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Clusterin (CLU) is a chaperone-like protein that has been demonstrated to have

a direct relationship with cancer occurrence, progression, or metastasis.

Clusterin was downregulated in tumor tissues using three datasets of tongue

squamous carcinoma from the Gene Expression Omnibus. We further retrieved

datasets from The Cancer Genome Atlas and Gene Expression Omnibus to

thoroughly investigate the carcinogenic consequences of Clusterin. Our

findings revealed that decreased Clusterin expression in malignancies was

associated with a worse overall survival prognosis in individuals with multiple

tumors; Clusterin gene deep deletions were found in almost all malignancies

and were connected to most cancer patient’s prognosis, Clusterin DNA

methylation level was dependent on tumor type, Clusterin expression was

also linked to the invasion of cancer-associated CD8+ T-cells and

fibroblasts in numerous cancer forms. Moreover, pathway enrichment

analysis revealed that Clusterin primarily regulates biological processes such

as cholesterol metabolism, phospholipid binding, and protein-lipid complex

formation. Overall, our pan-cancer research suggests that Clusterin expression

levels are linked to tumor carcinogenesis and prognosis, which contributes to

understanding the probable mechanism of Clusterin in tumorigenesis as well as

its clinical prognostic significance.
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1 Introduction

Clusterin (CLU), also called apolipoprotein J, is a sulphated chaperone glycoprotein

that plays a role in cell adhesion, membrane transport recycling, immune response, cell

survival, and apoptosis (Trougakos and Gonos, 2002; Pucci and Bettuzzi, 2009; Yu and

Tan, 2012).CLU is associated with lipid metabolism and Alzheimer’s disease (Yu and Tan,

2012). Several transcript variants of CLU resulting from alternative splicing have been

documented, with the transcript encoding nuclear secretion and isoform being the most
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common. The disulfide-linked heterodimer 80 kDa (sCLU)

functions in protein homeostasis with anti-apoptotic effects

(Rohne et al., 2016). In contrast, the shortened nuclear

version of CLU (nCLU) lacking exon two and ER signal

peptide sequencing is pro-apoptotic (Bettuzzi and Rizzi, 2009;

Prochnow et al., 2013). Pro-apoptotic CLU represses Bcl-xL by

binding to Bax (Kim et al., 2012; Mustafi et al., 2017). Recently,

sCLU overexpression increased autophagy via the AMPK/Akt/

mTOR signaling pathway in oral squamous carcinoma cells,

resulting in cell survival and protection against apoptosis

(Naik et al., 2020). A comprehensive analysis of head and

neck squamous cell carcinoma (HNSC) revealed that CLU

targets miRNA-21 with proto-oncogenic properties. miRNA-

21 overexpression leads to CLU downregulation, which

sequentially stimulates tumor cell growth (Mydlarz et al., 2014).

We identified 238 upregulated, and 178 downregulated genes

in squamous carcinoma (SCC) samples using three GEO datasets

compared with normal tissues. Previous transcriptomic

investigations suggested that 18 genes were downregulated in

oral squamous cell carcinoma (OSCC) (Ye et al., 2008). We

obtained 18 downregulated genes intersection and the down-

regulated genes from the analysis of three GEO datasets and

seven consistently downregulated genes, including CLU (p <
0.01). We then focused on CLU for further analysis.

sCLU is downregulated in oral cancer cell lines and tissues

and exhibits tumor-suppressor-like actions (Kadam et al., 2021).

Moreover, a series of studies revealed that CLU plays a crucial

role in the lung (Panico et al., 2009), prostate (Rizzi and Bettuzzi,

2009), breast (Redondo et al., 2009), ovarian (Hoter and Naim,

2019), and colon cancers (Mazzarelli et al., 2009).

With the development of second-generation sequencing,

bioinformatics tools for analyzing high-throughput expression

data from cancer patients has become a prominent approach to

cancer research. Multi-chip combined differential gene analysis,

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis, and Cox regression

analysis are all prevalent bioinformatics study approaches

nowadays. In recent years, feature selection methods such as

CHNMF and SDSPCA have also been proposed (Feng et al.,

2019; Yu et al., 2021).

However, no pan-cancer study has evaluated the link

between CLU expression and tumorigenesis/clinical

prognosis. This study investigated the human CLU

carcinogenic role in human cancers. Utilizing the TCGA

project and GEO, pan-cancer CLU analyses were

conducted, such as the characterization of the expression

profile, prognostic value, DNA methylation, and key CLU

cellular activities in various tumor types. CLU genetic

modification status, prognostic value, and its association

with immunological infiltration have also been studied in

numerous cancer types. Our findings contribute to a better

understanding of CLU’s role of CLU in the occurrence and

prognosis of various malignant tumors.

2 Materials and methods

2.1 Data sets analysis and clinical sample
characteristics from GEO database

Gene expression profiles for datasets (GSE138206, GSE13601,

and GSE78060) were retrieved using (www.ncbi.nlm.nih.gov/geo).

The GSE138206 dataset was submitted by Pan et al. (Estilo et al.,

2009) and was constructed using the Affymetrix Human Genome

U133 Plus 2.0 Array GPL570 [HG-U133 Plus 2]. The

GSE138206 dataset contains 18 samples, comprising six tongues

squamous cell carcinoma (TSCC) tissues, 12 adjacent to cancer,

and contralateral normal tissues. Singh et al. (Estilo et al., 2009)

used the GSE13601 dataset, which utilized GPL8300 [HG_

U95Av2]. There were 58 samples in the GSE13601 collection,

including 31 TSCC and 27 normal tissues. Enokida et al. submitted

GSE78060 that utilized GPL570 [HG-U133_Plus_2]. There were

30 samples in the GSE78060 dataset, with 26 TSCC and four

normal tissue margins.

2.2 Differential expression analysis

Furthermore, the GSE78060 dataset contains only four

normal samples, and using a small number of samples may

hinder statistical analysis and result in inaccurate conclusions.

We performed a differential analysis (|Log2 (fold change)| (|

Log2FC|) > 2 and adjusted p-value < 0.05) in the R computer

environment by comparing tumor tissues to normal tissues. To

avoid obtaining less accurate results, we utilized Venny

(bioinfogp.cnb.csic.es/tools/venny/) to build a Venn layout

from down/upregulated gene intersections in tumor tissues

relative to non-tumor tissues in the three datasets.

2.3 Gene expression in human cancers

Tumor Immune Estimation Resource, (TIMER2.0)

(timer.comp-genomics.org/) (Li et al., 2020).

We inserted CLU onto TCGA project “Gene DE” module of

the “Exploration” part and then investigated the changes in CLU

expression among neighboring non-tumor tissues and various

cancers or distinct subtypes.

Gene Expression Profiling Interactive Analysis Version 2

(GEPIA2) (gepia2.cancer-pku.cn/#analysis) (Tang et al., 2019).

Some cancers in TCGA project that lack or have very minimal

healthy tissues unrelated to non-tumor tissues, including TCGA-

ACC (adrenocortical carcinoma) and TCGA- MESO

(mesothelioma). Moreover, we utilized “Expression Analysis-

expression DIY-Box Plots” module to depict the expression

variances between tumor tissues and non-tumor ones. (Cutoff

value settings: |Log2FC| = 1, p-value = 0.01, and “Match TCGA

normal and GTEx data”).
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UALCAN (web: ualcan.path.uab.edu/index.html)

(Chandrashekar et al., 2017).

The Clinical Proteomic Tumor Analysis Consortium

(CPTAC) database was used to compare the total protein

expression levels across six varieties of tumors and

neighboring non-tumor tissues. The selected tumor datasets

included breast cancer (BC), ovarian cancer, colon cancer

(CC), lung adenocarcinoma (LUAD), uterine corpus

endometrial carcinoma (UCEC), and HNSC. By putting

“CLU” into the TCGA database, we could compare the

methylation levels of the primary tumor and non-tumor tissues.

2.4 Pan-cancer survival prognosis analysis

We utilized GEPIA2’s “Survival Map” and “Survival

Analysis” module to acquire Overall survival (OS) and

Disease-free survival (DFS) significance data for CLU across

all TCGA tumors (settings: cutoff-high value:50%, cutoff-low

value:50%). Log-rank tests were used to test the hypotheses.

Survival plots were used to analyze the data.

2.5 Gene mutation analysis in human
cancers

cBioPortal (web: www.cbioportal.org/) (Gao et al., 2013).

In the section “Quick select,” we entered “TCGA Pan-

Cancer Atlas Studies” then typed “CLU” to obtain the genetic

mutation features of CLU. The “Cancer Types Summary”

module displayed Copy number alteration (CNA)

frequency and type findings across all TCGA tumors. The

“Mutations” module may display CLU’s mutated site

information. We also utilized the “Comparison/Survival”

module to acquire data on the differences in OS,

progression-free survival (PFS), and DFS between TCGA

tumor patients with and without CLU genetic mutation.

The data are demonstrated using Kaplan-Meier plots.

2.6 Analyses of immune infiltration

The web-based “Immune-Gene” TIMER2 module was used

to examine the correlation between CLU expression, and

immunological infiltrates in all TCGA tumors. Cancer-

associated fibroblasts (CAFs) CD8+ and T cells are used as

immunological cells. Immunological infiltrates were assessed

using the TIMER, CIBERSORT, CIBERSORT-ABS,

QUANTISEQ, XCELL, MCPCOUNTER, and EPIC

algorithms. p-values and partial correlation (cor) values

were calculated using the purity-adj-Spearman’s correlation

test. The data are represented graphically by a scatter plot

along with heatmaps.

2.7 Analysis of gene set enrichment

STRING (web: string-db.org/) (Szklarczyk et al., 2021).

We began with (“Homo sapiens”) and a single (“CLU”). After

that, we decided on some critical variables, such as the minimum

acceptable interaction score ["Low confidence (0.150),” the

significance of network edges (“evidence”), the maximum

interactors number to demonstrate (“no more than fifty

interactors” in the first shell), and the sources of interactions

themselves (which were set to “active”) (“experiments”). All

CLU-bound proteins identified in the experiments were acquired.

Using data from all TCGA tumor and non-tumor tissues, we

applied “Similar Gene Detection” module of GEPIA2 to

determine the top 100 CLU-correlated directed genes.

Additionally, we analyzed Pearson correlation of CLU and

specific genes using the “correlation analysis” module in

GEPIA2. We used a dot plot to illustrate data for the four

highest correlation coefficients. Furthermore, the “Gene Corr

“module in the " Explore “section was used to generate the

selected gene heatmaps. The adj-Spearman’s correlation

analyses were utilized for (cor) and p-values calculations.

Metascape (web: metascape.org/gp/index.html#/main/step1)

(Zhou et al., 2019).

We uploaded the gene lists to metascape, chose “paste a gene

list,” pasted in the CLU-binding and interacting genes, and

submitted the annotation chart data. “Pathway & Process

Enrichment” and “Protein-protein Interaction Enrichment”

are among the outputs of the Enrichment analysis. MCODE is

used to demonstrate the protein networks built based on the

physical connections between the input protein candidate lists.

In addition, we utilized “ClusterProfiler” module for Kyoto

Encyclopedia of Genes and Genomes (KEGG) along with gene

ontology (GO) enrichment studies. “ggplot2″ and “enrichplot” R

tools were used to illustrate the enrichment analysis findings. This

researchmade use of R programming [R-4.1.2] (www.r-project.org/).

2.8 Statistical analysis

Wilcoxon rank sum test and Kruskal–Wallis test were used to

evaluate CLU expression levels between the two groups. The

hazard ratio (HR) and p-value for survival analysis were

computed using a univariate Cox regression analysis. Kaplan-

Meier analyses were used to assess OS in patients with high or

low CLU expression. Statistical significance was set at p < 0.05.

3 Results

3.1 GEO data analysis

GEO database was used to gather gene expression data for

60 TSCC and 112 normal tissues. The number (DEGs) number
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found in each of the three datasets is illustrated in Supplementary

Table S1.

The volcano plots in Figure 1A displayed the DEGs number

reported from each of the three datasets. In GSE138206, we

found 1756 DEGs, of which 972 were upregulated, and 784 were

downregulated. In GSE13601, we found 4,230 DEGs, of which

1,437 were upregulated, and 2,793 were downregulated. In

addition, we discovered 1810 DEGs in GSE78060, with

691 being upregulated and 1,119 being downregulated. The

Venn diagram depicts the gene crossovers among the three

GEO datasets. (Figure 1B). In tumor tissues, 79 genes were

upregulated relative to normal tissues, whereas 55 genes were

downregulated. Furthermore, we intersected the

55 downregulated genes obtained with the downregulated

genes in the TSCC whole gene transcriptome data, as

illustrated in Figure 1B, gene1 represents the 55 genes

obtained by intersecting the downregulated genes from each

of the three data sets, and gene2 represents the downregulated

genes in the whole gene transcriptome data. Five genes, including

CLU, were identified (Supplementary Table S2).

To evaluate DEGs with statistical significance, we

considered GSE78060 as an example, |Log2FC| > 3, and

FIGURE 1
Differentiation of gene expression signatures among TSCC datasets from GEO database. (A) The number of DEGs found from the three GEO
datasets was shown by volcano plots; (B) Venn diagram demonstrates the intersections of genes among the three GEO datasets; additionally, the
intersection between this intersection and the down-regulated genes in the whole gene transcriptome data; (C) the box plot illustrated the
expression distribution of CLU in tissues, where the upper left corner displays the p-value for significance.

Frontiers in Genetics frontiersin.org04

Fu et al. 10.3389/fgene.2022.1056184

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1056184


FIGURE 2
Degree of CLU expression in various tumor tissues and stages. (A) TIMER2 was used to assess the TCGA project’s CLU gene expression
differences in distinct cancers or particular tumor subtype tissues and neighboring non-tumor tissues (*p < 0.05; **p < 0.01; ***p < 0.001); (B) the
matching non-tumor tissues were used as controls in the GTEx database, and GEPIA2 was utilized to examine CLU expression status among DLBC,
LAML, LGG, OV, TGCT, THYM, and UCS cancers (*p < 0.05); (C) the CPTAC was utilized to compare CLU total protein expression in non-tumor
and tumor tissues from BC, CC, ovarian cancer, UCEC, HNSC, and LUAD (***p < 0.001); (D) through utilizing TCGA dataset, GEPIA2 was used forCLU
expression gene analysis at various pathological staging (stage I to V) in KICH, KIRC, LIHC, LUAD, SKCM, THCA, and UCS cancers.
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p < 0.05 as the screening criteria. Three genes, CLU, ADH1B,

and CRISP3, were screened. Despite the fact that CRISP3

expression has been linked to the genesis and progression

of prostate and breast malignancies (Wang et al., 2019;

Volpert et al., 2020), CRISP3 exhibited non-significant

expression in pan-cancer tissues (Supplementary Figure

S1), and ADH1B has been verified in cancer (Li et al.,

2017); therefore, CLU was selected.

Then, we utilized the “Home for Researchers” (web: www.

aclbi.com/static/index.html#/geo) to evaluate expression levels of

single genes in several groups of samples in three datasets and

discovered that CLU was significantly down-regulated in tumors

relative to non-tumor tissues. (p < 0.01, Figure 1C).

3.2 Gene expression analysis

Our study aimed to examine the carcinogenic properties of

human CLU. We examined CLU expression in various human

tissues. As demonstrated in Supplementary Figure S2, the

highest CLU protein expression was found in the Bronchus,

Epididymis, Endometrium, Cervix, and Tonsil. In terms of

RNA tissue specificity, CLU was demonstrated to be

significantly expressed in the medulla oblongata,

hypothalamus, and liver in HPA datasets (web: www.

proteinatlas.org). CLU was significantly expressed in the

spinal cord, liver, pons, and medulla in functional

annotation of the mammalian genome (FANTOM5)

datasets (web: fantom.gsc.riken.jp/5/) and significantly

expressed in the liver, adrenal gland, and retina in the

GTEx datasets (web: gtexportal.org/home/).

The TIMER2 method was utilized to analyze CLU expression

status across diverse tumor types in TCGA. As displayed in

Figure 2A, CLU expression in tumor tissues of kidney

chromophobe (KICH), prostate adenocarcinoma (PRAD),

breast invasive carcinoma (BRCA), cholangiocarcinoma

(CHOL), bladder urothelial carcinoma (BLCA), liver

hepatocellular carcinoma (LIHC), LUAD, LUSC, UCEC, colon

adenocarcinoma (COAD), rectum adenocarcinoma (READ),

skin cutaneous melanoma (SKCM), HNSC, stomach

adenocarcinoma (STAD) (p < 0.001), cervical squamous cell

carcinoma and endocervical adenocarcinoma (CESC) (p < 0.01),

and esophageal carcinoma (ESCA) (p < 0.05) was lower than that

in the corresponding non-tumor tissues. The prevalence of

kidney renal papillary cell carcinoma (KIRP), kidney renal

clear cell carcinoma (KIRC), thyroid carcinoma (THCA) (p <
0.001), HNSC (HPV+/HPV-) (p < 0.01), and glioblastoma

multiforme (GBM) (p < 0.05) was greater than that of the

comparable healthy tissues.

We further examined CLU expression differences among

non-tumor tissues and tumor tissues of Uterine

Carcinosarcoma (UCS), Acute Myeloid Leukemia (LAML),

lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),

testicular germ cell tumors (TGCT), ovarian serous

cystadenocarcinoma (OV), low-grade brain glioma (LGG),

and thymoma (THYM) (Figure 2B, p < 0.05). As depicted in

Supplementary Figure S3, no statistical changes were

observed for the other types, including ACC and Sarcoma

(SARC).

According to the findings of the CPTAC project, total CLU

protein expression was lower in primary tissues of BC, HNSC,

CC, UCEC, LUAD, and ovarian cancer (Figure 1C, p < 0.001)

than in non-tumor tissues.

By utilizing GEPIA2’s module “Pathological Stage Plot” to

evaluate the relationship between CLU expression and the

pathological staging of malignancies such as KICH, KIRC,

LIHC, LUAD, Skin Cutaneous Melanoma (SKCM), THCA,

and UCS (Figure 2D, all p < 0.05), excluding others

(Supplementary Figure S3).

3.3 Survival data analysis

Cancer cases are categorized into two groups based on CLU

expression levels. We analyzed the link between patient

prognosis and cancer types using the TCGA and GEO

datasets. Low expression of CLU was correlated with worse

OS prognosis for KIRC patients (p = 0.014), LIHC (p =

0.034), PAAD (p = 0.039), SARC (p = 0.018), and THCA

(p = 0.013) in TCGA, as illustrated in Figure 3A. Data from

DFS analyses (Figure 3B) revealed a link between CLU low

expression and worse prognosis in TCGA for KICH cases

(p = 0.0052) and LIHC (p = 0.007). Furthermore, a worse OS

prognosis is linked to higher CLU gene expression in LGG

(Figure 3A, p < 0.001) and poor DFS prognosis among LGG

(Figure 3B, p < 0.001).

In addition, the Kaplan-Meier plotter utility examined OS

data and the prognosis of various tumor patients. Low CLU

expression was associated with poor OS (p < 0.001), first

progression (FP) (p < 0.001), and post-progression survival

(PPS) (p = 0.029) in patients with LAUD (Supplementary

Figure S4). Furthermore, decreased CLU expression correlated

with poor OS (p < 0.001), PFS (p < 0.001), and relapse-free

survival (RFS) (p = 0.0011) in patients with hepatic cancer

(Supplementary Figure S4). However, in gastric cancer

patients, increased CLU expression was associated with poorer

OS (p < 0.001), FP (p = 0.013), and PPS (p < 0.001)

(Supplementary Figure S4). These findings suggest that CLU

expression is linked to pan-cancer patient prognosis; however,

various cancer patients have distinct prognoses.

3.4 Genetic alteration analysis

CLU genetic modification was examined in various tumor

tissues from TCGA cohort. As demonstrated in Figure 4A, OV
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patients with “Deep Deletion” as the major type had the

greatest CLU modification frequency (>8%). In PRAD cases

(6%–8% genetic alteration frequency), the “Deep Deletion”

type of CLU was the prevalent variety, followed by LIHC,

BLCA, COAD, LUAD, BRCA, and LUSC cases (4%–6%

genetic alteration frequency). The “Mutation” kind of CLU

was the most common in the SKCM patients, which exhibited

a frequency variation of ~5% (Figure 4A). Notably, every

CHOL, ESCA, DLBC (2%–4% frequency), UVM, PAAD,

and TGCT (~2% frequency) patient with genetic mutations

showed CLU copy number deletion. (Figure 4A, B) displays

the types, locations, and numbers of CLU genetic mutations.

We discovered that the most common genetic alteration was

CLU gene missense mutation and P234 L/S modification in

FIGURE 3
GEPIA2 was utilized to investigate the relation between CLU gene expression and OS prognosis in all TCGA cancers. (A) OS analysis; (B) DFS
analysis, survival map and Kaplan-Meier plots provided encouraging findings with substantial differences.

Frontiers in Genetics frontiersin.org07

Fu et al. 10.3389/fgene.2022.1056184

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1056184


the clusterin domain, which was identified among 300 SARC

patients, 122 cases of SKCM, and 61 cases of CESC

(Figure 4B), and is capable of inducing a missense

mutation of the CLU gene, translation from P (proline) to

L (leucine) at the 234 sites of CLU protein. In addition, we

investigated whether a correlation exists between a mutation

in the CLU gene and a worse prognosis for patients’ clinical

survival in several cancer types. As illustrated in Figure 4C,

SKCM cases with changed CLU had a superior overall

prognosis (p < 0.001), disease specificity (p < 0.001), and

PFS (p = 0.0387), excluding DFS, relative to patients without

CLU mutations.

These findings suggest that CLU expression in pan-cancer is

associated with CLU mutation and copy deletion number and

that CLU genetic modification is directly associated with the OS

prognosis of diverse tumor patients.

3.5 DNA methylation analysis

Both cancer incidence and progression are influenced by

DNA methylation. We studied CLU DNA methylation

using UALCAN and TCGA datasets. A total of 23 different

types of malignancies were studied (SARC, LUAD, CHOL,

STAD, KIRC, THCA, COAD, KIRP, LIHC, LUSC, PAAD,

UCEC, ESCA BLCA, HNSC, PCPG, BRCA, GBM, TCGT,

PRAD, READ, THYM, and CESC). According to the

UALCAN database, a considerable increase in methylation

levels was found across CLU in LUAD, CHOL, HNSC,

ESCA, BRCA, PRAD, and LUSC tissues compared to that

in non-tumor tissues (Figure 5). CLU methylation was

considerably reduced in KIRC, KIRP, LIHC, THCA, and

UCEC cells (Figure 5). This finding warrants further in-

depth research.

FIGURE 4
cBioPortal was utilized to examine CLU gene’s mutation features and prognostic value in several TCGA cancers. (A) mutation type and
frequency of modification in diverse cancers; (B) CLU mutation location; (C) probable correlation between CLU mutation status and SKCM OS,
disease-specific, and PFS prognoses.
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3.6 Immune infiltration analysis

Tumor-infiltrating immunological cells are involved in

cancer initiation, development, and metastasis. Several

tumor-infiltrating immunological cell functions have been

modulated by CAFs in the stromata of the tumor

microenvironment. We investigated the possibility of a

correlation between various TCGA CAFs infiltration types

and CLU gene expression (Figure 6). We discovered that

CAFs estimated infiltration among TCGA cancers CESC,

PRAD, COAD, HNSC, TGCT, HNSC-HPV-, LGG, BLCA,

READ, and YHYM examined using all methods was

statistically favorably connected to CLU expression.

Furthermore, we discovered that the predictive infiltration of

CD8+ T-cell immune infiltration was significantly associated

with CLU expression in PAAD and STAD cancers but inversely

correlated with KIRC and THYM tumors (Supplementary

Figure S5). Scatterplots for the previously stated tumor

developed using one of the methods are displayed in

Supplementary Figure S6; Supplementary Figure S5.

According to the A General Toolbox for Identifying Object

Detection Errors (TIDE) algorithm, CLU expression in LGG

was positively correlated with the amount of CAFs infiltration

(cor = 0.538, p < 0.001) (Figure 6B).

3.7 CLU-related gene enrichment analysis

Using STRING, 50 experimentally validated CLU-bound

proteins were identified. The protein network interactions are

depicted in Figure 7A. Furthermore, GEPIA2 is used to merge

TCGA projects of overall tumors and neighboring non-tumor

tissues to obtain 100 leading targeted genes significantly

associated with CLU expression. Figure 7B displays that CLU

expression was significantly associated with ATP1B2 expression

(ATPase Na+/K+ transporting subunit beta 2), DTNA

(dystrobrevin alpha) (R = 0.6), GFAP (glial fibrillary acidic

protein) (R = 0.58), and SCARA3 (scavenger receptor class A

member 3) (R = 0.64) genes (all p < 0.001). Most cancer types

exhibited a strong correlation between these four genes and CLU

expression levels (Figure 7B). Furthermore, these two databases

were used to perform KEGG pathway and GO enrichment

analyses. The findings show that “cholesterol metabolism,”

“lipid and atherosclerosis,” and “PPRA signaling pathway”

PPRA signaling pathway may play a role in CLU’s impact of

CLU on carcinogenesis and proliferation. According to the GO

enrichment analysis results, the bulk of these genes are involved

in DNA metabolism or cellular process pathways, including

cholesterol transport, protein-lipid complexes, phospholipid

binding, plasma lipoprotein particle remodeling, sterol

FIGURE 5
CLU promoter methylation in pan-cancer. Data came from UALCAN datasets.
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transport, and plasma lipoprotein particle level regulation

(Figure 7D, and Supplementary Figure S6).

4 Discussion

OSCC is common cancer that develops in oral epithelium.

The most frequent type of OSCC, TSCC, is characterized by

aggressive biological activity and poor survival (Sano and Myers,

2007; Karatas et al., 2017). Recent studies have suggested a

significant interaction between CLU and OSCC (Kadam et al.,

2021). This study aimed to examine the function of CLU gene,

which was retrieved from the tongue squamous carcinoma

dataset, in OSCC, HNSC, and diverse human cancers. This

study is the first to evaluate CLU expression in a pan-cancer

dataset thoroughly. Compared to paracancerous and non-tumor

tissues, BLCA, UCS, BRCA, CHOL, LUAD, COAD, ESCA,

STAD HNSC, KICH, LIHC, LUSC, PRAD, CESC, READ,

SKCM, TGCT, and UCEC demonstrated a significant decrease

in CLU expression. (Figures 2A, B). In various malignancies,

lower CLU expression is linked to poorer OS, DFS, FP, PPS, and

PFS (Supplementary Figure S3; Supplementary Figure S4). CLU

gene deletions were found in virtually all malignancies and were

associated with the prognosis of most cancer patients. (Figure 4).

CLU expression was significantly associated with immunological

infiltration and checkpoint markers in several cancers (Figure 6).

Our GO and KEGG analyses indicated that CLUwas significantly

associated with many signaling pathways, which is consistent

with earlier research (Figure 7). In conclusion, our research

contributes to the development of CLU-targeting therapy

options by highlighting CLU utilization as a possible

predictive biomarker in immuno-oncology for several

malignancies.

Clusterin (CLU) is an ATP-independent, stress-activated

molecular chaperone typically produced by cells (Wilson and

Zoubeidi, 2017). CLU has been associated with carcinogenesis

FIGURE 6
Correlation investigation of CLU gene expression and CAFs immune infiltration. (A) For all TCGA tumors, different algorithms (MCPCOUNTER,
EPIC, XCELL, and TIDE) were used to assess the connection between CLU expression and the amount of immunological infiltration of CAFs; (B)
scatterplot of the chosen tumor was provided, which was created using one of the methods.
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and tumor growth in various cell types. Human cells produce two

distinct CLU isoforms. A nuclear version of CLU protein (nCLU)

promotes apoptosis, but the secretory form (sCLU) promotes

survival (Shannan et al., 2006). The incidence and progression of

multiple cancers, such as lung cancer, prostate cancer, BC, CC,

and HCC, have been linked to CLU. (Mazzarelli et al., 2009;

Panico et al., 2009; Redondo et al., 2009; Rizzi and Bettuzzi, 2009;

Patarat et al., 2021). However, it is uncertain whether CLU

influences carcinogenesis, development, and metastasis via

common molecular processes. Accordingly, we used the

FIGURE 7
Analysis of CLU-related gene enrichment. (A) The top 50 CLU-bound proteins were identified experimentally using STRING program and
depicted using a molecular interaction network; (B) utilizing GEPIA2 tool, the top 100 CLU-related genes in TCGA projects were collected, and the
expression correlation among CLU and the top four targeted genes (SCARA3, DTNA, GFAP, and APT1B2) was examined, the matching heatmap data
for the cancer types selected are presented; (C) analysis of KEGG pathways related to CLU-bound and interacting genes; (D) Gene Ontology
(GO) study of CLU-bound and interacting genes.
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existing TGCT, GEO, and CPTAC datasets to examine the link

between CLU and different malignancies according to their

prognosis and molecular processes.

First, we checked the changes in CLU expression among

tumor tissues and non-tumor tissues that matched the tumor

tissues. The results indicated that CLU expression levels differed

significantly among the 21 types of tumor tissues and non-tumor

tissues that matched the tumor tissues. We conclude that CLU is

expressed lower in most cancers than non-tumor tissues. CLU

has been reported to have tumor suppressor activity in prostate,

lung, and oral cancers, and low expression of CLU is associated

with worse prognosis and genetic instability (Panico et al., 2009;

Rizzi and Bettuzzi, 2009; Kadam et al., 2021). This finding is in

agreement with the results of the present study.

Herein, GEPIA2 was used to find a correlation between

CLU expression and tumor prognosis in the TCGA database.

We discovered that lower CLU expression was correlated with

worse OS prognosis for malignancies of KIRC, LIHC, PAAD,

SARC, and THCA, excluding LGG. CLU expression has also

been associated with worse survival in cancer patients in many

recent studies, including KIRC and LIHC (Liu et al., 2018;

Zheng et al., 2020). However, higher expression of CLU in

tumor tissues leads to a worse prognosis of cancer in these

studies, and we believe that this CLU gene is sCLU, which has a

negative effect on cancer prognosis. The mechanism may be

that sCLU affects apoptosis by regulating different signaling

pathways in a variety of tumours and interacting with signal

transduction proteins. For example, sCLU inhibits

mitochondrial apoptosis in hepatocellular carcinoma by

suppressing the expression of Gadd45a, a negative regulator

of pro-apoptotic properties of AKT, activating the PI3K/AKT

axis and subsequently upregulating the expression of the

apoptotic protein B-cell lymphoma-2 (Bcl-2) (Wang et al.,

2018). sCLU has the potential as a biomarker in the diagnosis

and prognosis of several malignancies, including liver cancer,

osteosarcoma, and BC (Yao et al., 2018; Ma et al., 2019; Chen

et al., 2021).

Furthermore, the question of whether anti-apoptotic sCLU is

the sole type of CLU expressed in cancer or if nCLU is

downregulated in different tumor entities remains

unanswered. We suppose that improper CLU expression is

strongly associated with a worse survival prognosis for most

malignancies. In contrast, the OS prognosis study data for CLU

gene exhibited varied conclusions in numerous tumors.

CLU gene expression has been linked to an elevated risk of

lung cancer (Chen et al., 2020; Tan et al., 2021; Yuan et al., 2021).

Nevertheless, in the TCGA-LUAD/LUSC cohort, we could not

examine the correlation between CLU expression and the

survival prognosis of lung cancer patients, which might be

due to various data processing or revised survival information.

Kaplan-Meier plots of survival data generated with Affymetrix

222,043 microarrays revealed that decreased CLU expression was

linked to worse OS, FP, and PPS prognoses in patients with lung

cancer. Furthermore, we discovered an association between low

CLU expression and worse OS, PFS, and RFS in patients with

hepatic tumors, which agrees with our results from the

GEPIA2 algorithm in TCGA database. CLU has a tumor-

suppressing effect on lung cancer (Chen et al., 2020);

similarly, our findings suggest that decreased CLU gene

expression may contribute to a worse prognosis in lung

cancer patients. However, increased expression of CLU in

tumor tissues has been linked to worse prognosis in several

investigations of liver cancer (Zheng et al., 2020). Consequently,

we feel that further in-depth molecular experimental data are still

required to assess whether CLU expression is important in the

tumor start mechanism indicated above.

Using TCGA data, we first investigated CLU molecular

mechanisms in different cancers based on CLU DNA

methylation. Hypermethylated CLU expression significantly

decreases in untreated and hormone-resistant human prostate

cancer (Rauhala et al., 2008). Our research also depicted a

significant increase in the methylation level of CLU in PRAD

tissues compared to that in non-tumor tissues. Although

promoter hypermethylation can inhibit the expression of CLU

and demethylated cells can promote apoptotic cell death by

inducing nCLU (Lund et al., 2006; Park et al., 2014), no

research has been conducted on the possible function of CLU

methylation in more tumors. Hence, this may require further

evaluation of the possible significance of CLUmethylation in the

initiation and advancement of various tumors.

The surrounding tumor microenvironment (TME) affects

cancer cell survival, proliferation, migration, and even dormancy.

CAFs have multiple functions in tumor formation inside the

TME (Biffi and Tuveson, 2021). CAFs enhance cancer growth via

pleiotropic processes (Liao et al., 2019; Nurmik et al., 2020);

However, in some cases can inhibit tumor progression (Miyai

et al., 2020). Several approaches have been used to determine the

association between CLU levels and tumor-related

immunological cells. Herein, immunological infiltration of

distinct tumor-related immunological cells was associated with

CLU expression in CAFs and CD8 + T cells. CLU expression

positively correlates with immune cell infiltration in most

cancers, including BLCA, CESC, HNSC, LGG, and PRAD.

CLU was found to be expressed at a lower level in the high-

risk C3 subtype of prostate cancer, with significantly less

infiltration of CD8 T cells, monocytes, resting dendritic cells,

activated dendritic cells, and activated mast cells, implying that

CLU may influence immune cell infiltration through some

mechanism (Zhang et al., 2020). We inferred that CLU might

affect patient survival by altering immune cell infiltration in the

TME; however, further studies are needed.

CLU-bound protein and CLU expression-related gene

enrichment investigations across all cancer types revealed

the possible relevance of “cholesterol metabolism,” “lipid

and atherosclerosis,” “phospholipid binding,” and “protein-

lipid complex” in cancer’s etiology or pathogenesis. CLU
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functions as a molecular chaperone in various physiological

processes that contribute to carcinogenesis and tumor

formation, including apoptotic cell death, cell cycle control,

DNA repair, cell adhesion, tissue remodeling, and lipid

transport (Pucci et al., 2009; Praharaj et al., 2021; Uddin

et al., 2021). It was discovered that by activating the PI3K/

AKT axis, sCLU could significantly promote the transcription

of matrix metalloproteinase-2 (MMP-2), a protein related to

lipid metabolism, and inhibit the expression of E-calmodulin,

thereby inducing tumor invasion in hepatocellular carcinoma,

suggesting that CLU may influence tumour invasion and

migration by affecting the pathway of lipid transport

(Zhong et al., 2018). According to several studies, sCLU

works as a chaperone for misfolded proteins and is

expected to support survival by lowering oxidative stress;

nCLU functions as a prodeath signal, preventing cell

proliferation and survival (Shannan et al., 2006; Bettuzzi

and Rizzi, 2009). These findings might aid in deciphering

the role of CLU in the etiology of various cancers.

5 Conclusion

In conclusion, our pan-cancer study demonstrated that CLU

expression is low in most malignancies and significantly

correlates with clinical prognosis, DNA methylation, and

immunological cell infiltration in cancer patients. These

results provide a thorough understanding of CLU’s oncogenic

impacts across many tumor types, which contributes to

elucidating the probable mechanism of CLU in carcinogenesis

and its clinical prognostic significance.
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