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Although wheat (Triticum aestivum L.) is the main staple crop in the world and a

major source of carbohydrates and proteins, functional genomics and allele

mining are still big challenges. Given the advances in next-generation

sequencing (NGS) technologies, the identification of causal variants

associated with a target phenotype has become feasible. For these reasons,

here, by combining sequence capture and target-enrichment methods with

high-throughput NGS re-sequencing, we were able to scan at exome-wide

level 46 randomly selected bread wheat individuals from a recombinant inbred

line population and to identify and classify a large number of single nucleotide

polymorphisms (SNPs). For technical validation of results, eight randomly

selected SNPs were converted into Kompetitive Allele-Specific PCR (KASP)

markers. This resource was established as an accessible and reusable molecular

toolkit for allele data mining. The dataset we are making available could be

exploited for novel studies on bread wheat genetics and as a foundation for

starting breeding programs aimed at improving different key agronomic traits.
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Introduction

Bread wheat (Triticum aestivum L. 2n = 6x = 42, AABBDD) is a major staple crop that

provides about 20% of daily calories and 21% of protein needs consumed by the world

population (FAO 2017, http://www.fao.org/3/a-i6583e.pdf). However, to meet global food

demand without expanding acreage, wheat grain production is projected to increase by at

least 50% within the next few decades (Tshikunde et al., 2019). This means that the

average annual genetic gain of wheat is expected to increase 1.0%–1.7% per year, reaching
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global production of 1 billion tons in 2050 (LeMouël et al., 2017).

Considering also the need to adopt environmentally sustainable

agronomic practices capable of mitigating the effect of climate

change on soil degradation and water scarcity (https://www.ipcc.

ch/report/srccl/), the next challenges appear to be very

demanding for wheat breeders and scientists (De Vita and

Taranto, 2019; Senapati et al., 2019; Xiong et al., 2021; The

grand challenge of breeding by design, 2022). In addition, the

genomic resources of wheat are scarce compared with those of

other cereals such as rice and maize, mainly due to its complex

and polyploid genome. Polyploidy, in fact, on the one hand

confers a high degree of plasticity to the organism, on the other

hand it makes genetic analysis more difficult for scientists and

breeders aimed at dissecting the molecular basis underlying

quantitative and qualitative traits (Dubcovsky et al., 2007;

Bevan et al., 2017). So far, most efforts to understand the

genetic basis of key traits related to yield, grain quality and

adaptability have been made through map-based cloning

approaches (summarized by Colasuonno et al., 2021; Soriano

et al., 2021; Arrigada et al., 2021). For example, genes involved in

vernalization and photoperiod response (Yan et al., 2003, 2004;

Díaz et al., 2012), grain protein content (Uauy et al., 2006), grain

quality (Jin et al., 2018; Goel et al., 2019; Semagn et al., 2021) stem

solidness (Nilsen et al., 2020), male sterility (Ni et al., 2017; Xia

et al., 2017), and resistance to fungal diseases (Fu et al., 2009)

have been identified and cloned. However, this approach is costly

and time-consuming, as multiple steps are required, from

developing specific mapping populations, through identifying

target loci using co-segregating genetic markers, to sequencing

relevant loci.

The availability of the reference genome of the allohexaploid

landrace Chinese spring (IWGSC et al., 2018; Zhu et al., 2021)

has allowed the application and combination of high-throughput

sequencing methods to map, identify and clone candidate genes

much faster than in the recent past (Henry et al., 2014; Dong

et al., 2020; Martinez et al., 2020; Xie et al., 2020). Genome

availability has resulted in a remarkable change in bread wheat

genetics, which now has a powerful tool for re-sequencing new

accessions and for investigating sequence variations across the

entire genome. Despite the availability of a gold-standard

reference genome, some target genes can only be found in

certain cultivars and be absent in the reference accession. For

this reason, several strategies have been successfully developed

with the aim of reducing genome complexity and sequencing

costs and favoring the discovery of a large number of accession-

specific variants in wheat (Krasileva et al., 2017; He et al., 2019).

For example, genotyping-by-sequencing (GBS) (Elshire et al.,

2011; Poland et al., 2012) has been used in wheat to perform

genome-wide association studies (GWAS) and quantitative trait

loci (QTL) mapping, as well as to disclose patterns of genetic

variation (Bernardo et al., 2015; Juliana et al., 2019; Blackburn

et al., 2021). Likewise, whole exome sequencing (WES) allows for

the identification of nucleotide variability across the exome,

i.e., the exon sequences of all protein-coding genes in a

genome (Uavy et al., 2017; Mo et al., 2018; He et al., 2019).

WES data of nearly 500 accessions from all over the world has

been used to reveal the wheat breeding history (Pont et al., 2019).

In a separate study, the exome of ~900 hexaploid and tetraploid

wheat accessions has been selectively captured and sequenced to

understand how wild-relative introgression enables adaptation in

modern bread wheat (He et al., 2019). WES has also been

successfully coupled with bulked-segregant analysis (BSA) to

identify candidate genes associated with key agronomic traits,

as it dramatically reduces genotyping costs by using selective

sampling, and the statistical power in QTL-mapping is

comparable to that of full-population analysis (Gardiner et al.,

2016; Mo et al., 2018; Martinez et al., 2020). For example,

Martinez et al. (2020) combined WES with BSA to map

ethylmethanesulfonate mutations and identified a novel allele

linked to the wheat ERA8 ABA-hypersensitive germination

phenotype. Within this motivating context, this study aimed

to determine the efficacy of WES for identifying useful alleles

within a recombinant inbred line (RIL) population of

46 individuals plus the two parents selected from a previous

work in which the entire RIL population was used to identify

genomic regions associated with target traits: plant height (PH),

juvenile growth habit (GH), heading date (HD), fertile tiller

number (FTN) and total tiller number (TTN) (Vitale et al.,

2021). We identified many single nucleotide polymorphisms

(SNPs) that were classified based on their genomic location

and putative biological effect.

To validate the sequencing results, eight SNP-containing

coding sequences were used to develop Kompetitive Allele-

Specific PCR (KASP) markers to detect and distinguish

specific alleles in the entire population. This resource has

been primarily established to be used for allele mining (Kumar

et al., 2010) and for BSA. The carefully phenotyped genetic

materials can be effectively used to identify QTL and trait-

associated genes, develop gene markers, and build genomics-

assisted prediction models in bread wheat. Indeed, we believe

that data FAIRability is an essential prerequisite to ensure the

reuse of data and knowledge for downstream investigations,

alone or in combination with newly generated data.

Methods

Plant material and DNA extraction

Forty-six individuals, derived from the tails of a bi-parental

recombinant inbred line population (RILF6:7), previously studied

for five high-correlated morpho-physiological traits (i.e., plant

height, juvenile growth habit, total tiller number, fertile tiller

number and heading date) (Vitale et al., 2021), were analyzed.

The population of 176 RILs was developed from a cross between

LANKAODALI and REBELDE bread wheat cultivars, using the single
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seed descent method by advancing random F2 plants to the F6:

F7 generation (Vitale et al., 2021). The two parental accessions

were characterized by contrasting quantitative and qualitative

agronomic traits (Botticella et al., 2018; Vitale et al., 2021).

LANKAODALI is an early bread wheat cultivar of Chinese origin

with very large kernels, low tillering ability, and poor qualitative

attributes. REBELDE is an Italian cultivar with late flowering, small

kernels, high tillering ability and excellent grain quality traits.

During the 2020–2021 growing season, the leaves of 14-day-old

seedlings of each of 48 individuals were collected and ground

using liquid nitrogen. DNA was extracted using the Quick-DNA

Plant/Seed Miniprep Kit (Zymo Research, United States)

according to the manufacturer’s instructions. DNA quality

and quantity were estimated using the NanoDrop ND-1000

spectrophotometer (Thermo Scientific, Wilmington, DE,

United States) and the Qubit fluorometer (Invitrogen,

Carlsbad, CA, United States), respectively.

Exome capture

In-solution-based hybridization was applied to capture the

target loci. Baits (304,327) were designed to specifically capture

over 250 Mb of coding DNA sequences (CDS) (myBaits®, Arbor
Biosciences, Ann Arbour, MI, United States; http://www.

arborbiosci.com). Bait design was based on the Chinese

spring wheat genome v1.0 (IWGSC et al., 2018) and was

carried out following the manufacturer’s protocol version 3.

01 (https://arborbiosci.com/wp-content/uploads/2020/01/

myBaitsExpert_WheatExome_Product_Sheet.pdf; accessed

14/07/2022).

As shown in Supplementary Table S1, the baits were evenly

distributed along the genome, with the lowest number

(10,345 baits) on chromosome 4D and the highest

(17,587 baits) on chromosome 2B.

Illumina sequencing and data processing

The extracted DNA (250 ng −1 μg) was subjected to

random mechanical shearing to obtain fragments with an

average size of 400 bp. The fragments underwent an

A-tailing reaction at 3’ of the blunt-end, where barcoded

adapters were then ligated. Libraries were paired-end

sequenced on an Illumina NovaSeq 6,000 platform. After

Illumina sequencing, an average of 153 million raw reads

per individual were obtained, ranging from 96 M (sample 21)

to 230 M reads (sample 31) (Supplementary Table S2). Overall

sequencing quality was assessed by FastQC (https://www.

bioinformatics.babraham.ac.uk/projects/fastqc/) and reads

with a base quality score below 20 (Q < 20) were removed

using Trimmomatic (Bolger et al., 2014)

(SLIDINGWINDOW = 6). High quality reads were then

aligned to the Chinese spring wheat genome v1.0 (IWGSC

et al., 2018) with BWA-MEM (Li et al., 2009)

(MINIMUMSEEDLENGTH = 19; BANDWIDTH = 100).

SAMtools (Heng et al., 2009) were used to convert SAM

files to BAM; the latter were processed by the

MarkDuplicates utility of Picard version 1.109, (http://

picard.sourceforge.net), to remove duplicate reads. Reads

with mapping quality scores below 30 (Q < 30) were also

filtered out. QualiMap (Garcia Alcalde et al., 2009) was used to

evaluate the effectiveness of the mapping process: the

percentage of mapped reads was greater than 99% for each

individual with an average error rate of 0.74% (Supplementary

Table S2). The reads-to-genome mapping produced over 55%

of on-target reads for all individuals except sample 26, which

showed the lowest percentage (~47%) (Supplementary Figure

S1). Hybridization capture methods are known to be prone to

off-target enrichment and capture (Kaur et al., 2017) and in

polyploid species target specificity and efficiency is affected by

the presence of homoeologous sequences (King et al., 2015).

This reflects the percentage of on-target reads we have

achieved which is consistent with what obtained by King

et al. (2015).

The CoverageBed utility of the BEDtools package (http://

bedtools.readthedocs.org/) was used to derive the depth of

coverage of the target regions for each individual. On

average, more than 50% of the bases in the bait regions

were covered at a depth greater than 20x (Figure 1A).

Coverage per individual averaged 13.7x, with most

individuals showing a mean coverage between 4x and 35x

(Supplementary Table S3). We also estimated the depth of

coverage per-base at the gene level (Figure 1B). As an

example, Figure 1B shows per-base depth of coverage for

the TraesCS2B01G175300 gene in all individuals. As

expected, the depth of coverage was fairly uniform across

exons and very shallow for introns.

Polymorphism discovery, variant
annotation, and biological effect
prediction

SNPs were identified using the Genome Analysis Toolkit

(GATK) version 4.0 (Van der Auwera et al., 2013), following

the best practices recommended by the GATK

documentation. The VariantRecalibrator utility was used

to distinguish true genetic variants from sequencing or

data processing artifacts (false positives) and remove the

latter from the raw VCF (Variant Call Format) file. A total of

15,046,465 SNPs with a sequencing and alignment quality

score ≥30 (Phred-scaled) and a coverage ≥10 were identified.
The VCF-stat utility in VCFtools (King et al., 2015) was used

to retrieve the statistics by sample. The number of variants
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ranged from 509,707 SNPs (sample 21) to 1,939,789 (sample

37), with a mean of 1,062,065 SNPs. To assess the level of

residual heterozygosity for each individual, we calculated the

percentage of heterozygosity at each locus by dividing the

number of heterozygous genotypes for a given locus by the

total number of individuals. This number was averaged

across all the chromosomes and returned residual

heterozygosity equal to 5.85% (Supplementary Figure S2)

(Danecek et al., 2011). As expected, transitions (Ts) were the

most abundant (~70%), while transversions (Tv) accounted

for ~30%. Their ratio was 2.11. SnpEff (Cingolani et al., 2012;

Velmurugan et al., 2018) was used to classify variants based

on genomic location and biological effect (Supplementary

Figures S3, S4). As observed by Suren et al. (2016), we found

that some of the variants also came from non-target regions,

although bait design was exclusively based on annotated

exons. Indeed, most SNPs were detected in the intergenic

(47%) and upstream gene regions (17%), while

approximately 26% fell within exons (Supplementary

Figure S3). A stacked bar chart showing SNPs grouped by

their impact (low, moderate, and high) is reported in

Supplementary Figure S4. SNPs with “moderate” impact

on protein functioning were the most abundant (52%).

Variants marked as “low” impact accounted, on average,

for 46% of all variants (Supplementary Figure S4). Finally,

the variants estimated to have a deleterious impact on gene

functioning (i.e., “high” impact) accounted for 2% on

average. The latter are to be considered the most

interesting variants, since they might determine

phenotypes of interest.

Data validation and quality control

The conversion of SNP markers into KASP markers is

particularly challenging in polyploid crops, due to the presence of

homoeologous sequences (Makhoul et al., 2020). To validate the

quality of polymorphism discovery and variant annotation generated

by exome capture, we designed and tested eight KASP assays that

distinguished between alleles for the 48 individuals (Figure 2). SNP

markers were selected following different criteria: presence of

polymorphism between parental lines, sequencing depth, biological

effect, randomness. The KASP primers design was carried out using

the commercial KASP assay design service (KASP-by-Design)

developed by LGC Biosearch Technologies. For each SNP, 100-bp

flanking regions were obtained from the reference genome and

converted into KASP to detect the specific parental allele. The

LGC Genomics (Hoddeson, United Kingdom) designed two allele-

specific forward primers carrying the standard FAM- or VIC-

compatible tail (FAM: 5′-GAAGGTGACCAAGTTCATGCT-3′;
VIC: 5′-GAAGGTCGGAGTCAACGGATT-3′) with the targeted

SNP at the 3′ end (Supplementary Table S4). Almost all primer

pairs had perfect match with the target sequences and mismatches at

3’ tail with the other wheat sub-genomes. DNA samples were arrayed

into a 96-well PCR plate, each containing ~5 µl reactionmix (45 ng of

dry DNA, 2.5 µl of 1×KASP master mixture, and 0.1 µl of primer

mix). Primer mix included a final concentration of 30 µM of the

common primer and 10 µM of each tail primer. PCR experiments

were performed using the ABI ViiA7 instrument (Applied

Biosystems, Foster City, CA, United States) as follows: initial

denaturation at 94°C for 15 min, followed by ten touchdown

cycles (94°C for 20 s; touchdown at an initial temperature of 61°C

FIGURE 1
(A)Cumulative distribution of coverage depth across target region in 48wheat individuals. The graph highlights the fraction of bases captured in
the target regions covered at a depth ranging between 0x–400x. (B) Per-base depth of coverage for the TraesCS2B01G175300 gene in all
individuals. The exon (yellow boxes) -intron (black lines) gene structure is shown above the multi-line graph.
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FIGURE 2
Scatter plot for eight Kompetitive Allele-Specifc PCR (KASP) marker assays in 48 wheat varieties. KASP assays showing clustering of individuals
on the X-(FAM) and Y-(HEX) axes. Red individuals have the HEX-type allele; blue individuals have the FAM-type allele. In both cases, individuals are
homozygous for the reference or alternate allele. Green individuals are heterozygous for the allele. Black dots represent negative control and pink
dots uncallable genotypes.
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and decreasing by−0, 6°C per cycle for 60 s) reaching a final annealing

temperature of 55°C, followed by 26 additional annealing cycles (94°C

for 20 s; 55°C for 60 s). Fluorescence readings were performed with a

temperature below 37 °C and allelic discrimination plots were drawn

using the SNP viewer software (https://www.biosearchtech.com/

support/tools/genotyping-software/snpviewer). Individuals with

contrasting alleles at each SNP locus (0/0 corresponds to the

reference allele, 1/1 to the alternative allele, 0/1 to a heterozygous

locus, and “N/A” to a missing data point) were genotyped using the

KASP assays (Supplementary Table S5). Results showed that roughly

80% of alleles for all loci were scored identically between WES data

and KASP genotyping, including those with low coverage

(Supplementary Table S5).

Potential reuse

In addition to sequence data and sequence variations, we will

make available the plant material described in this paper under a

standard material transfer agreement This will allow the scientific

community to identify marker-trait associations linked to key

agronomic traits (including those mentioned above) assessed in

other environments (year, site,management), and, thus, detect stable

QTL based on genotype-environment (GxE) interactions.

Indeed, SNP discovery supports the use of bulked segregant

analysis as a powerful tool to accelerate gene identification and

QTL mapping cost-effectively.

In addition, the data described here could be used to dissect

naturally occurring allelic variation at candidate genes controlling

key agronomic traits, identify useful alleles (i.e., loci affecting the

traits of interest) and understanding their function.
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