utilization in the current

study.

Estimation of tumor microenvironment
infiltration

The R package “xCell” (version 1.1.0) estimates the

comprehensive levels of 64 immune and stromal cell types

(Aran et al., 2017). The estimation of STromal and Immune

cells in MAlignant Tumor tissues using the Expression data

(ESTIMATES) algorithm (version 1.34.0) can accurately

quantify the immune score and stromal score to identity the

infiltration degree of immune cells and predict the immune status

(Yoshihara et al., 2013). We applied xCell and ESTIMATES to

separately calculate the abundance scores for stromal cells and

immune cells for patient samples from different CRC stages.
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Construction of prognostic tumor
immune cells

Spearman’s correlation analyses were conducted to

determine the correlation between TME infiltration (immune

score and stromal score) and CAFs levels in CRC samples. The

“ggpubr” R package (version 0.4.0) was used to produce

correlation plots. After selecting the cut-off values with the

best sensitivity and specificity, CRC samples in the TCGA

cohort were divided into two groups according to CAFs

infiltration score using the “survival” R packages (version

3.6.1). The Kaplan-Meier survival curve was plotted using

“survminer” R packages (version 0.4.6) to compare the

survival rate.

Identification of the hub CAFs-related
module by weighted gene co-expression
network analysis

In order to find genes that closely related to CAFs, we

performed WGCNA by utilizing the “WGCNA” R package

(version 1.69) to find modules highly correlated with CAFs

levels and stromal score (Langfelder and Horvath, 2008). After

calculating the Pearson correlation between each gene pair, the

weighted adjacency matrix was constructed using the WGCNA

function adjacency function. Then, we used topological overlap

matrix analysis to cluster the adjacency matrix of CRC patients’

gene expression data. Next, the dynamic tree cut algorithm was

applied to identify modules on the dendrogram. Finally, we

calculated the correlation between the identified gene modules

identified and CAFs levels to mine the hub module for

subsequent analysis.

Function and pathway enrichment
analysis of genes in the hub module

In order to explore the biological function and pathway of

genes in the hub module, the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment were analyzed and visualized through the

“clusterProfiler” (version 3.18.0) and “org.Hs.eg.db” (version

3.1.0) R packages.

FIGURE 1
Flow diagram of the current investigation.
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CAFs-related genetic mutation analysis

The genetic landscape of CAF-related genes with copy

number variations (CNV) and single nucleotide variations

(SNV) from the TCGA datasets was generated with the

“maftools” R package (version 2.6.05). Then, CNV and SNV

correlation heatmaps were drawn using the “Complexheatmap”

R package (version 2.6.2).

Construction and validation of a CAFs-
related prognostic model

We designed a prognostic signature for CRC patients by focusing

on CAFs marker genes, which were identified from the hub module.

Univariate Cox analysis of the overall survival (OS) was applied to

screen the prognostic values of CAFs-related genes. Genes with p <
0.05 in the univariate Cox analysis were regarded as candidate

prognostic genes. Next, we displayed the prognostic genes in a

forest plot using the “forestplot” R package (version 1.9). To

minimize the risk of overfitting, we used LASSO-penalized Cox

regression analysis to eliminate genes with an overfitting tendency

andbuilt a prognostic signature using the “glmnet”Rpackage (version

2.2.1) (Simon et al., 2011). The signature of CAFs was established as

follows: CAFs risk score = Ʃ(βi*Expi), where βi represented the

corresponding regression coefficients of each candidate prognostic

gene, and Expi was the candidate gene’s expression value. According

to themedian value of CAFs risk scores, we divided CRCpatients into

high-risk and low-risk groups. The OS curve was plotted via Kaplan-

Meier analysis. Meanwhile, time-dependent receiver-operating

characteristic (ROC) analysis was carried out by the

“survivalROC” R package (version 1.34.0). Finally, heatmaps were

generated to visualize the association between the risk scores of CAFs

and candidate genes. Similarly, we validated our CAF prognostic

model on the GSE159216 and GSE72968 external validation cohorts.

Construction of predictive nomogram

Univariate and multivariate Cox regression analyses were

performed to identify the independent prognostic factors. A

nomogram was then constructed based on CAFs signature,

clinical stage, TNM stage and lymphatic invasion using the

“rms” R package (version 6.0.1). Afterwards, the ROC curve

and calibration curve were employed to evaluate the nomogram’s

predictive performance and accuracy.

Prediction of patients’ drug response
based on CAFs signature

We predicted the chemosensitivity/resistance for the high

and low risk groups via the “pRRophetic” R package (version

0.5). According to ridge regression, the half-maximal inhibitory

concentrations (IC50) were estimated for TCGA samples

(Geeleher et al., 2014a; Geeleher et al., 2014b). Furthermore,

the Tumor Immune Dysfunction and Exclusion (TIDE) (http://

tide.dfci.harvard.edu/) algorithm was employed to predict the

potential response to immune checkpoint blockade (ICB)

therapy between the two groups (Jiang et al., 2018).

Association of prognostic CAFs signature
with cancer hallmarks

A total of 50 hallmark gene sets were downloaded from the

molecular signature database (MSigDB, http://software.

broadinstitute.org/gsea/msigdb). These 50 hallmark gene sets

were subjected to the gene set variation analysis (GSVA) R

package (version 1.32.0) to further obtain the GSVA scores of

each gene set for each sample from the TCGA cohort

(Hänzelmann et al., 2013). The Pearson correlation between

CAFs signature and 50 hallmark gene sets were calculated by

the “Hmisc” R package (version 4.4.1).

Human protein atlas database and
immunohistochemistry verification

In order to further validate the protein expressions of

CAFs signature genes, the immunohistochemistry staining

images of prognosis-related genes in CRC tissues were

retrieved from the HPA online database (http://www.

proteinatlas.org/) (Uhlén et al., 2015).

Statistical analysis

All statistical analyses were carried out using R software

(version 4.0.3). The Wilcoxon signed rank test was applied for

comparisons between two groups, and the Kruskal-Wallis test for

comparisons between three or more groups. Statistical

significance was determined as two-sided with p < 0.05.

Results

TME infiltration patterns with different
CRC stages

By running xCell and ESTIMATES algorithms, we measured

the TME constituents in patients with different stages of CRC

from the TCGA cohort. As shown in Figure 2, the pooled results

of the stacked bar graph and Wilcoxon analyses on TCGA

COAD/READ datasets revealed the stromal and immune

scores; the infiltrations of several TME contents such as
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FIGURE 2
Differences in immune infiltration characteristics among the four stages. (A) Differences in stromal score and immune score among the four
stages based on xCell algorithms. (B) Differences in eight immune cell scores among the four stages based on ESTIMATE algorithms.

FIGURE 3
Evaluation of stromal/immune scores in CRC tissues. (A) The correlation between the stromal/immune scores and CAFs infiltration score. (B)
The correlation between CAFs infiltration score and OS.
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B cells, CD8+ T cells, M1 Macrophages, M2 Macrophages, NK

cells and Tregs were lower at later stages of CRC. However, the

infiltration of CAFs increased first and then decreased in

stage IV.

Clinical correlation of tumor-infiltrating
CAFs

We first investigated the relationship between the stromal/

immune scores and CAFs infiltration score. The results in

Figure 3A reveal that stromal score was not correlated with

CAFs infiltration score; however, the immune score showed a

positive correlation with the CAFs infiltration score (p = 0.042).

To investigate the potential relationship between OS and CAFs

infiltration score, we further divided CRC patients into high-

and low-score groups based on infiltration scores and the

constructed Kaplan-Meier survival curves. We found that

CAFs infiltration score was significantly negatively correlated

with OS (p = 0.035) (Figure 3B). Overall, all these results

suggested that CAFs infiltration score is associated with CRC

patients’ prognoses.

WGCNA for key gene module associated
with CAFs

We constructed the WGCNA analysis for all genes. With

the power value selected as 7, the scale independence

approached 0.8 (Figure 4A), suggesting a gene coexpression

network with an inherent modularity and a scale-free

topology. A total of 17 modules were identified through

hierarchical clustering (Figure 4B). Next, we examined the

correlation between the 17 modules and CAFs/stromal scores

(Figure 4C). All of the brown, yellow, and tan modules had

higher correlation with the CAFs/stromal scores. Thus, they

FIGURE 4
WGCNA and the identification of CAFs-related hub module. (A) Analysis of the scale-free ft index for various soft-threshold powers (β) and the
mean connectivity for various soft-threshold powers. (B) Clustering dendrogram of all genes with dissimilarity based on topological overlap and
assigned module colors. (C) The correlation between modules and traits were displayed. (D) The correlation between GS and MM in the brown,
yellow, and tan modules.
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were considered as key modules because of the high

correlation with traits. Under the condition of module

membership (MM) > 0.5 and gene significance (GS) > 0.03,

559 genes in the brown, yellow and tan modules were taken

out (Figure 4D).

GO and KEGG functional downstream
analyses of CAFs-related genes

In order to investigate the biological functions and

pathways of the above 559 genes in key modules, GO and

KEGG pathway enrichment analyses were carried out. As

shown in Figure 5, extracellular matrix organization,

collagen fibril organization, collagen-containing extracellular

matrix, and extracellular matrix structural constituent were the

main significantly enriched GO terms. Moreover, the top

10 enriched KEGG pathways were also exhibited, which

included Th17 cell differentiation, Staphylococcus aureus

infection, protein digestion and absorption, PI3K-Akt

signaling pathway, inflammatory bowel disease,

hematopoietic cell lineage, ECM-receptor interaction,

cytokine-cytokine receptor interaction, cell adhesion

molecules, and amoebiasis.

Alterations of CAFs-related genes in CRC
samples

In order to investigate alterations in CAFs-related genes in

the CRC samples, especially SNV and CNV, we analyzed CRC

patients with SNV and CNV data after extraction from the

TCGA. The top 30 genes with the highest mutation counts

were shown in Supplementary Figure S1.

Construction and verification of twenty-
gene prognostic CAFs signature

In the TCGA cohort, by performing univariate Cox

regression analysis on the 559 CAFs marker genes identified

above, a total of 51 genes were found with p < 0.05. LASSO Cox

regression algorithmwas then performed to select hub genes. The

minimal log(lambda) was determined as the optimal value by

tenfold cross-validations (Figures 6A,B). Finally, a twenty-gene

CAFs prognostic signature was constructed based on the

expression levels of each gene and the coefficient, with the

following formula: risk score = (0.0179849395327801 *

expression of CYTH3) + (0.133678301953266 * expression of

NAV3) + (0.97605105976877 * expression of EPHA6) -

FIGURE 5
GO and KEGG analysis for the genes of brown, yellow and tan modules.
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FIGURE 6
Screening of signature genes and the prognostic value of the CAFs-related signature in TCGA cohorts. (A) Ten-fold cross-validations for the
screening of optimal parameter (lambda). (B) LASSO coefficient profiles determined by the optimal lambda. (C) The forest plot presented the HRs and
p-values from the univariate Cox regression as well as the LASSO coefficient of the twenty prognostic signature genes. (D) Heatmap visualizing the
expression levels of twenty prognostic CAFs genes with the CAFs risk scores in the TCGA cohort. (E) The distribution of patient survival status
ranked by corresponding risk scores. (F) The Kaplan-Meier survival curves of OS between high and low risk score groups. (G) The time-dependent
ROC curves of the prognostic signature for 1-, 2-, and 3-year overall survival.
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(1.01688005937021 * expression of CASS4) +

(0.15388612377183 * expression of

SIGLEC1)—(0.162312764949028 * expression of SLAMF1) +

(0.0151723782273217 * expression of MAN1C1) +

(0.107689308053911 * expression of LAMP5) +

(0.0193478751759346 * expression of NOVA1) +

(0.127100030231241 * expression of IGFBP3) +

(0.0420090450866688 * expression of

ADAM8)—(0.194826817771919 * expression of CDC25C) +

(0.0834898746044337 * expression of ZNF385A) +

(0.0492899593436562 * expression of CADM3) +

(0.131501239268304 * expression of TUB) +

(0.584400505367543 * expression of NLGN1) +

(0.05334380595326 * expression of RCAN2) +

(0.231247598432235 * expression of SUSD5) -

(0.82291587246458 * expression of LSAMP) +

(0.286394869616561 * expression of S1PR3). Among the

20 prognostic genes, sixteen (CYTH3, NAV3, EPHA6,

SIGLEC1, MAN1C1, LAMP5, NOVA1, IGFBP3, ADAM8,

ZNF385A, CADM3, TUB, NLGN1, RCAN2, SUSD5 and

S1PR3) were regarded as risk-related genes, while CASS4,

SLAMF1, CDC25C and LSAMP were considered as protective

genes (Figure 6C). Kaplan-Meier survival curves revealed the

relationship between prognosis and the expression levels of

20 genes (Supplementary Figure S2). Based on this risk

formula, we calculated the CAFs risk score for each patient.

The heatmap exhibited the risk scores and expression differences

between the 20 genes in the TCGA cohort (Figure 6D).

The patients in the TCGA cohort were divided into high- and

low-CAFs risk groups according to the median risk scores. The

distribution of the risk score and patients’ survival status were

ranked by the risk score value (Figure 6E). According to the

Kaplan-Meier survival curves, patients in the high CAFs risk

group had significantly unfavorable OS compared with the low

CAFs risk group (Figure 6F). A ROC curve was constructed in

Figure 6G showing the prognostic accuracy of the signature, and

the AUCs for 1-, 2-, and 3-year overall survival were 0.711, 0.746,

and 0.734, respectively. Moreover, we also verified the predictive

ability of the signature in another two independent cohorts,

GSE159216 and GSE72968. Patients in the high CAFs risk

group had a worse prognosis than those in the low CAFs risk

group (Figures 7A–D).

Independent prognostic value of CAFs risk
score

There were no differences in CAFs risk score between

COAD and READ patients from the TCGA cohort

(Supplementary Figure S3A). However, the CAFs risk score

was significantly related to clinical stage, TNM stage, and

lymphatic invasion (Supplementary Figures S3B–F). We next

performed univariate and multivariate Cox regression

analyses on the clinical variables to identify whether CAFs

prognostic signature (CAFPS) was an independent prognostic

predictor of OS. We found that CAFPS was significantly

associated with OS in the univariate Cox regression

analysis (HR = 0.33; 95% CI = 0.22–0.49; p < 0.001;

Figure 8A). Furthermore, multivariate Cox regression

analysis was carried out to correct the confounding factors.

The CAFPS was nevertheless proved to be an independent

predictor for OS (HR = 0.43; 95% CI = 0.27–0.69; p < 0.001;

Figure 8B).

Establishment of predictive nomogram for
CRC patients

According to the regression analysis results, we developed a

nomogram including our CAFPS and multiple clinical factors. In

the TCGA cohort, clinical stage, TNM stage, lymphatic invasion,

and CAFPS were eventually selected to establish an accurate

predictive nomogram (Figure 9A). Next, we evaluated the

discriminative ability of the nomogram using the ROC-related

AUC. The AUC of CAFPS was 0.711, and the calibration plots of

1-, 2-, and 3-year OS showed no deviations from the Platt

calibration curves, indicating the high predictive accuracy of

the nomogram (Figures 9B,C).

Prognostic value of CAFPS for drug
response

We next examined the correlation between CAFPS and

cancer hallmark-related pathways. As shown in

Supplementary Figure S4, CAFPS was significantly

associated with 32 cancer relevant pathways among the total

of 50 pathways. To explore the difference between low-risk and

high-risk groups regarding drug resistance potential, we

estimated the IC50 levels of 138 chemotherapy drugs or

inhibitors in the two groups. We found that AZD.0530,

JNK.9L, PD.0332991, shikonin, and Z.LLNle.CHO could be

candidate drugs for treating patients in the high-risk group

(Figures 10A–E). The bubble chart shows the top 30 most

relevant drugs for 20 prognostic genes (Supplementary Figure

S5). We also predicted the response of CRC patients in the

TCGA cohort to immunotherapy by the TIDE algorithm. The

CAFPSs were significantly different between the non-

responder group and the responder group (Figure 10F; p <
0.01). The proportion of responders in the low CAFPS group

was significantly higher than that in the high CAFPS group

(Figure 10G). The AUC of CAFPS for 1-year overall survival

was 0.739 (95% CI = 0.689–0.79; Figure 10H). These evidences

indicated that the CAFPS based on the signatures of 20 genes

was helpful to assess patients’ response to chemotherapy and

immunotherapy.
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FIGURE 7
Verification of the CAFs-related signature. The Kaplan-Meier survival curves of OS between high and low risk score groups in GSE159216 (A) and
GSE72968 (C). The time-dependent ROC curves of the prognostic signature for 1-, 2-, and 3-year overall survival in GSE159216 (B) and
GSE72968 (D).

FIGURE 8
Univariate (A) andmultivariate (B)Cox analysis and forest plot revealed the independent prognostic value of CAFs prognostic signature (CAFPS).
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Evaluation of the expression patterns of
CAFs-related signature genes at the
protein levels via HPA database

Finally, we used the IHC data from the HPA database to validate

our previous findings to evaluate the expression of risk model genes

associated with CAFs in tumor and normal tissues. Since IGFBP3,

LSAMP, S1PR3 and ZNF385A have not been included in the HPA

database, we provided the IHC results for ADAM8, CADM3, CASS4,

CDC25C, CYTH3, EPHA6, LAMP5, MAN1C1, NAV3, NLGN1,

NOVA1, RCAN2, SIGLEC1, SLAMF1, SUSD5, and TUB. The results

showed that the protein expression levels confirmed the majority of

our previous findings at the mRNA levels. Moreover, the IHC results

from HPA database indicated that the protein expressions of

ADAM8, CYTH3, and TUB were higher in CRC stroma (Figures

11A,E,P), while those of CADM3, EPHA6, MAN1C1, NAV3,

NLGN1, NOVA1, and RCAN2 were higher in CRC interstitial

areas (Figures 11B,F,H–L). No expressions of LAMP5, SLAMF1,

and CDC25C were observed either in stroma or interstitial areas

(Figures 11G,N,D). Moreover, CASS4, SIGLEC1, and SUSD5 were

weakly expressed, like CASS4 and SUSD5 in interstitial areas (Figures

11C,O) and SIGLEC1 in stroma (Figure 11M).

Discussion

CAFs, as one of themost abundant cell type in the TME, facilitate

the development, propagation and invasiveness of tumors (Chan

et al., 2017). They have been previously reported to support the TME,

which can lead to poor prognosis and drug resistance (Chen et al.,

2014; Shiga et al., 2015). On the one hand, CAFs can produce

proteases to remodel the tumor extracellular matrix (ECM) and

increase the stiffness of tumor tissue, creating a pathway for tumor

cells to invade more easily (Kechagia et al., 2019). Increased tumor

FIGURE 9
A nomogram was constructed to predict the survival of CRC patients in the TCGA cohort. (A) The nomogram for predicting the overall survival
of CRC patients at 1, 2, and 3 years. (B) The ROC curves of the nomogram, clinical stage, TNM stage, and lymphatic invasion for the survival prediction
of CRC patients at 1, 2, and 3 years. (C) The nomogram calibration curves of 1-, 2-, and 3-year survival probabilities.
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tissue stiffness in ECM also makes blood vessels collapse and lead to

hypoxia, which promotes the survival and proliferation phenotype of

tumor cells and reduces drug releases (Zhang et al., 2021). On the

other hand, the roles of CAFs are not limited to ECM regulation but

also include communicating with other cells to establish an

immunosuppressive TME, enabling tumor cells to evade

antitumor immunity (Barrett and Pure, 2020). CAFs are a rich

source of secretomes and may influence the process of tumor-

specific immune cell differentiation. Recently, several studies have

indicated that CAFs skew infiltrating tumor-associated macrophage

(TAM) populations towards the M2 immunosuppressive phenotype

(Mao et al., 2021). However, emerging evidence suggests thatWNT-2

secreted by CAFs may inhibit the differentiation and activation of

dendritic cells, facilitating immune evasion by esophageal squamous

cell carcinoma and colorectal cancer (Huang et al., 2022). Notably,

the secretory function of CAFs could produce extensive crosstalk

with surrounding cells in the TME, eventually leading to drug

resistance (Monteran and Erez, 2019). In recent years, many

studies have demonstrated the cancer-promoting effect of CAFs;

therefore, the ability to target CAFs could be an attractive strategy for

anti-cancer therapy.

In the present study, via the analysis of transcriptome data of

TCGA cohorts, we estimated the proportion of CAFs in patients

with CRC, and confirmed that it was closely associated with

prognosis. Since CAFs exhibit a high degree of heterogeneity

(Kalluri, 2016), integrating multiple biomarkers into an

aggregated model would considerably improve their prognostic

value. Thus, we established a CAFs-related gene signature

including twenty genes (ADAM8, CADM3, CASS4, CDC25C,

CYTH3, EPHA6, IGFBP3, LAMP5, LSAMP, MAN1C1, NAV3,

NLGN1, NOVA1, RCAN2, S1PR3, SIGLEC1, SLAMF1, SUSD5,

TUB, and ZNF385A) through WGCNA, univariate, LASSO, and

multivariate Cox regression analysis for predicting the prognosis and

therapy response of CRC patients. In our study, the risk score

derived from CAFs-related gene signature was abbreviated as

CAFPS in our study. Moreover, CAFPS’ predictive value has

been validated in two additional independent cohorts, suggesting

the reliability of the CAFPS-based model. We subsequently

generated a nomogram based on clinical stage, TNM stage,

lymphatic invasion, and CAFPS for clinical application.

Twenty CAFs-related genes were used to construct a new

prognostic model through WGCNA. According to the risk value

of each gene, ADAM8, IGFBP3, RCAN2, SIGLEC1, ZNF385A,

LAMP5, MAN1C1, CYTH3, S1PR3, CADM3, TUB, NAV3,

SUSD5, NOVA1, NLGN1, and EPHA6 were regarded as risk

genes related to the poor prognosis of patients with CRC,

whereas CASS4, SLAMF1, LSAMP, and CDC25C were

associated with favorable prognosis. The biological functions

of these genes involved in our signature have been elucidated

more or less in previous studies. It was shown that the high levels

of ZNF385A, LAMP, CADM3, NAV3, and NLGN1 indicate the

poor prognosis of CRC patients (Martinez-Romero et al., 2018;

Chang et al., 2021; Chen et al., 2021; Yu et al., 2021; Li et al.,

2022), and these results were in accordance with our findings.

Similarly, low expressions of CYTH3, NOVA1, and EPHA6 were

highly correlated with longer OS in patients with other types of

cancers (Zhang et al., 2014; Zhou et al., 2018; Xu et al., 2022).

Furthermore, high expression of ADAM8 has been reported in

FIGURE 10
Drug sensitivity prediction in CRC patients. (A–E) Boxplot showing the mean differences in the estimated IC50 values of five drugs (AZD.0530,
JNK.9L, PD.0332991, shikonin, and Z.LLNle.CHO). (F) Distribution of TIDE value after prediction. (G) Responders to immunotherapy in the low and
high CAFPS groups. (H) ROC curve of CAFPS for 1-year overall survival.
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various tumor types and is related to invasiveness and poor

prognosis (Conrad et al., 2019). ADAM8 has been found to

cleave and remodel the ECM components of the tumor stroma

(Zack et al., 2009; Schlomann et al., 2015), and thus could directly

contribute to tumor invasiveness and metastasis. IGFBP3 and

SUSD5 promote epithelial-mesenchymal transition (EMT)

through the upregulation of a major cell surface receptor of

hyaluronic acid (CD44H) (Vicent et al., 2008; Du et al., 2022).

SIGLEC1 is a sialic binding receptor mainly expressed by

macrophages; the infiltration of SIGLEC1+ macrophages in

CRC was associated with tumor progression (Cassetta et al.,

2019). In addition, the involvement of S1PR3 has been

demonstrated in tumor growth. The S1P/S1PR3 axis is

considered to promote tumor cell proliferation, migration and

angiogenesis (Lee et al., 2017).

In the present study, RCAN2 was identified as a harmful

predictor; however, our results are the contrary to the finding of

Niitsu et al. (Niitsu et al., 2016) This may be related to the KRAS

mutation in CRC leading to the decreased expression of RCAN2.

Similar to our results, low expressions of CASS4 and LSAMP

indicated poor prognosis in other types of cancers (Zhao et al.,

2020; Gong et al., 2022). SLAMF1 and CDC25C were also

identified as anti-tumor biomarkers in CRC (Qi et al., 2021;

Song et al., 2022).

Some limitations of our results have to be recognized. First,

although some genes were expressed at very low levels in CRC

tissues, 20 candidate hub genes could not be filtered out due to

the restrictions of the applied bioinformatics methods. Second,

ours was a retrospective study for the establishment of gene

signatures using public databases, thus multi-center and large-

sample studies are needed to prospectively verify the prognostic

and predictive efficacy of our CAFPS. Finally, the verification by

detection at the protein level is insufficient; the molecular

mechanisms of how the 20 candidate genes of this study

influence the prognosis of CRC patients and responses to

treatments need to be further explored through basic research.

Conclusion

In summary, we used WGCNA analysis to create a gene co-

expression network, and identified and validated a twenty-gene

CAFs-related signature associated with CRC progression and

prognosis. Based on this signature, the CAFPS could identify

CRC patients who might not benefit from chemotherapy or

immunotherapy.
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