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Background: Pancreatic adenocarcinoma (PAAD) is one of the most aggressive

tumors of the digestive tract, with low surgical resection rate and insensitivity to

radiotherapy and chemotherapy. Existing evidence suggests that regulation of

ferroptosis can induce PAAD cell death, inhibit tumor growth, and may

synergistically improve the sensitivity of other antitumor drugs. However,

there is little of systematic research on iron metabolism-related genes in

PAAD. In this study, a risk-score system of PAAD iron metabolism-related

genes was designed and tested, and verified to be robust.

Materials and Methods: The TCGA database was used to download 177 PAAD

patients’ message RNA (mRNA) expression profiles and clinical characteristics.

By identifying dysregulated iron metabolism-related genes between PAAD

related tissues and adjacent normal tissues, univariate Cox proportional

hazards regression and LASSO regression algorithm were used to establish

prognostic risk-score system and construct nomogram to estimate the 1-, 2-,

3-year survival in PAAD patients. Finally, selected genes were validated by

quantitative PCR (q-PCR).

Results: A 9-gene related to iron metabolism risk-score system of PAAD was

constructed and validated. The clinicopathological characteristics of age,

histologic grade, pathologic stage, T stage, residual tumor, and primary

therapy outcome were all worse in patients with a higher risk-score. Further,

immunohistochemistry results of SLC2A1, MBOAT2, XDH, CTSE, MOCOS, and

ATP6V0A4 confirmed that patients with higher expression are more malignant.

Then, a nomogram with 9-gene risk score system as a separate clinical factor

was utilized to foretell the 1-, 2-, 3-year overall survival rate of PAAD patients.

Results of q-PCR showed that 8 of the 9 genes screened were significantly up-

regulated in at least one PAAD cell line, and one gene was significantly down-

regulated in three PAAD cell lines.
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Conclusion: To conclude, we generated a nine-gene system linked to iron

metabolism as an independent indicator for predicting PAAD prognosis,

therefore presenting a possible prognostic biomarker and potential

treatment targets for PAAD.

KEYWORDS

pancreatic adenocarcinoma, biomarker, prognostic model, iron metabolism-related,
q-PCR validation

Introduction

Pancreatic adenocarcinoma (PAAD) is a very lethal and

aggressive malignant tumor of the pancreas with a dismal

prognosis (Gupta et al., 2017). According to GLOBOCAN

statistics from International Cancer Research Institute (IARC)

in 2020, there were 495,773 new cases and 466,003 deaths of

PAAD, accounting for 2.6% of all new cancer cases and 4.7% all

cancer deaths in 2020 (Sung et al., 2021). The median overall

survival (OS) duration of patients with PAAD is less than 6

months, and overall 5-year survival rate is less than 5% (Long

et al., 2014). Risk factors, including smoking, alcohol abuse,

chronic pancreatitis, and diabetes mellitus, have been

identified to contribute to the carcinogenic effects of PAAD

(Burkey et al., 2014). The major reasons for the poor

prognosis of PAAD are that the early symptoms are not

specific, the lack of early detection strategies, and effective

clinical treatment methods. Most PAAD patients are

diagnosed with advanced disease, which usually precludes

complete resection to greatly reduce the odds of a favorable

treatment outcome (Siegel et al., 2018).

Iron is an important component in the regulation of

metabolic homeostasis, and iron-dependent enzymes use it to

execute a variety of vital biological processes. It is principally

implicated in processes like DNA synthesis, ATP generation, and

oxygen transportation (Zhang et al., 2019). Control of iron

metabolism is fundamental to almost all known life,

meanwhile, iron metabolism is also considered indispensable

for cancer development (Manz et al., 2016). Unlike normal cells,

supply of iron is often rate-limiting for fast growing cancer cells

and are accordingly more vulnerable to iron reduction. Evidence

from previous studies suggested that tumor cells may raise

intracellular iron levels via regulating the expression of the

transferrin receptor, ferroportin, and ferritin expression (Jeong

et al., 2015; Schonberg et al., 2015). Tumor cell multiplication,

infiltration, and metastasis are aided by dysregulation of iron

metabolism-related genes (Jung et al., 2019). The gathering of

iron may cause breaks in DNA strands and tumorigenesis

(Legendre and Garcion, 2015). Iron is also involved in a

variety of cell death processes, including ferroptosis, an iron-

dependent type of controlled cell death (Dixon and Stockwell,

2014). Sufficient oxidative damage and/or inactivation/depletion

of preventative particles against oxidative damage induce

ferroptosis. Ferroptosis has been identified in a variety of

cancers, including PAAD, breast cancer, and hepatocellular

carcinoma (Lu et al., 2017). Since tumor cells are really

sensitive to ferroptosis, triggering ferroptosis may also have

significant therapeutic potential for tumor cells (Chen et al.,

2020). Iron-Responsive Element Binding Protein 1 and 2

(IREB1 and IREB2) are genes in the iron system of regulation

that also moderate iron metabolism and moreover take a role in

cancerous cells remodeling, which leads to malignant

progression (Zhang et al., 2017). Epidemiological investigation

of the NIH-AARP diet and health study cohort revealed that

consuming heme iron from red meat increases pancreatic cancer

risk (Taunk et al., 2016). Consistently, Gaur et al. investigated the

relationship between Iron metabolism and risk of cancer in the

Swedish Apolipoprotein Mortality Risk (AMORIS) study, and

found a positive association between standardized serum (SI)

iron or standardized total-iron binding capacity (TIBC) and

Pancreatic cancer [HR per SD of SI 1.03 (95 % CI 0.89–1.20),

and HR per SD of TIBC 1.12 (0.97–1.30)] (Gaur et al., 2013).

Experimental studies of iron overload support that iron plays a

direct and causal role in diabetes pathogenesis mediated both by

β cell failure and insulin resistance. Sachelly et al. observed a

significant association between the combined effects of common

variants in the hepcidin-regulating iron metabolism gene

pathway and PAAD (Sachelly et al., 2021). The signals

contributing the most to the association were from the HJV,

TFR2, TFR1, BMP6, and HAMP genes (Sachelly et al., 2021).

Although researchers pay more and more attention to the

relationship between iron metabolism-related genes and

PAAD, the relevant research is still insufficient.

The purpose of this study was to create a predictive model for

PAAD patients using iron metabolism-related genes. The Cancer

Genome Atlas-Pancreatic Adenocarcinoma (TCGA-PAAD)

database was used to get the mRNA expression profiles.

Differentially expressed genes (DEGs) between PAAD-related

tissues and normal tissues were identified using differential

expression analysis. Then, DEGs related to iron metabolism

were screened out, and comprehensive bioinformatics analyses

were performed based on gene-expression levels. In addition, a 9-

gene PAAD risk-score system were established by the Least

Absolute Shrinkage and Selection Operator (LASSO)

regression, and evaluated by risk score analysis, survival

analysis and receiver operating characteristic (ROC) curves.

Furthermore, we employed functional analysis and gene set

enrichment analysis (GSEA) to evaluate potential iron
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metabolism pathways and processes in high-risk and low-risk

populations. At the end of the study, we used a nomogram

including age, sex, tumor TNM stage, histological grade, and a 9-

gene risk scoring system as independent clinical components to

predict 1-, 2-, and 3-year survival in PAAD patients. Figure 1

depicts the complete flow chart of the research.

FIGURE 1
Research flow chart.
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Methods

Datasets and data processing

Gene expression data of PAAD samples were downloaded

from the TCGA database (https://tcga-data.nci.nih.gov/tcga/).

The PAAD RNA-seq data as well as clinical parameters were

gathered from the TCGA portal, the clinical prognosis data

supplemented from Liu’s literature (Liu et al., 2018). Gene

expression microarray data was pre-processed and normalized

by computed z-scores to have mean 0 and variance 1.

Differential analysis

We analyzed DEGs between PAAD tumor tissues and normal

adjacent tissues using the R software package “DESeq2” (version

3.6.3) (Robinson et al., 2010; McCarthy et al., 2012; Love et al., 2014;

Ritchie et al., 2015). The DEGs were filtered by the criterion of p <
0.05 and absolute log2-fold change >1. The Molecular Signatures

Database (MSigDB) version 7.1 was used to identify genes associated

to iron metabolism (Subramanian et al., 2005; Liberzon et al., 2015).

The overlapping genes between DEGs and iron metabolism-related

genes were collected for further study.

GO and KEGG pathway analysis

The unique biological properties of transcriptome and genomic

data were determined utilizing Gene Ontology (GO) enrichment

(Ashburner et al., 2000). For the characterization of pathways,

complexes and networks, Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway has been widely utilized (Richardson

et al., 2019). To reveal the functional roles of DEGs, GO analysis

[containing biological process (BP), molecular function (MF), and

cellular component (CC)] and KEGG pathway analysis were

performed with “clusterProfiler” package of R software using all

present genes as background.

Constructing and validating the risk-score
system

To construct the ironmetabolism-related genes risk scoremodel,

TCGA-PAAD samples were randomized divided into the training

(50%) and testing set (50%). The training set was applied to train the

risk score model, while the testing set was applied to evaluate its

effectiveness. To ensure the robustness of our results, the random

partitioning process was repeated ten times, and we present results as

the mean of ten repeat simulations. To explore the correlation

between expression level of overlapping genes and survival time,

the univariate Cox analysis was carried out by the “survival” of R

software to screen prognosis related genes (Wang et al., 2019). The

statistically significant difference was defined as p < 0.05. To reduce

the superabundance of prognostic genes of high dimension, the

“glmnet” R package was employed to create a regression model by

LASSO regression (Friedman et al., 2010). Next, using the LASSO

regression coefficients of PAAD’s iron metabolism-related genes, a

risk score model was created using the following formula.

Risk score � ∑n

i�1exp rgenei × coefficientgenei

Further, the training set was also separated into high-risk and

low-risk groups based on themedian risk score value. The “survival”

R package was employed to evaluate overall survival (OS) in both

groups by Kaplan–Meier survival analysis. The “time ROC” R

package was used to depict the distribution of ROC curves, and

the areas under ROC curves (AUCs) were computed to verify the

risk model’s efficiency. (Blanche et al., 2013).

Explore the prognostic value and
biological characteristics of screening
genes in PAAD

We performedKaplan–Meier survival analysis on the screened

genes, and created a protein-protein interaction (PPI) network

from the STRING database (http://string-db.org) with default

parameters. We also used FunRich (version 3.1.3) for Biological

Process (BP) analysis of the screened genes. The above-mentioned

R packages were used to compute DEGs between high- and low-

risk groups in the training data. Next, in comparison to the low-

risk group, GSEA (http://software.broadinstitute.org/gsea/index.

jsp) was used to determine the hallmarks of the high-risk group.

The identified mutations of the screened genes were analyzed

at cBioPortal (www.cbioportal.org/). To explore the interaction

between the screened genes and DEGs from tumor tissues of

PAAD patient vs normal pancreatic tissues, we performed

Spearman correlation analysis on the screened genes and the

top 20 genes in log2-fold change absolute value.

The Human Protein Atlas (http://proteinatlas.org; HPA) was

used to investigate the protein expression of indicated genes, as

well as the analysis of the transcriptome expression level of each

gene between normal and tumor. We also divided patients into

subgroups based on clinicopathological characteristics, including

age, histologic grade, pathologic stage, T stage, residual tumor,

and primary therapy outcome. By using the “ggpubr” R package,

we plotted boxplots to determine the relationship between risk

scores and clinical characteristics.

Development and evaluation of the
nomogram

We employed univariate and multivariate Cox regression

analysis on clinicopathological factors, such as age, histologic
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grade, pathologic stage, T stage, residual tumor, and primary therapy

outcome, to see whether the risk score system could be used as an

independent predictor or not. Furtherly, we designed a nomogram

for predicting OS probabilities at 1-, 2- and 3-year by the ‘rms’ R

package. The discriminative power of the nomogram was assessed

via Harrell’s concordance index (C-index) and calibration plot (Alba

et al., 2017).

Verification of screened genes by
quantitative real-time PCR

The whole RNA from pancreatic epithelial cells (HPDE6-C7)

and pancreatic cancer cells (ASPC-1, BXPC-3, SW 1990) was

extracted using an RNA Extraction Kit (Beyotime) and

subsequently reverse transcribed into cDNA. Amplification

FIGURE 2
Functional enrichment analysis of dysregulated ironmetabolism-related genes in TCGA-PAAD cohort. The expression levels of 67 differentially
expressed genes (DEGs) related to iron metabolism are shown by a heatmap (A) and a volcano plot (B). Venn diagram of 1969 DEGs and 527 iron
metabolism-related genes (C). Enriched Gene Ontology terms (D) and KEGG pathways (E) associated with the 67 DEGs.
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reactions were performed with ABI7500 quantitative PCR system

(Thermofisher) using UltraSYBR Mixture according to the

manufacturer’s manual (Cwbio). The 2−ΔΔCT approach was

used to compute the relative expression levels of genes, which

were measured in triplicate. GAPDH serves as a reference by

which to compare the relative gene expression levels. Primers are

listed in the Supplementary Table S2, which were designed by

Primer Bank (https://pga.mgh.harvard.edu/primerbank/index.

html).

Statistical analysis

In this study, R software (version 3.6.3) and SPSS 20.0 software

were used to conduct statistical analyses. For survival analysis, the

Kaplan-Meier analysis and the log-rank test were employed. For

correlation analysis, due to the non-normal distribution of the

data, Spearman’s correlation test was performed. We considered

the hazard ratio (HR) and confidence interval (CI) of 95% in this

study to be appropriate and meaningful. For Real-time PCR,

Student t-tests and Kruskal-Wallis tests were used to analyze

continuous variables with normal and non-normal distribution

respectively. In general, a P-value of less than 0.05 was judged

statistical significance.

Results

Identification of iron metabolism-related
gene in patients with PAAD

Clinical pathological parameters of PAAD patients in TCGA

database were shown in Supplementary Table S1. There were

56494 DEGs between the tumor tissues and the normal adjacent

tissues, among them 1969 genes were screened with a threshold

of p < 0.05 and an absolute log2-fold change > 1 (Figures 2A, B).

After intersecting them with the 527 iron metabolism-related

genes, we obtained 67 iron metabolism-related genes (including

22 up-regulated genes and 45 down-regulated genes) for

subsequent analysis (Figure 2C). We explored the activities of

chosen genes that were highly enriched for iron binding, heme

binding, and tetrapyrrole binding using enrichment analysis

(Figure 2D). The iron metabolism-related genes were mostly

implicated in retinol metabolism pathways, chemical

carcinogenesis, and arachidonic and metabolism pathways,

according to pathway enrichment analysis (Figure 2E).

Construction and assessment of the risk-
score system

The patients in the TCGA-PAAD dataset were split into two

groups: training set (88 cases) and testing set (89 cases). Then, in

the training set, we explored the relationship between the gene

expression levels and OS time. With the Cox p < 0.05 criterion,

19 genes were defined as possible OS-related risk variables

(Supplementary Table S1). Furtherly, 9 genes were finally

screened by calculating the regression coefficients of the

LASSO regression algorithm (Figures 3A, B; Supplementary

Table S2). As a result, a 9-gene risk-score system was

developed on the basis of the aforementioned formula.

Then, we calculated the risk score for each patient in the

training and test sets separately. According to themedian value of

the risk score, patients with PAAD were separated into high- and

low-risk categories. The heatmaps (Figures 4A, D) showed the 9

gene expression in different patients. In the training set, survival

analysis revealed that the high-risk group’s OS rates were

considerably lower than the low-risk group’s (p = 0.002, HR =

FIGURE 3
Construction of LASSO regression model. Cross-validation was used to tune parameter screening (A), and coefficient profiles were shown
in (B).
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2.50; Figure 4C). AUCs at 0.664, 0.700, and 0.787, the ROC

curves offered survival forecasts for 1, 2, and 3-year OS,

correspondingly (Figure 4B). The predictive performance of

risk score for one-year survival rate (average AUC 0.73) was

higher than that based on CA19-9 (average AUC 0.603), a

commonly used diagnostic indicator for PAAD.

FIGURE 4
The presentation of the risk-score model in terms of risk score analysis, survival analysis and prognostic performance, in training and validation
set. Risk score distributions and heatmaps of gene-expression levels in the training set (A) and validation set (D). The risk score model’s ROC curves
and AUC values for forecasting the 1-, 2-, and 3-year OS times in the training sets (B) and test sets (E). In the training set (C) and test set (F),
Kaplan–Meier survival analysis was used to assess the OS times between the high- and low-risk groups.
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Moreover, to verify the robustness of our approach, we used

the test set for validation. Similarly, the AUCs for prognosis at 1-,

2-, and 3-year were 0.796, 0.687, and 0.724, respectively

(Figure 4E), and the Kaplan-Meier analysis revealed that the

patients in the high-risk group had considerably lower OS rates

than those in the low-risk group (p = 0.02, HR = 2.01, Figure 4F).

Together, these results indicated that our risk score model for

predicting PAAD patients’ prognosis was of great robustness.

The prognostic value and biological
characteristics of screening genes

Results of Kaplan–Meier survival analysis indicated that

nine iron metabolism-related genes significantly affected the

prognosis of PAAD (P all <.05, Figure 5). The results

demonstrated that higher expression of SLC2A1, MBOAT2,

XDH, ERFE, CTSE, MOCOS, ATP6V0A4, CYP2C18 and low

DRD2 expression were associated with worse prognosis. The

PPI network showed extensive interactions between the nine

iron metabolism-related genes and other proteins (Figure 6A).

The findings of BP analysis revealed that these 9 iron

metabolism-related genes were related to the biological

process of metabolism, energy pathways, and transport

(Figure 6B).

To determine the possible influence of the expression levels

of iron metabolism-related genes on the PAAD transcriptome

profile, GSEA analysis was performed comparing the high-risk

and low-risk groups. Several pathways were found to be enriched

in the high-risk group, including allograft rejection, interferon

FIGURE 5
Kaplan–Meier survival analysis was performed on the 9 most valuable predictive genes.
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gamma response, IL6/JAK/STAT3 signaling pathway, and

inflammatory response (Figures 6C–F).

A survey of 9 iron metabolism-related genes mutants across

all cancer types were explored via cBioPortal database

(Figure 7A). Among them, the gene with the highest mutation

rate were XDH and CTSE, accounting for 3%, and the primary

type of CTSEmutation was amplification, while the primary type

of XDH mutation was missense mutation. In PAAD, the most

genetic alterations were mainly in MOCOS and CTSE. MOCOS

was altered in 7/184 (3.8%) cases, including 1.63% (3 cases) of

FIGURE 6
PPI network construction (A), and Biological Process (B) of the 9 most valuable predictive genes. In the TCGA cohort, GSEA of the iron
metabolism-related gene signature (C–F), allograft rejection, interferon gamma response, IL6/JAK/STAT3 signaling pathway and inflammatory
response were enriched in the high-risk group.
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amplification and 2.17% (4 cases) of deep deletion, CTSE was

altered in 5/184 (2.72%) cases, including 1.09% (2 cases) of

mutation and 1.63% (3 cases) of amplification. The low

mutation rate may relate to the small PAAD sample size, and

further validation of mutational burden as a predictive biomarker

is necessary. In PAAD, mutations rs587784395, rs145069780,

and rs200352240, which located in the genes of SLC2A1, CTSE,

and DRD2 respectively, were associated with the OS and

prognosis period. Correlation between the screened genes and

top 20 DEGs was shown in Figure 7B. Among them, XDH was

positively correlated with ALPG, LY6D, CHP2, A2ML1, PSCA,

LHX1-DT, CGB3, ALPI, MUC2, ALPP, ZIC2, and negatively

correlated with STAB2.

In addition, the HPA database, providing RNA-sequencing

and immunohistochemical in PAAD and normal tissues, was

performed to verify the transcript level and protein level of nine

iron metabolism-related genes (Figure 8). Notably, normal

pancreatic exocrine glandular cells and exocrine glandular

cells stain positive for MBOAT2, while tumor tissue is highly

positive predominantly in tumor cells (Figure 8A). The

immunohistochemistry pictures of ERFE and CYP2C18, on

the other hand, were not detected. In comparison of PAAD

group with normal group, we found that the 9 iron metabolism-

related genes were significantly up-regulated (p all < 0.01, Figure

8B), the trends of these genes were similar to the former result.

Relationship between risk score and
clinical characteristics

In this study, we considered the relationship for both the risk

score and the clinical characteristics as well. In PAAD patients

stratified by age, histologic grade, pathologic stage, T stage,

residual tumor and primary therapy outcomes, risk-score

dispersion revealed statistically significant variations

(Figures 9A–F).

FIGURE 7
Mutation status of 9 iron metabolism-related genes (A) and their interaction with top 20 differentially expressed genes from tumor tissues of
PAAD patient vs normal pancreatic tissue (B).
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Nomogram construction and validation

Furthermore, a nomogram was constructed to predict the

survival rate of PAAD patients at 1, 2, and 3 years. The

nomogram comprised age, histologic grade, pathologic stage,

T stage, residual tumor, primary therapy outcome, and risk score

(Figure 10A). The results indicated that as contrasted to the low-

risk group, the high-risk group’s OS rates were much lower

(HR = 4.211, 95% CI = 2.466-7.193, p < .001; Supplementary

Table S3). According to the calibration plots (Figures 10B–D),

the nomogram was well calibrated, with average forecasted

probability at one, two, 3 years OS rates concordant with

actual probabilities.

Quantitative PCR verification of results

These results were validated via qPCR analysis using three

different cell lines, ASPC-1, BXPC-3, and SW 1990 (Figure 11).

The result showed that SLC2A1, MBOAT2, and MOCOS were

significantly up-regulated in the three PAAD cell lines (P

all <.05), while ATP6V0A4 was significantly down-regulated

in the three PAAD cell lines (p < .05). DRD2 was up-

regulated in BXPC-3 (p < .05); XDH was up-regulated in

ASPC-1 and SW 1990 (P all <.05); ERFE was up-regulated in

ASPC-1 and BXPC-3 (P all <.05); CTSE was up-regulated in

ASPC-1 (p < .05); and CYP2C18was up-regulated in ASPC-1 and

BXPC-3 (P all <.05).

FIGURE 8
Human Protein Atlas (HPA) immunohistochemical images of PAAD and normal pancreatic tissue (A), and transcriptomic data analysis of the nine
screened genes between normal and tumor in HPA (B). *p < .05, **p < .01, ***p < .001.
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Discussion

Pancreas is clearly involved in maintaining iron homeostasis

throughout the body. The resultant systemic iron overload causes

extremely high iron deposition in the liver, pancreas, and heart,

and among other organs. There were a large number of

literatures precisely indicated that iron absorption was

generally increased in exocrine pancreatic dysfunction and

chronic pancreatitis, thus demonstrating a possible connection

between the iron regulatory pathway and the exocrine pancreas

(Nicolas et al., 2001). Maintaining iron homeostasis may be

beneficial to protect the health of the pancreas.

For this investigation, we utilized gene expression data as well

as clinical-pathological information. First, 67 DEGs related to

iron metabolism were screened. Then 9 genes were selected

through univariate Cox analysis and LASSO regression

analysis, which were identified as potential prognostic

markers, and were then utilized to build a prognostic model.

Among the selected genes, the expression levels of eight genes

(SLC2A1, MBOAT2, XDH, ERFE, CTSE, MOCOS, ATP6V0A4,

and CYP2C18) positively correlated with OS, whereas the

expression levels of only one gene, DRD2, negatively

correlated with OS. By using multivariate Cox regression

analysis, we were able to confirm that the model we built was

effective and stable in diverse patient cohorts, as well as an

independent predictive marker. Although the genes that are

potentially involved in the iron response and their respective

contributions to PAAD are still unknown, our findings highlight

the complexity of iron-associated metabolic pathways in allograft

rejection, interferon gamma response, IL6/JAK/STAT3 signaling

pathway, and inflammatory response. High iron contributes to

allograft -mediated rejection is the conclusion that new

treatments to lower allograft iron could be clinically impactful.

Bioinformatic analysis places the interactions of interferon

gamma responsiveness and iron metabolism into overlapping

networks. Elevated iron indices have been associated with a poor

response to interferon therapy (Sartorii et al., 2010). It has been

confirmed that iron is also essential in the activation of STAT3 by

IL6 in cell lines and tumors (Xue et al., 2016). Notably, iron

homeostasis is also central in inflammatory responses, whereby

FIGURE 9
Correlation between clinicopathologic features and the risk score in the TCGA dataset (A–F). In PAAD patients stratified by age, histologic grade,
pathologic stage, T stage, residual tumor, and primary therapy outcome (A–F), risk-score distributions revealed statistically significant differences.
**p < .01, ***p < .001, ns, not significant.
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NF-κB, TNF and NLR are known to be important regulators and

have been implicated in cancer-related inflammation (Chan et

al., 2018).

Iron metabolism-related genes are known to have a role in

the pathogenesis of pancreatic cancer. SLC2A1, also known as

glucose transporter 1 (GLUT1), is the main glucose transporter in

somatic cells. Many malignant tumors, including pancreatic

cancer, breast cancer, and prostate cancer have up-regulated

SLC2A1, and the level of SLC2A1 is closely related to the clinical

stage, degree of differentiation and lymph node metastasis of

pancreatic cancer (Liu et al., 2012). MBOAT2, also known as

lysophosphatidylcholine acyltransferases (LPCATs), is related to

the incidence and progression of a number of tumors. MBOAT2

overexpression in pancreatic ductal adenocarcinoma (PDAC)

FIGURE 10
Prognostic nomogram for PAAD patients’ 1-, 2-, and 3-year OS times. (A), Independent risk variables identified in the TCGA cohort via
multivariate Cox regression were included into the nomogram model. The nomogram’s calibration curves for predicting 1-, 2-, and 3-year OS in
TCGA-PAAD cohorts (B–D).
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FIGURE 11
Quantitative PCR verification of the screened genes. *p < .05, **p < .01, ***p < .001.
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has been related to a poor prognosis (Idichi et al., 2018). In

several malignancies, including pancreatic cancer, XDH, a rate-

limiting enzyme that catalyzes the last stage of purine

metabolism, was a reliable predictor for poor prognosis in

many cancers including pancreatic cancer. (Saidak et al.,

2018). CTSE was found to be a potential early biomarker of

PDAC (Pontious et al., 2019). CYP2C18 belongs to the

cytochrome P450 2C subfamily, which has a strong risk of

cancer susceptibility (Agundez, 2004). Although CYP2C18 was

highly correlated with OS and upregulated in PAAD cell lines via

qPCR, research on CYP2C18 was mostly concentrated in the

gastrointestinal tract and liver, with relatively few studies in

pancreatic cancer and lack of immunohistochemistry image in

the HPA database. Chen et al. detected DRD2 expression in

pancreatic islets via western blotting and dual fluorescence

localization. (Chen et al., 2014). Pathak et al. reported a case

of prolactinoma with liver metastasis of pancreatic polypeptide

tumor, after taking the DRD2 agonist, the serum pancreatic

polypeptide level decreased to one-seventh of the original

level, and liver metastases were significantly reduced. (Pathak

et al., 2004). In this study, theDRD2 gene was highly expressed in

the TCGA-PAAD database (vs. normal tissue, p < 0.001). The

results of q-PCR validation showed that the DRD2 gene was

significantly highly expressed in the BXPC-3 cell line (vs.

HPDE6-C7 cell line, p < .05), but had no significant

difference between the ASPC-1 and SW1990 cell lines (vs.

HPDE6-C7 cell line, p < .001). BXPC-3, ASPC-1 and

SW1990 are immortalized cell lines from patients with PAAD,

the inconsistency results in different cell lines reflects the

heterogeneity of DRD2. Other genes, such as ERFE, MOCOS,

and ATP6V0A4, may be involved in tumorigenesis, metabolism,

or treatment. (Wada et al., 2014; Papanikolaou and Pantopoulos,

2017; Park et al., 2020). Generally, gene expression was consistent

with expression at the protein level, in this study, we collected

RNA-sequencing data and immunohistochemical images in

PAAD and normal tissues from HPA database. The observed

discordance of transcript and protein levels is likely to be

explained by regulation of translation, post-translation

modifications, and protein turnover. However, whether the

expression differences at the transcriptional level of these

genes are consistent with the protein level remains to be

further explored.

In this study, we established an iron metabolism-related

polygene risk-score system for predicting prognostic of

PAAD. The nomogram template contained risk scores and

other clinical indicators. As evidenced by calibration plots

and ROC curves, the nomogram offers a solid prediction

capability for the OS rates of the PAAD, and indicated that

the system we have constructed was reliable and effective,

which could be used to determine the prognosis of patients

and arrange follow-up plans. However, there are potential

limitations to our study. First, the prognostic model is built

using the TCGA database, although gene expression

validation was performed in three PAAD cell lines,

protein-level and animal-level functional validation was

still lacking. In the next step, for the screened genes, the

differential expression verification at the protein level can be

carried out, and the cellular and animal function phenotypes

can also be implement to provide more systematic functional

validation. Second, due to the limited sample size, large-scale

prospective surveys remain necessary to validate our risk-

score system in the future.

Conclusion

To conclude, we developed and validated a risk-score

system for prognosis and risk stratification according to

genes associated to iron metabolism. A nomogram model for

predictions of OS rate over 1-, 2-, 3- year was built and

demonstrated high predictive precision. The screened genes

have the potential to be targets for exploring mechanisms

related to iron metabolism in PAAD.
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