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Background: As couples struggle with infertility and livestock producers wish to

rapidly improve genetic merit in their herd, assisted reproductive technologies

(ART) have become increasingly popular in human medicine as well as the

livestock industry. Utilizing ART can cause an increased risk of congenital

overgrowth syndromes, such as Large Offspring Syndrome (LOS) in

ruminants. A dysregulation of transcripts has been observed in bovine

fetuses with LOS, which is suggested to be a cause of the phenotype. Our

recent study identified variations in tRNA expression in LOS individuals, leading

us to hypothesize that variations in tRNA expression can influence the

availability of their processed regulatory products, tRNA-derived fragments

(tRFs). Due to their resemblance in size to microRNAs, studies suggest that

tRFs target mRNA transcripts and regulate gene expression. Thus, we have

sequenced small RNA isolated from skeletal muscle and liver of day 105 bovine

fetuses to elucidate the mechanisms contributing to LOS. Moreover, we have

utilized our previously generated tRNA sequencing data to analyze the

contribution of tRNA availability to tRF abundance.

Results: 22,289 and 7,737 unique tRFs were predicted in the liver and muscle

tissue respectively. The greatest number of reads originated from 5′ tRFs in

muscle and 5′ halves in liver. In addition, mitochondrial (MT) and nuclear derived

tRF expression was tissue-specific with most MT-tRFs and nuclear tRFs derived

from LysUUU and iMetCAU in muscle, and AsnGUU and GlyGCC in liver. Despite

variation in tRF abundance within treatment groups, we identified differentially

expressed (DE) tRFs across Control-AI, ART-Normal, and ART-LOS groups with

the most DE tRFs between ART-Normal and ART-LOS groups. Many DE tRFs

target transcripts enriched in pathways related to growth and development in

the muscle and tumor development in the liver. Finally, we found positive

correlation coefficients between tRNA availability and tRF expression in muscle

(R = 0.47) and liver (0.6).

Conclusion: Our results highlight the dysregulation of tRF expression and its

regulatory roles in LOS. These tRFs were found to target both imprinted and

non-imprinted genes inmuscle aswell as genes linked to tumor development in

OPEN ACCESS

EDITED BY

Yuan Zhou,
Peking University, China

REVIEWED BY

Renhua Li,
Henry M Jackson Foundation for the
Advancement of Military Medicine (HJF),
United States
Yongsheng Yu,
Jilin Academy of Agricultural Sciences
(CAAS), China

*CORRESPONDENCE

Darren E. Hagen,
darren.hagen@okstate.edu

SPECIALTY SECTION

This article was submitted to RNA,
a section of the journal
Frontiers in Genetics

RECEIVED 27 September 2022
ACCEPTED 28 October 2022
PUBLISHED 15 November 2022

CITATION

Goldkamp AK, Li Y, Rivera RM and
Hagen DE (2022), Differentially
expressed tRNA-derived fragments in
bovine fetuses with assisted
reproduction induced congenital
overgrowth syndrome.
Front. Genet. 13:1055343.
doi: 10.3389/fgene.2022.1055343

COPYRIGHT

©2022 Goldkamp, Li, Rivera and Hagen.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 15 November 2022
DOI 10.3389/fgene.2022.1055343

https://www.frontiersin.org/articles/10.3389/fgene.2022.1055343/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1055343/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1055343/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1055343/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1055343/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1055343&domain=pdf&date_stamp=2022-11-15
mailto:darren.hagen@okstate.edu
https://doi.org/10.3389/fgene.2022.1055343
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1055343


the liver. Furthermore, we found that tRNA transcription is a highly modulated

event that plays a part in the biogenesis of tRFs. This study is the first to

investigate the relationship between tRNA and tRF expression in

combination with ART-induced LOS.
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Introduction

Assisted reproductive technologies (ART) are described as

treatments that manipulate reproduction to increase chances of

conception and encompasses a wide array of procedures such as

in vitro fertilization (IVF), intracytoplasmic sperm injection

(ICSI), and embryo transfer (Huang and Rosenwaks, 2014).

ART is often used to increase genetic gain and advance

reproductive potential, and its use has rapidly increased in

beef and dairy cattle populations (Hansen, 2006). In fact, a

2017 report showed a dramatic shift in worldwide embryo

production, in which significantly higher numbers of bovine

embryos are now produced in vitro compared to in vivo (Viana

and J., 2017). According to the International embryo technology

society (IETS) newsletter, a record of more than 1.5 million in

vitro-conceived bovine embryos were produced or collected in

2020 alone (Viana, 2021). Although in vitro embryo production

has quickly become the preferred technique globally, it is

important to consider the effects of in vitro procedures on

genomic output.

Several studies have investigated the link between ART use

and the increased occurrence of congenital overgrowth

syndromes, such as Beckwith-Wiedemann syndrome (BWS)

in humans and Large Offspring Syndrome (LOS) in ruminants

(McEvoy et al., 2000; Young et al., 2001; Butler, 2009;

Vermeiden and Bernardus, 2013; Mussa et al., 2017). LOS

is often characterized by overgrowth, tongue enlargement, and

abdominal wall defects (Young et al., 1998; McEvoy et al.,

2000; Kohler et al., 2019). BWS shares clinical features with

LOS and is also associated with an increased risk of liver

tumors (hepatoblastoma) (Rump et al., 2005). Livestock are

often bred for economically beneficial characteristics related

to production, making LOS an issue for breeders and a source

of economic loss for producers. Due to their large size, LOS

offspring have an increased chance of dystocia (difficult birth)

which can result in death of the calf and/or dam (Sinclair et al.,

2000). In addition to cow and calf mortality, dystocia can

result in financial losses associated with decreased milk

production and fertility, and an increased likelihood of

health issues (e.g., respiratory and digestive disorders,

uterine disease, mastitis) (Dematawewa and Berger, 1997;

Lombard et al., 2007; Mee, 2008; Atashi et al., 2012).

However, the mechanism of ART-induced fetal overgrowth

remains poorly understood.

Our previous work has detected dysregulation of transcripts

and differentially methylated regions (DMRs) in LOS, and some

of these regions resulted in dysregulation of imprinted loci (genes

expressed in a parent-specific fashion) (Chen et al., 2013; Chen

et al., 2015). We also have shown that DNA methylation is

associated with a very small percent of gene misregulation in LOS

individuals, suggesting other factors may be influencing gene

regulation (Chen et al., 2017). Therefore, there is still a lack of

clarity in diagnosis due to the variation in molecular basis and

presence of major clinical symptoms. Due to their crucial role in

protein synthesis, our recent study investigated tRNA expression

within skeletal muscle and liver in LOS. This study revealed

differential expression of tRNA genes as well as tissue- and

treatment- specific tRNA transcripts with unique sequence

variations (Goldkamp et al., 2022). These findings as well as

the discovery of small non-coding RNAs derived from tRNAs,

led us to consider the role of tRNA-derived fragments (tRFs) in

LOS. To date, no study has examined the relationship between

bovine tRNA expression and their processed regulatory products.

During tRNA maturation, the 5′ leader and 3′ trailer

sequence of precursor tRNAs (pre-tRNAs) is cleaved by

RNase Z and RNase P (Lee et al., 2009; Jarrous et al., 2022)

(Figure 1). Following the addition of a 3′ CCA tail and enzymatic

splicing, the mature tRNA is actively transported through the

nuclear pore complex. Mature tRNAs may be cleaved through a

Dicer-dependent or Dicer-independent pathway and several

classes of tRFs are produced based on the tRNA cleavage

position: 5′ tRFs, 3′ tRFs, internal tRFs (i-tRFs; internal

fragments spanning anywhere within the tRNA), 5′ halves,

and 3′ halves (Figure 1). Generally, 5′ tRFs, 3′ tRFs, and

i-tRFs are 16–26 nt, whereas 5′ and 3′ halves are 27–36 nt

(Lee et al., 2009). Initially considered to be random tRNA

degradation products, growing evidence indicates that tRFs

are an emerging class of non-coding RNAs with implications

in multiple biological processes, namely regulation of protein

translation (Ivanov et al., 2011; Huang et al., 2021). There are

several suggested mechanisms of translational inhibition, such as

disrupted ribosomal interactions through mRNA competition

(Sobala and Hutvagner, 2013), displacement of initiation factors

necessary for translation (Kapur et al., 2017), and recruitment of

RNase Z to cleave target mRNAs (Elbarbary et al., 2009). Other

studies suggest that stress granules may be formed in response to

tRF-mediated inhibition of protein synthesis, which can reduce

apoptosis in cancer cells (Decker and Parker, 2012; Olvedy et al.,
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2016). The primary pathway that is frequently suggested is

similar to microRNAs, in which the tRF is loaded into an

RNA-induced silencing complex (RISC) to target partially

complementary mRNA (Shigematsu et al., 2014; Shigematsu

and Kirino, 2015; Venkatesh et al., 2016). Various tRF types

have been identified in plants, humans, and cattle with some

acting as promoters of metastasis or aiding in homeostasis in

humans (Green et al., 2016; Torres et al., 2019), and others for

example have been reported to respond to nutritional deficiency

in Arabidopsis (Hsieh et al., 2009) or Bovine Leukemia Virus in

cattle (Taxis et al., 2018). Considering the alterations in tRNA

expression and the dysregulation of mRNA transcripts in LOS,

these tRNA genes may be selectively transcribed to give rise to

unique tRF subtypes capable of targeting transcripts related to

growth and/or liver tumor development. Furthermore, the

diverse functions of tRFs across health states indicates a

possible role in syndrome development.

In this study, we performed small RNA sequencing on

skeletal muscle and liver samples collected from day

105 artificial insemination-conceived fetuses (AI-Control),

ART-conceived bovine fetuses with a body weight above the

97th percentile relative to Control-AI (ART-LOS), and ART-

conceived bovine fetuses with a body weight below the 97th

percentile (ART-Normal). In addition, previously generated

tRNA sequencing data was used to compare the expression of

mature tRNAs and their processed regulatory products

(Goldkamp et al., 2022). We detected differentially expressed

tRFs due to method of conception (AI vs. ART) as well as

syndrome development (ART-Normal vs. ART-LOS). Our

results indicate that tRNA expression is highly dynamic based

on tissue type and syndrome development. This brings the

possibility that some tRNA expression can act as a means of

tRF production in order to regulate gene expression. This study

contributes insights on the mechanisms of tRF biogenesis and

FIGURE 1
tRNA and tRF biogenesis pathway and silencing mechanisms in eukaryotes. tRNAs and tRNA-derived fragments (tRFs) are produced through
this pathway in eukaryotes. Arrows indicate each step and help visualize how mRNA transcripts are targeted for translational repression or
degradation, as well as how they influence stress response. There are differences in cellular ribonucleases used for cleavage in bacteria and yeast that
are not shown. RNA POL III, RNA Polymerase III; TSEN Complex, tRNA Splicing Endonuclease Complex; AGO1-4, Argonaute 1–4; XPO5,
Exportin-5; RanGTP, GTP-bound Ras-related nuclear protein; Nsun2, NOP2/Sun RNA methyltransferase family member 2; Dnmt2, DNA
methyltransferase 2; NPC, Nuclear Pore Complex; ARS, aminoacyl-tRNA synthetase; ANG, Angiogenin; Mt-DNA, Mitochondrial DNA; RISC, RNA-
induced silencing complex; eIF4A, eukaryotic translation initiation factor 4A; eIF4G, eukaryotic translation initiation factor 4G. Figure created with
BioRender.com.
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their role in targeting transcripts related to growth and

development.

Materials and methods

Animals and RNA isolation

Day 105 Bos taurus indicus (B. t. indicus; Nelore breed) × Bos

taurus taurus (B. t. taurus; Holstein breed) F1 fetal conceptuses

were previously generated by us (Li et al., 2019a). Tissues were

flash frozen in liquid nitrogen and stored at −80° until RNA

extraction. Total RNA was extracted from skeletal muscle and

liver tissues of F1 hybrid controls (artificial insemination;

Control-AI), in vitro produced ART-Normal (similar weight

as controls), and in vitro produced ART-LOS (body weight

greater than 97th percentile relative to controls) using TRIzol

Reagent (Invitrogen, Carlsbad, CA, United States) following the

manufacturer’s instructions. Quality and concentration of the

RNA samples was assessed using the Agilent TapeStation RNA

ScreenTape (Agilent, Santa Clara, CA, United States) and RNA

integrity numbers (RIN) for all samples were ≥ 7.4. The weights

of individuals within each treatment group were compared in our

previous study to classify the 97th percentile (Chen et al., 2013).

The weight (in grams) and identifier of the fetuses in each

treatment group are as follows: 1) Control-AI fetuses: 392 g

(CON#1), 404 g (CON#2), 416 g (CON#3), and 360 g (CON

#4), 2) ART-Normal fetuses: 360 g (ART#1), 376 g (ART#2), and

390 g (ART#3), 3) ART-LOS fetuses: 514 g (LOS#1), 518 g

(LOS#2), and 620 g (LOS#4). Control-AI and ART-Normal

body weights are very similar. The 97th percentile of Control-

AI weight was selected as the threshold to characterize LOS

because it has been previously used to define the equivalent

overgrowth syndrome in humans, Beckwith-Wiedemann

Syndrome (BWS) (Weksberg et al., 2010).

Library preparation and sequencing

Small RNA library preparation was done using the TruSeq®

Small RNA Library Preparation Kit (Illumina, Inc., San Diego,

CA, United States) and following the manufacturer’s

instructions. 1 μg of total RNA was briefly ligated to 3′ RNA
adapters with ligation buffer, RNase Inhibitor, and T4 RNA

Ligase 2. After the addition of stop solution, 5′ RNA adapters

were also ligated with T4 RNA Ligase 2. Reverse transcription

was performed with each adapter-ligated RNA library to produce

cDNA constructs. Each resulting cDNA library was amplified via

Polymerase Chain Reaction (PCR). A unique RPIX was used for

each library sample for multiplexed sequencing and analysis.

Following PCR and before cDNA construct purification, each

library was run on a High Sensitivity DNA chip (Agilent, Santa

Clara, CA, United States) with expected peaks of approximately

140–160 bp. The pooled libraries were resolved on a 6% Novex

TBE PAGE gel (polyacrylamide gel) and a size selection of

140–180 bp (predicted size of tRNA fragments and adapters)

was performed on the gel. The purified and pooled libraries were

sequenced using Illumina NextSeq 500 System High-Output Kit

(Illumina, Inc., San Diego, CA, United States) and conducted by

the OSUMicroarray Core Facility. All samples were sequenced in

one lane at the same time to prevent a batch effect. The liver small

RNA-seq data was provided from our previous study (GEO

database accession # GSE117015) (Li et al., 2019a) and was

sequenced using Illumina NextSeq 500 System High-Output

Kit, the same library preparation kit and sequencing platform

as the skeletal muscle tRFs, by the University of Missouri-

Columbia DNA core facility.

Processing and alignment of small RNAseq
data

The raw sequence reads were filtered using the fastq-mcf

command from ea-utils (version 0.148d4) in order to remove

the TruSeq Small RNA adapter sequence (TGGAATTCTCGG

GTGCCAAGG) (Aronesty, 2011). The adapter trimmed reads

were then quality trimmed using SolexaQA++ (version 3.1.6)

dynamictrim utility with a Phred cut off score of 19 (Cox et al.,

2010). The quality trimmed reads were kept if they had a

length of at least 13 bp or greater and were sorted using the

SolexaQA++ lengthsort utility. The resulting reads were then

mapped against the bovine genome ARS-UCD1.2 using the

MINTmap pipeline in order to predict tRNA fragments from

the small RNA-seq data (Elsik et al., 2016; Loher et al., 2017).

MINTmap aligned reads to a look up table that contains

unique tRF sequences ranging from 16 to 50 bp that are

exclusively located in regions associated with annotated

tRNA genes. The reads that mapped to bovine tRFs were

measured with the default setting of MINTmap, which allows

no mismatches, no insertions, and no deletions and also

analyzes the whole genome to retrieve all possible

alignments (Loher et al., 2017). Additionally, MINTmap

outputs the parental tRNA source(s) that the tRF is

potentially derived from, the tRF sequence, tRF subtype

and the unique MINTplate associated with the tRF. Only

the exclusive tRF expression output of unnormalized reads

was used for data analysis.

Differential expression analysis

Non-linear full quantile normalization was used with the

betweenLaneNormalization function on CPM transformed

read counts using EDAseq v2.24.0 in order to produce PCA

and RLE plots (Risso et al., 2011). Principal component

analyses (PCA) and relative log expression (RLE) plots
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were created with the plotPCA and plotRLE function of the

EDASeq package, respectively. Only tRFs that had at least

5 counts per million in all of the control, or all of the ART-

normal, or at least 2 ART-LOS were considered moderately

expressed and kept for DE analysis. EdgeR v3.24.3 was used

to conduct a differential expression analysis and the trimmed

mean of M values method (TMM) of EdgeR was used for

normalization (Lun et al., 2016). A likelihood ratio test was

conducted using the glmLRT function of edgeR in order to

identify differential expression in skeletal muscle and liver

(Control-AI vs. ART-normal, ART-normal vs. ART-LOS,

and Control-AI vs. ART-LOS). Differentially expressed

tRFs were defined as those with a false discovery rate

(FDR) of ≤ 0.05. Heatmaps of differentially expressed tRFs

were created for skeletal muscle and liver tissue to

graphically represent gene expression. The normalized

read counts were transformed into moderated log-counts

per million and heatmaps were produced using

RColorBrewer v1.1-2 and the heatmap.2 function of the

gplots package v3.0.1.1.

Target prediction

RNA-seq data for Control and ART-LOS individuals from

our previous study was retrieved from NCBI Gene Expression

Omnibus (GEO) (accession # GSE63509) (Chen et al., 2016).

RNA-seq data was used to predict potential gene candidates

targeted by DE tRFs. Differential expression analysis of the RNA-

seq data was done using the same method previously described

for the tRF analysis.

All DE tRFs that were identified between Control vs. ART-

Normal, ART-Normal vs. ART-LOS, and Control vs. ART-

LOS were analyzed for target prediction. The 3′ UTR

sequences of all expressed protein-coding genes in the

ARS-UCD1.2 bovine genome were obtained from Ensembl

Release 98 (Cunningham et al., 2019). miRanda v3.3a is a

program commonly used for miRNA target prediction and

was used for DE tRF target prediction in this study (Enright

et al., 2003; Riffo-Campos et al., 2016). The 3′ UTR sequences

of the protein coding genes were used as a reference for

alignment of the DE tRF sequences with a binding score

cutoff of ≥ 150 and an energy cutoff of ≤ −20 (Enright

et al., 2003). Since it has been proposed that tRFs may

target transcripts that are only partially complementary,

unlike miRNAs, the strict parameter was not used and a

partially complementary seed sequence was allowed

(Martinez et al., 2017; Xiong et al., 2019). Predicted tRF

targets were compared with the DE transcripts obtained

from analysis of RNAseq mentioned previously.

Downregulated mRNA targets were overlapped with targets

of upregulated tRFs and vice versa for each treatment

comparison.

Functional enrichment analysis

Enrichment analysis was done using the list of candidate

gene targets of DE tRFs for each treatment comparisons and

all expressed protein coding genes used as the background

gene set. Gene set enrichment analysis (GSEA) of the GO

terms was performed using Fisher’s exact test as implemented

in R package topGO v2.42.0 (Alexa A, 2022). KEGG pathway

enrichment analysis was performed using the Wilcoxon rank-

sum tests via the R package KEGGREST v1.30.1 (Tenenbaum,

2021). Human Phenotype Ontology (HPO) enrichment

analysis was done using the g:Profiler web server with

p-values corrected by the g:SCS threshold significance

criterion (Raudvere et al., 2019). For the identified

candidate target genes, we used mouse mutant phenotype

information and performed a mammalian phenotype

enrichment analysis with the Fisher’s Exact test

implemented by MamPhEA (Weng and Liao, 2010).

Enrichment results with a p-value of ≤ 0.05 were classified

as significant. Dot plots depicting enrichment results were

created with ggplot2 package v3.2.1.

YAMAT-seq data

Mature tRNA sequencing data from our previous study

was used to compare tRNA and tRF levels (Goldkamp et al.,

2022). MINTmap was used to provide all possible parental

tRNA sources of each tRF (Elsik et al., 2016; Loher et al.,

2017). In order to evaluate the relationship between parent

tRNA expression and tRF abundance, both YAMAT-seq and

small RNAseq data were then merged. In an effort to not

exclude any parent tRNA predicted by MINTmap, the counts

for each tRF were divided by the number of parental tRNAs it

was predicted to be derived from and were then log

transformed. If there was no detected expression in both

the parental tRNA and the tRF in any treatment group, the

tRNA species was not included in the scatter plot. Scatter plots

were made to show tRNA and tRF expression relative to the

tRNA species with ggplot2 package v3.2.1 and by tissue type to

calculate Pearson’s correlation coefficient with ggpubr

package v0.2.4.

Results and discussion

Small RNA sequencing

In order to understand tRF expression in bovine fetuses

with congenital overgrowth syndromes, we performed small

RNA sequencing to generate tRF expression profiles in skeletal

muscle and liver. This resulted in an average of 10,750,864

(76.7%) and 9,074,956 (86%) reads retained per sample for
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muscle and liver respectively (Supplementary Table S1).

Adapter and quality trimmed reads were aligned to the ARS-

UCD1.2 bovine reference genome using the MINTmap pipeline

in order to predict tRNA fragments from the small RNA-seq

data. A total of 936,898 and 2,854,063 reads exclusively mapped

to tRFs in the skeletal muscle and liver. A lower proportion of

retained reads were mapped due to MINTmap’s strategy: only

exact matches are allowed, one sequence is counted once no

matter how often it appears within the genome, and only tRFs

that map exclusively to genomic tRNA locations are counted.

Therefore, we excluded ambiguous reads that mapped to

locations both within and outside of tRNA loci in order to

prevent false positives.

Detection of tRNA-derived fragments

Five subtypes of mapped tRFs were predicted in muscle and

liver datasets: 5′-tRF, 3′-tRF, i-tRF, 5′ half, and 3′ half. A total of

22,289 unique tRFs were predicted in the liver tissue and

7,737 unique tRFs were predicted in the muscle tissue

(Supplementary Table S1). The larger number of predicted

tRFs in liver could be a result of high transcriptional activity

in the liver tissue. Our recent tRNA study detected a greater

number of tRNA genes expressed in liver compared to muscle

(487 vs. 474), which could contribute to changes in the tRF

profile of each tissue (Goldkamp et al., 2022). The liver acts as a

key player in nutrient metabolism and detoxification, which

FIGURE 2
Quantitative analysis of tRF subtypes and size distribution. (A) Predicted tRFs were classified based on the region of the mature tRNA molecule
that they are derived from across all samples (n = 10). (B) Predicted tRFs were also classified based on size across all samples (n = 10). All reads were
categorized based on size or subtype and the y axis represents the percent of total CPM-normalized tRF transcript counts. The y axis sums to 100%
for each tissue. Summary statistics were computed with the SummarySE function of the Rmisc package and standard error bars are shown in
black.
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could result in excess transcripts in an effort to effectively

regulate metabolic homeostasis. In fact, the human liver

transcriptome has been described to have increased

complexity and significant variability in transcript expression

(Shackel et al., 2006; Bahar Halpern et al., 2015). We included a

filtering step, in which tRFs with counts present in any two

individuals within a tissue (n = 10) were classified as expressed

and kept for analysis. This filtration step yielded a total of

13,231 tRFs in the liver and 3,508 tRFs in the muscle. Out of

the 13,231 expressed tRFs in the liver, the distribution of tRFs by

subtype are as follows: 11,102 i-tRFs, 1,492 5′-tRFs, 305 5′ halves,
294 3′-tRFs, and 38 3′ halves. Out of the 3,508 expressed tRFs in

FIGURE 3
MT and nuclear tRF distribution. A bar graph depicting the levels of tRFs derived from (A) nuclear and (B) mitochondrial parental tRNAs across
Control-AI, ART-Normal, and ART-LOS groups in muscle and liver tissue. Log transformed CPM values were used and each parental tRNA was
grouped at the level of the anticodon. The SummarySE function was implemented to calculate the statistics of continuous variables by treatment
group and standard error bars are shown for each anticodon in each treatment group.
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the muscle, there were 2,748 i-tRFs, 687 5′-tRFs, 48 5′ halves, and
25 3′-tRFs (Supplementary Table S1). i-tRFs were the most

common of the list of predicted tRFs in both tissues. i-tRFs

arise from a variety of positions and may be derived upstream,

within, or downstream of the anticodon loop (Loher et al., 2017).

This creates an opportunity for more than one i-tRF to be

processed from a single tRNA molecule. Despite most of the

predicted tRF species being of the i-tRF subtype in both tissues,

the distribution of reads derived from a particular subtype was

tissue-specific. The largest portion of reads were derived from 5′
tRFs in the muscle and 5′ halves in the liver (Figure 2A). These

results are consistent with previous studies in human and mouse

which reported that hematopoietic tissues, such as the liver, have

greater expression of 5′ tRNA halves compared to non-

hematopoietic tissues and are suggested to function as

immune signaling molecules (Fu et al., 2009; Dhahbi, 2015).

Consistent with these observations, we found that most

transcripts ranged from 22 to 24 nt in the skeletal muscle and

33–36 nt in the liver. This represents the expected size of 5′ tRFs
and 5′ halves respectively (Figure 2B). Since tRFs of this size

(22–24 nt) resemble miRNAs, this could indicate a higher

likelihood of association with AGO proteins for gene silencing

in the skeletal muscle (Stavast and Erkeland, 2019). Because the

average size of a miRNA is ~22 nt, we were curious if any of the

predicted tRF sequences aligned to known miRNAs. We

retrieved the mature sequences of all annotated bovine

miRNAs from miRbase and aligned the tRF sequences using

blast + v2.10.1 (Camacho et al., 2009; Kozomara et al., 2019). We

found that none of the tRF sequences perfectly aligned to any of

the bovine miRNAs.

We observed approximately 2.97% and 6.05% of the

expressed transcripts in muscle and liver were derived from

mitochondrial (MT) tRNAs. These observations suggest that

MT-derived tRFs make a minor contribution to the tRFome.

Consistent with a previous tRF study, the parental tRNA from

which mitochondrial and nuclear tRFs originated, varied

between muscle and liver (Telonis et al., 2019). For

example, most MT-tRFs were derived from LysUUU in

muscle and AsnGUU in liver, while most nuclear tRFs were

derived from initiator MetCAU (iMetCAU) in muscle and GlyGCC

in liver (Figures 3A,B). This finding demonstrates the unique

expression profiles for nuclear- and MT-derived tRFs in the

muscle and liver, which could underlie tissue-specific

biological processes. In addition, we observed certain

tRNAs did not produce tRFs in any of the treatment

groups in the muscle or liver (AlaGGC, ArgGCG, AspAUC,

CysACA, GlyACC, HisAUG, SerACU, SeCeUCA, ThrGGU, TyrAUA,

and MT-IleGAU). We previously found 10 of these tRNAs

(excluding MT-IleGAU) to be transcriptionally silent across

all treatment groups in muscle and liver (Goldkamp et al.,

2022). Despite the annotation of these silent tRNAs in the

bovine assembly, a previous report has illustrated that 9 of

these genes (excluding SeCeUCA andMT-IleGAU) are reportedly

missing from eukaryotic, bacterial, and/or archaeal species

(Ehrlich et al., 2021). This could suggest a selective pressure

on anticodon bias across species. As far as we know, there are

no reports of any tRNA isodecoders that do not participate in

tRF biogenesis. This may indicate that some tRNA species are

more resistant to processing events, and is perhaps linked to

tRNA modifications offering protection from cleavage (Goll

et al., 2006; Schaefer et al., 2010; Guzzi and Bellodi, 2020).

Finally, PheAAA is an example of a previously identified silent

isodecoder with detected tRF expression, suggesting that some

tRNAs are transcribed and cleaved to solely give rise to unique

tRF species (Goldkamp et al., 2022).

Data visualization by relative log
expression and principal component
analysis

Relative log expression (RLE) plots were used to visualize the

normalized tRF expression data across and within treatment

groups (Supplementary Figure S1). Most samples were constant

although there was increased variation in ART-LOS #2 in the

muscle (Supplementary Figure S1A) and ART-LOS #1 in the liver

(Supplementary Figure S1B). This is consistent with our previous

work using tissue samples from the same ART-LOS individuals,

in which genes in ART-LOS #1 in liver and ART-LOS #2 in

muscle were expressed differently from other LOS individuals

(Chen et al., 2015). Principal component analysis (PCA) plots

show the clustering of individuals based on the normalized tRFs

in muscle and liver (Supplementary Figure S2). In the muscle, the

Control-AI vs. ART-Normal and ART-LOS vs. ART-Normal

cluster together, yet there is no clustering in the Control-AI vs.

ART-LOS groups (Supplementary Figure S2A). Similarly,

Control-AI vs. ART-Normal and ART-Normal vs. ART-LOS

comparisons show clustering in the liver (Supplementary Figure

S2B). However, the PCA displaying all three treatment groups

indicates that ART-LOS #2 clusters with the Control-AI group in

the liver and away from other treatment groups in the muscle.

Overall, we observed variation in tRF expression within

treatment groups, particularly in ART-LOS individuals. This

might be due to the nature of the syndrome, as certain LOS

phenotypes differ in severity and are not always present (Chen

et al., 2013). Previous reports have suggested that tRFs may be

less tightly regulated than other small RNAs, due to their larger

abundance and the ability of each tRF to originate from several

tRNA genes (Umu et al., 2018; Veneziano et al., 2019). However,

several studies demonstrate that certain tRFs describe underlying

mechanisms in cellular states and disease progression (Olvedy

et al., 2016; Krishna et al., 2019). Although overgrowth is one of

the most common characteristics of LOS, liver tumor

predisposition is variable and the classification of LOS fetuses

based on body weight alone likely introduced a preference for tRF

dysregulation in the muscle.
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Identification of differentially expressed
tRNA-derived fragments

We used EdgeR v 3.24.3 to conduct differential expression

analyses of the normalized tRF read counts in muscle and liver

tissue (Lun et al., 2016). We conducted DE analysis across three

comparisons: Control-AI vs. ART-LOS, Control-AI vs. ART-

Normal, and ART-Normal vs. ART-LOS. For Control-AI vs.

ART-LOS, we identified 24 DE tRFs in muscle and detected no

DE tRFs in liver (Supplementary Table S2A). For ART-Normal

vs. ART-LOS, we identified 764 DE tRFs in muscle and 43 DE

tRFs in liver (Supplementary Table S2B). For Control-AI vs.

ART-Normal, we detected 196 DE tRFs in muscle and 44 DE

tRFs in liver (Supplementary Table S2C). Few studies have

investigated tRF expression in muscle and liver. While we

have not fully elucidated the biological processes underlying

tissue-specific tRF expression, studies have found that the

most critical stage of fetal skeletal muscle development occurs

during early to mid-gestation in cattle and sheep, whereas liver

tumors may not have formed by day 105 of fetal development

(Yan et al., 2013). More specifically, the size of the liver increases

throughout development but the disease of the liver may not yet

be present. These differences in tRF expression could therefore be

related to the time of tissue collection, where dynamic changes in

expression are occurring in the muscle but not in the liver. We

consistently saw higher numbers of DE tRFs in the muscle, which

could suggest that the potential for gene targeting is higher in

muscle tissue due to the recruitment of small RNAs that are

similar in size to miRNAs (Figure 2B). DE tRFs in Control-AI vs.

ART-Normal and ART-Normal vs. ART-LOS could suggest that

tRF expression can be influenced by method of conception (AI

vs. ART) as well as syndrome development (ART-Normal vs.

ART-LOS). Additionally, heatmaps of DE tRFs in muscle and

liver were produced to visualize the degree of up and down

regulation across all individuals (Supplementary Figures S3, S4).

The heatmap for muscle showed consistent DE expression across

all treatment groups. There was much variation within Control

and ART-LOS groups, which also could be explained by fewer

DE tRFs detected in that comparison. The heatmap for liver

displayed little consistency in expression between treatment

groups, which could be due to the assignment of treatment

group based on weight.

Mature tRNAs are tightly regulated for
non-canonical functions

Previously generated data from our study characterizing

tRNA expression profiles in Control-AI, ART-Normal, and

ART-LOS individuals was used in order to better understand

the relationship between mature tRNA expression and tRF

abundance (Goldkamp et al., 2022). Due to the high levels of

sequence conservation across tRNA species, MINTmap can

identify numerous parental tRNA sources for a single tRF. In

an effort to not exclude any parent tRNA source, the counts for

each tRF were divided by the number of tRNAs it was predicted

to be derived from. In order to determine if there was an

association between tRNA and tRF abundance, we performed

a Pearson correlation analysis between tRNA and tRF expression.

We found the Pearson correlation coefficients were 0.47 and 0.6

(p-value ≤ 0.05) for the muscle and liver respectively (Figures

4A,B). One explanation for these moderately positive correlation

coefficients is that selective transcription of tRNA genes can bias

the availability of certain mature tRNAs and ultimately the

population of tRFs. These findings agree with a previous

study, which reported tissue-specific modulation of tRNA

transcription to support its dual function in translation as well

as gene regulation by tRFs (Torres et al., 2019). This data

demonstrates that tRF expression is non-random and

dependent on the availability of highly regulated tRNA

molecules. We acknowledge that the redundancy of tRNA

genes and difficulties in efficient sequencing remains a major

challenge in tRNA studies.

Differentially expressed tRNA-derived
fragments target transcripts in large
offspring syndrome individuals

Target prediction was done via miRanda with the sequences

of the DE tRFs as well as the 3′ UTR sequences of all expressed

protein-coding genes. The RNAseq datasets from a previous LOS

study were used in order to identify DE mRNA transcripts and 3′
UTR sequences were retrieved from Ensembl Release 98 for the

ARS-UCD1.2 reference genome (Chen et al., 2015; Cunningham

et al., 2019). DEmRNA targets with an inverse relationship to DE

tRFs were overlapped for each treatment group comparison and

combined in order to generate candidate gene lists for each

pairwise comparison. Pairwise comparisons were used for target

prediction and enrichment. However, Control-AI vs. ART-LOS

in the liver was not used for further analysis because there were

no statistically significant DE tRFs identified. R packages topGO

v2.42.0 and KEGGREST 1.30.1 were used in order to identify

functionally enriched biological processes, molecular functions,

and pathways of all candidate target genes. In addition, g:Profiler

was used to perform an analysis of human phenotype ontology

(HPO) in order to identify enriched genes that are associated

with phenotypic abnormalities in human disease (Raudvere et al.,

2019). There was no significant KEGG pathway or HPO

enrichment in Control-AI vs. ART-LOS in the muscle tissue.

This is likely due to the low number of differentially expressed

tRFs (24 DE tRFs predicted). Our enrichment analysis identified

several affected biological processes, molecular functions, and

signaling pathways between ART-Normal and ART-LOS groups

in the muscle (Figure 5A) as well as abnormalities related to the

targeted genes (Figure 5B). Certain enriched HPO terms in the
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muscle were related to phenotypes often observed in LOS, such as

hernia of the abdominal wall and abnormality of limb bone/

skeletal morphology (Figure 5B) (Li et al., 2019b). The full

outputs for all performed enrichment analyses can be found

in Supplementary Table S3.

In the liver tissue, several GO terms associated with

metabolic processes were enriched in Control-AI vs. ART-

Normal and ART-Normal vs. ART-LOS (e.g., carbohydrate

derivative metabolic process and glycoprotein metabolic

process). In addition, there was an enrichment of genes

related to immune response in both comparisons, such as

regulation of phagocytosis, regulation of lymphocyte

differentiation, and regulation of T cell differentiation

(Supplementary Table S3). Previous reports in other species

suggest immune cells and inflammatory responses, such as

phagocytosis, have a role in the progression of tumor

development (Grivennikov et al., 2010; Yang et al., 2017;

Lecoultre et al., 2020). We also found that both the Wnt and

cGMP-PKG signaling pathways were targeted in the liver of

ART-LOS individuals. Of the enriched genes, RACK1 and

MAPK3 were both upregulated in ART-LOS liver tissue and

enriched in the Wnt signaling pathway and the cGMP-PKG

FIGURE 4
The relationship betweenmusclemature tRNA expression and tRF abundance. A scatterplot showing the correlation between tRNA (x-axis) and
tRF expression (y-axis) in (A)muscle and (B) liver. Counts for the tRNA and tRF dataset were CPM normalized and log-transformed. tRNA species with
no detected expression in any treatment group from either dataset were not included. The Pearson’s product moment correlation coefficient was
used to determine the relationship between tRNA and tRF expression. Linear regression lines were added using the geom_smooth function of
ggplot2 with the linear model argument.
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signaling pathway respectively. RACK1 is known to negatively

regulate the Wnt signaling pathway, yet activate Sonic hedgehog

(Shh) signaling (Che et al., 2012; Yang et al., 2019). Activation of

Shh signaling has been implicated as a potential prognosis

predictor in human hepatocellular carcinoma and

upregulation of RACK1 in lung cancer correlates with

metastasis and tumor differentiation (Shi et al., 2012; Li and

Xie, 2015). Our previous LOS study reported microRNAs

targeting genes in the Wnt Signaling pathway as well,

suggesting complementary mechanisms affecting gross

regulators of LOS development (Li et al., 2019a). The

expression of MAPK3 has been implicated in several cancer

types, in which upregulation of MAPK3 correlates with tumor

recurrence and poor prognosis (Du et al., 2020; Yuan et al., 2020;

Xiao et al., 2021). As previously mentioned, both ART-Normal

and ART-LOS groups had enrichment of processes related to

tumor formation. This could be due to the variability in the

presence of LOS phenotypes and the assignment of individuals to

a treatment group based on weight, suggesting both ART-

Normal and ART-LOS could have increased chances of tumor

development in liver.

In the muscle, gene targets were enriched in GO terms

related to the regulation of biological process, cell cycle

regulation, and tissue-specific developmental processes

(Figure 5A; Supplementary Table S3). We found SMAD1

was enriched in the regulation of biological and cellular

processes and was downregulated in ART-LOS individuals.

SMAD1 belongs to a family of anti-differentiation

transcription factors that are critical to the bone

morphogenetic protein pathway, which regulates muscle

mass and regeneration (Saad et al., 2021). The inhibition of

SMAD1 by microRNAs results in the promotion of skeletal

muscle differentiation and regeneration (Dey et al., 2012; Saad

et al., 2021). Furthermore, BMI1 was upregulated in the

muscle of ART-LOS individuals. Overexpression of BMI1

in mouse mesenchymal stem cells causes an increase in

body size, weight, length of tibiae, and width of the

cartilaginous growth plate (Chen et al., 2019). In addition,

RAI1 was downregulated in ART-LOS individuals. Changes in

RAI1 dosage can have significant impacts on growth and

development. For example, overexpression of RAI1 can

result in extreme growth retardation, whereas

haploinsufficiency of RAI1 causes increased weight and fat

deposition (Girirajan et al., 2008; Alaimo et al., 2014; Falco

et al., 2017). RAI1 was enriched in the HPO term, abnormal

appendicular skeleton morphology, suggesting that it could be

responsible for phenotypic abnormalities in bovine

(Figure 5B; Supplementary Table S3). According to our

FIGURE 5
Biological processes, molecular functions and KEGG pathway enriched for target genes. (A) Subset of the affected biological processes,
molecular functions, and KEGG pathways associated (p-value ≤ 0.05) with gene targets in ART-Normal vs. ART-LOS muscle. Gene ontology (GO)
enrichment tests were performed with TopGO using the classic algorithm with the fisher test. The pathway function of the KEGGREST package was
used applying the Wilcoxon rank-sum test to calculate significantly enriched pathways. (B) The top 25 enriched Human Phenotype Ontology
(HPO) terms for gene targets in ART-Normal vs. ART-LOS muscle. HPO enrichment was determined using g:Profiler with the g:SCS threshold
significance criterion and HPO terms with an adjusted p-value ≤ 0.05 were considered significant. The number of genes enriched in an HPO term is
shown on the x axis.
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analysis and previous result, we confirmed the dysregulation

of genes known to be associated with overgrowth: IGF2R,

GNAS, DNMT3A, and CDKN1C (Chen et al., 2015). IGF2R

was downregulated in ART-LOS muscle and low levels of

IGF2R has been identified in both bovine and ovine fetal

overgrowth due to IVF (Young et al., 2001; Li et al., 2022).

GNAS was upregulated in the ART-LOS muscle, which is

consistent with hypomethylation of the GNAS loci that has

been observed in Beckwith-Wiedemann syndrome (Bliek

et al., 2009). Although mutations in DNMT3A are typically

associated with overgrowth, we observed downregulation of

this gene (O’Doherty et al., 2012). This could indicate that

tRFs are capable of targeting DNA methyltransferases and

modulating DNAmethylation imprinting. In addition, a study

using a mouse model found that embryos with CDKN1C

deficiency can mimic phenotypes of BWS, such as

overgrowth and abdominal wall defects (Tunster et al.,

2011). Similar to this report, we observed downregulation

of CDKN1C in ART-LOS individuals (Tunster et al., 2011;

Robbins et al., 2012). Finally, we identified that IGF1 was

upregulated in ART-LOS. Shi and colleagues determined that

the inhibition of a FBXO40, a negative regulator of IGF1

signaling, resulted in elevated IGF1 levels as well as

increased body size and muscle mass in mice (Shi et al.,

2011). A list of tRFs that targeted the described genes

above is shown in Supplementary Table S3. Although our

analysis was limited to protein-coding genes for target

prediction, we must recognize that long non-coding RNAs

could also be regulated by small regulatory RNAs, such as

miRNAs, and should be considered for future investigation

(Fatica and Bozzoni, 2014).

While we were unable to determine if differences in tRF

and tRF-targeted gene expression exist at distinct stages of

development, we expect they do because previous work has

revealed dynamic changes in the transcriptome throughout

development and has provided information about the control

of normal development. For example, a study quantified the

mouse developmental transcriptome by applying polyA-

RNAseq to tissues sampled from day 10.5 of embryogenesis

to birth, revealing that transcriptomes clustered by tissue type

and developmental stage (He et al., 2020). Therefore, stage-

specific molecular alterations are associated with normal

phenotypes. Furthermore, variations in tRF expression have

been observed at different time points during mouse fetal

development (Su et al., 2020). Together, this information

suggests the abundance of tRFs and their gene targets may

change as development progresses in Control-AI and ART-

conceived individuals.

FIGURE 6
Mammalian Phenotype Enrichment Analysis. EnrichedMGI phenotypes in ART-Normal vs. ART-LOS (A)Muscle and (B) Liver. MamPhEA outputs
shows enriched phenotypes that are hierarchically structured, representing mutant phenotypes enriched with more DEGs than by chance. Level
3 shows a general phenotype class and Levels 4/5 show detailed phenotype terms nested within the Level 3 class. Enrichment was determined using
the Fisher’s exact test and phenotypes with a p-value ≤ 0.05 were considered significant. Enriched terms are shown in shades of orange.
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In order to address the relationship between tRF subtypes

and pathways, we first investigated the subtype percentages of DE

tRFs in each pairwise comparison (Supplementary Figure S5).

We then evaluated tRF subtype distribution within significant

pathways (Supplementary Figure S6). For example, enriched

pathways in the muscle included regulation of developmental

process and tissue morphogenesis. In these pathways, 5′ tRFs and
i-tRFs are present in nearly equal proportions. We also looked at

specific examples of gene targets, such as IGF1 and IGF2R.

Finally, we evaluated tRF subtypes in immune response

pathways (Regulation of phagocytosis and positive regulation

of T cell differentiation), where we observe the majority of tRFs

are of the 5′ tRF subtype. Although it is not clear yet, these

findings suggest that 5′ tRFs and i-tRFs are the major subtypes

responsible for targeting in our dataset.

Mammalian phenotype enrichment analysis (MamPhEA)

based on mutant mouse phenotypes further revealed that tRF-

regulated genes in muscle and liver tissue were associated with

traits observed in LOS (Figure 6). In muscle, genes were enriched

for abnormal birth body size and abnormal skeleton morphology

(Figure 6A). In liver, genes were enriched for increased tumor

growth/size and altered tumor pathology (Figure 6B). Full results

can be found in Supplementary Table S3.

Conclusion

Overall, these data sets demonstrate that tRFs are commonly

found in the muscle and liver tissue of Control-AI and ART-

conceived individuals. Despite a moderate amount of variation in

expression, we detected DE tRFs that may target pathways related

to tumor progression or overgrowth. These outcomes provide

deeper insight into the epitranscriptomic alterations that occur in

ART-LOS individuals. This study is the first to examine the effect

of altered tRNA availability on the differential expression of tRFs

and its relationship to overgrowth syndrome.
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SUPPLEMENTARY FIGURE S1
RLE plots to visualize variation of muscle tRFs across all treatment groups
before and after betweenLaneNormalization in (A) muscle and (B) liver.

SUPPLEMENTARY FIGURE S2
PCA plots of predicted tRFs before and after betweenLaneNormalization
in (A) muscle and (B) liver in different pairwise comparisons: Control vs.
ART-LOS, Control vs. ART-Normal, ART-Normal vs. ART-LOS, and all
three treatment groups.

SUPPLEMENTARY FIGURE S3
Heatmaps of differentially expressed tRFs in muscle. (A) ART-Normal vs.
ART-LOS, (B) Control-AI vs. ART-Normal, and (C) Control-AI vs.
ART-LOS.

SUPPLEMENTARY FIGURE S4
Heatmaps of differentially expressed tRFs in liver. (A) ART-Normal vs.
ART-LOS and (B) Control-AI vs. ART-Normal.
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SUPPLEMENTARY FIGURE S5
Pie charts showing the percentage of differentially expressed tRFs belonging
to each subtype between pairwise comparisons in muscle and liver.

SUPPLEMENTARY FIGURE S6
Pie charts depicting the specific tRF subtypes targeting different
pathways in (A) muscle and (B) liver.
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Glossary

ART Assisted reproductive technologies

LOS Large Offspring Syndrome

BWS Beckwith-Wiedemann Syndrome

tRFs tRNA-derived fragments

MT mitochondrial

DE Differentially expressed

DMRs Differentially methylated regions

Pre-tRNAs precursor tRNAs

i-tRFs Internal-tRFs

RISC RNA-induced silencing complex

AI artificial insemination

RIN RNA integrity number

PCR Polymerase Chain Reaction

PCA Principal component analyses

RLE Relative log expression

FDR False discovery rate

GSEA Gene set enrichment analysis

HPO Human Phenotype Ontology

MamPhEA Mammalian phenotype enrichment analysis

SHH Sonic hedgehog

IVF In vitro fertilization

CDC Center for Disease Control and Prevention

SRA Sequence Read Archive

RNA POL III RNA Polymerase III

TSEN Complex tRNA Splicing Endonuclease Complex

AGO1-4 Argonaute 1-4

XPO5 Exportin-5

RanGTP GTP-bound Ras-related nuclear protein

Nsun2 NOP2/Sun RNA methyltransferase family member 2

Dnmt2 DNA methyltransferase 2

NPC Nuclear Pore Complex

ARS aminoacyl-tRNA synthetase

ANG Angiogenin

Mt-DNA Mitochondrial DNA

RISC RNA-induced silencing complex

eIF4A eukaryotic translation initiation factor 4A

eIF4G eukaryotic translation initiation factor 4G
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