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Nitrogen (N) fertilizer is one of themajor inputs for grain crops including barley and its
usage is increasing globally. However, N use efficiency (NUE) is low in cereal crops,
leading to higher production costs, unfulfilled grain yield potential and
environmental hazards. N uptake is initiated from plant root tips but a very
limited number of studies have been conducted on roots relevant to NUE
specifically. In this review, we used barley, the fourth most important cereal crop,
as the primary study plant to investigate this topic. We first highlighted the recent
progress and study gaps in genetic analysis results, primarily, the genome-wide
association study (GWAS) regarding both biological and statistical considerations. In
addition, different factors contributing to NUE are discussed in terms of root
morphological and anatomical traits, as well as physiological mechanisms such as
N transporter activities and hormonal regulation.
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1 Introduction

N fertilizer is the primary resource to supply soil nutrients to conserve cereal crop
production (Raun & Johnson, 1999; Sadras et al., 2016). N fertilization input is increasing
globally while the global average for N recovery rate in cereal crops is only 33% (Raun &
Johnson, 1999). Un-utilized N fertilizers are likely cause environmental hazards, such as
eutrophication, soil acidification, and air pollution (Raun & Johnson, 1999; Tang et al., 2013;
Skiba & Rees, 2014). NUE itself has barely been considered in most modern breeding programs
and a continuous selection of high-yielding genotypes only under sufficient N environments has
led to the reduced variation of NUE alleles in modern varieties (Yang et al., 2014; Garnett et al.,
2015).

Barley (Hordeum vulgare) is an important cereal and ranks the fourth most grown crop
worldwide (Arendt & Zannini, 2013). Barley is one of the most ancient cereal crops used by
hunters and gatherers, and the history of its cultivation can be traced back to more than
20,000 years ago (Willcox, 2013; Pourkheirandish et al., 2015). In addition to its importance as a
crop, the diploid nature of barley, the availability of multiple reference quality genomes,
reference transcriptome, pangenome sequence, and its close genetic relationship with wheat,
make it an ideal model for cereal crops (von Bothmer et al., 2003). Once a molecular mechanism
relevant to the expression of a specific trait associated with NUE is discovered, it can be expected
to offer opportunities for crop improvement both in barley and its close relatives.
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Genome-wide association study (GWAS) is often referred as a
“hypothesis-generating” analysis and could serve as a first step to
gaining novel understanding of mechanisms of NUE by studying
genetic variations of the entire genome instead of only targeting
specified genes of interest (Ali et al., 2021; Özdemir et al., 2021).
Although numerous above-ground crop traits have been determined
to be closely correlated with NUE as well as identifying associated
genes conferring high NUE in pre-breeding research (Yang et al., 2014;
Han et al., 2016; Karunarathne et al., 2020a), a great study gap is
present in relevant below-ground activities due to difficulties in
phenotyping root traits under field conditions and dynamics in soil
N status (Garnett et al., 2009; Plett et al., 2020). This mini-review will
report the recent progress in identifying NUE-related genetic variants
and phenotypic traits in barley as well as discuss the limitations and
knowledge gap.

2 Genome-wide association studies in
nitrogen use efficiency

GWAS is a powerful tool to examine the contributions of genetic
variants/single nucleotide polymorphisms (SNPs) to the traits of
interests (Bush, 2019; Alqudah et al., 2020; Alomari et al., 2021).
NUE is a polygenic trait which has not had its molecular mechanisms
fully revealed, resulting in difficulties to target genes of interest in pre-
breeding research. The rapid progress in high-throughput genomic
technologies such as next-generation sequencing (NGS) has allowed
more accurate reads for whole genome sequencing data, subsequently
facilitating the precision of results generated from GWAS (Wu et al.,
2017; Yin et al., 2019). Non-etheless, there is only one published
research on examining NUE in barley to date (Karunarathne et al.,
2020a). Most of the genes associated with NUE in barley were reported
by quantitative trait loci (QTL) analysis without being well correlated
with phenotypic traits. Although, only root length and dry weight have
been examined for NUE in barley by GWAS (Supplementary Table
S1), it has provided reliable and important genetic information to
associate root traits and NUE. For example, HORVU3Hr1G095880 is
the candidate gene associated with root dry weight and functionally
annotated as NAC domain protein. The role of NAC domain protein
on NUE has been well demonstrated by overexpression it in wheat and
the improvement in several agronomic traits have been shown in both
low and high N levels (He et al., 2015). Further investigation into
identifying QTLs associated with various root traits would be valuable
to discover novel mechanisms of NUE.

2.1 Statistical considerations for genome-
wide association study and meta-analysis

Several limitations of GWAS impede the implication of GWAS
results for improving NUE. One of the major issues is that the
identified variants are often unstable across experiments
(Karunarathne et al., 2020b). There is a demand to increase
statistical power of GWAS to generate replicable variants and the
most direct approach is to incorporate a bigger sample size into the
study. Another issue is that the detected variants can be false positives
due to the complex population structures and cryptic relatedness
(Wright et al., 2012; Yang et al., 2021). To date, fitting the population
structure and/or kinship matrix as covariate to adjust the mixed linear

model and assessing linkage disequilibrium (LD) block to project
candidate genes are the most utilized methods to pinpoint the relevant
variants (Kovi et al., 2015; Xu et al., 2017; Karunarathne et al., 2020a).
Nonetheless, false negatives are caused at the same time when
attempting to control those false positives.

Computing innovation has allowed a more powerful GWAS by
increasing the statistical power as well as optimizing the detection of
accurate variants. An early GWAS model, described as a univariate
model, can only analyze a single phenotype for its association with
variants (Fernandes et al., 2021). This model poses limitation of taking
account of relatedness among phenotypic traits while most loci are
pleiotropic. For instance, NUE is under the regulation of multiple
genes, and each can affect several phenotypic traits associated with
NUE so that a univariate GWAS could mask some information of the
phenotypic and genetic relatedness. Subsequently, the multivariate
model of GWAS was developed to improve the statistical power for
detecting variants controlling multiple phenotypic traits and reducing
false discoveries (Korte et al., 2012). Both models would also
compromise partial true positives due to the confounding effect
among the variants, population structure and kinship since they
principally still utilize the same mixed linear model to adjust
population structure and LD (Liu et al., 2016).

Although a few advancements have been achieved, the optimization
of both statistical power and computational efficiency when controlling
false discoveries was the primary burden. For instance, fixed and random
model Circulating Probability Unification (FarmCPU) was developed to
resolve the confounding issue owing to population structure and kinship
by dissecting the model into fixed effect model and random effect model
to separate population structure and kinship, then running the two
models iteratively (Liu et al., 2016). Thereafter FarmCPU boosted the
statistical power while the computing speed was the primary issue to be
tackled. Bayesian-information and Linkage-disequilibrium Iteratively
Nested Keyway (BLINK) is the new method built based on
FarmCPU. BLINK utilizes Bayesian Information Criteria to substitute
the computationally demanding random effect model into the fixed effect
model and has been tested with its precision and efficiency with both
simulated and real datasets (Huang et al., 2018). BLINK model has been
employed in several research investigating plant performance such as
rice, wheat and barley (Kumar et al., 2021; Zhong et al., 2021; Clare et al.,
2022). Moreover, BLINK GWAS model has also be used to examine
maize root performance in different N levels (Fu et al., 2022).
Accordingly, BLINK would be the most updated GWAS model for
ascertaining and providing context to the genetic-phenotypic relationship
for plant underground performance in various N environments.

Meta-analysis of GWAS (Meta-GWAS) is another model worthen
attention. It is to analyze the quantitative combination of summary
statistics from independent experiments (Joukhadar and Daetwyler,
2022). Subsequently, it can increase sample size by analyzing multiple
GWAS results, which boost statistical power (Lin and Zeng, 2010).
Moreover, the algorithm of Meta-GWAS has been developed to
effectively detect variants associated with multiple traits and
environments (Bolormaa et al., 2014; Singh et al., 2021). NUE is
affected by multiple traits and N availability is varied greatly from
different environments due to its mobile nature. Therefore, meta-
analysis can be useful for studying NUE and detecting more associated
variants by analyzing different combination of associated traits and
examining several N levels at the same time. Another advantage of
meta-analysis is its capability to incorporate data from various genetic
backgrounds (Tam et al., 2019). It could potentially bring extra
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benefits to increase the magnitude of association of the determined
variants when significant association between variants and population
structure presents (Tam et al., 2019). This provides insight to interpret
the results with sound consideration of population structure and LD.

2.2 Biological considerations for genome-
wide association study and relevant
phenotyping platforms

The accuracy of GWAS counts upon both high density
markers and precise phenotyping. With the advancement in
genome sequencing and availability of reference genome, the
high-density genotyping is no longer a limit. Our
understanding on the plant genome has been more advanced
than the below-ground phenome in regards of barley NUE (Yang
et al., 2014; Karunarathne et al., 2020a). Therefore, the
information on the relationship between root traits and NUE
could be ambiguous and lead to misinterpretation of data. This
becomes an impediment for pre-breeding research of NUE even if
molecular tools are well-developed.

Growing conditions have enormous impacts on root growth
and development while there are different growth systems in pre-
breeding research (Zhu et al., 2005; Liao et al., 2006;
Karunarathne et al., 2020a). The results concluded from one
growth system are not necessarily replicable in another one.
For instance, a comparative study on maize has been
conducted in three systems, which are paper roll, hydroponics,
and vermiculite culture. The results demonstrated that only 13%
of QTLs were repeatably identifiable across systems due to strong
genetic-environmental effects (Liu et al., 2017). Moreover, this
study also determined a relatively stronger correlation between
root traits and N uptake efficiency in hydroponics and vermiculite
systems compared to the paper roll system, suggesting they are
the more suitable growth systems to examine NUE in maize (Liu
et al., 2017).

The development of high-throughput phenotyping
technologies is paramount for root phenotyping since the
sample size for detecting QTLs is generally large and processing
those samples in conventional ways can be laborious and time-
consuming. The most common method is to collect root samples by
washing them from soils and then scan clean samples using
scanning software such as WinRhizo and RhizoVision
(Kamoshita et al., 2019; Seethepalli et al., 2021). One of the
difficulties during this process is efficiently getting the root out
from fields. A method described by Teramoto et al. (2019) is to
place a steel cylinder surrounding each plant then the whole plant
can be pushed back vertically by a backhoe. It is demonstrated to
greatly reduce labor work. Non-etheless, root washing processes
are still challenging regarding labor intensity and sample integrity.
The development of X-ray computed tomography (CT) permits the
visualization of root in the soils so that root traits data could be
collected non-destructively, which not only reduces the labor
requirement but also guarantee the quality of data (Teramoto
et al., 2020). This technology has been utilized in various crops,
such as rice, wheat, and maize, for visualizing root systems in soils
(Mairhofer et al., 2012; Teramoto et al., 2020). However, no barley
NUE research so far has utilized this platform to examine root traits
in soils.

3 Morphological and anatomical traits of
roots contributing to nitrogen use
efficiency

3.1 Root biomass

It is a widely accepted concept in cereals that larger root biomass
can enhance N absorption (Anbessa & Juskiw, 2012). Root weight
density refers to total root weight per unit of soil volume, which has
been found to be significantly correlated with NUE of wheat (Liu et al.,
2018). However, it does not always translate into better above-ground
performance. First, the trade-off between above- and below-ground
carbon (C) storage could limit the yield capacity when large amounts
of energy are invested into root biomass. Several studies have
supported this trade-off effect in maize and barley when N is
insufficient (Gallais and Coque, 2005; Lynch, 2013; Tolley and
Mohammadi, 2020). In contrast, research on wheat has indicated
that larger root biomass is associated with higher yield and less leached
N in high N conditions (Ehdaie & Waines, 2008; Tolley &
Mohammadi, 2020). It implies that the yields are not being limited
by the higher metabolic costs of roots since nutrient resources are
sufficient to supply both above- and below-ground plant growth. To
connect with above-ground performance, root:shoot (R:S) ratio is
often used to explain the energy allocation. Research has suggested
that R:S are altered by different N levels as the strategy to optimize the
relative growth rate (Ågren & Franklin, 2003), but it has not been
shown if R:S has a significantly linear association with NUE.

3.2 Root system architecture

Root system architecture (RSA) is a collection of root features to
describe the temporospatial distribution of roots in the soil. Intensive
investigations have been done for the root length and it is positively
related to N capture (Karunarathne et al., 2020a). With the same root
length, it is desirable to obtain other RSA traits for optimizing the
interception between root and soil while minimizing metabolic costs.
One of the strategies could be targeting the specific root zones for
nutrient uptake (Kitomi et al., 2018). The combination of the narrow
root angle and deep roots, or the wide root angle and shallow roots
have been suggested to enable reducing metabolic costs while
maximizing soil nutrient exploitation in deeper and shallow soil
profiles, respectively (Lynch, 2013). However, no significant
correlation between root angle and barley grain yield has been
determined so far, demanding more studies to map the
correlation between root angle and NUE (Robinson et al., 2018).
For a further step, increased lateral root number and root hairs,
subsequently root surface area, have been found when plants are
grown in N-deficient conditions (Marschner 1995; Gilroy & Jones,
2000). The debate has been around if such responses would
contribute to N uptake when sufficient N is supplied to plants,
specifically in the soil with a low leaching potential where N is
abundant and the increase in root surface area is not required
(Garnett et al., 2009). Meanwhile, it has also been reported that
wheat with a higher level of root branching and lateral root number
showed greater N uptake in sandy soils with an ample N level (Liao
et al., 2006). Accordingly, the N availability and the leaching
potential of soils are vital to be considered to conclude if
increased root surface area is of importance for increasing N uptake.
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3.3 Root cortical senescence

Root cortical senescence (RCS) describes the death of root cortical
cells, which can be promoted by severe N scarcity (Gillespie & Deacon,
1988). On the one hand, this could result in unhealthy plant tissues
and restricted plant growth (Schneider et al., 2017a). On the other
hand, RCS might demonstrate potential compensation for a plant’s
survival in harsh environments. Initially, a reduction in nutrient
partitioning, and efficiencies of radial water and nutrient transport
in barley root have been determined to be correlated with RCS under
N-deficient conditions (Schneider et al., 2017a). Simultaneously,
barley root respiration also decreases, which can infer as a positive
effect of RCS, saving the energy cost of roots (Schneider et al., 2017b).
Also, RCS occurs in older tissues, located in the upper part of soil
profile where nutrients might be depleted (Schneider et al., 2017a;
Schneider et al., 2017b). Hence, it can be beneficial for young tissue
growth when coming across nutrient-deficient situations since energy
can be reinvested into effective plant parts by getting rid of older
tissues (Schneider et al., 2017b).

3.4 Importance of nodal roots

Cereals have a fibrous root system that can be mainly dissected into
two parts, seminal and nodal roots. Nevertheless, much less attention
has been paid to nodal roots for their role in NUE until recently. A
greater root diameter, meta-xylem area and more meta-xylem vessels
have been examined in nodal roots compared to seminal roots inmature
barley plants, which also contributes to a higher level of nitrate (NO3

−)
uptake (Liu B. et al., 2020). Hence, nodal roots may serve as a selection
target in pre-breeding research for better barley NUE. Nevertheless, no
similar analysis has been done on barley from the seedling stage. It
might be since nodal roots have been considered more important for
water uptake at lateral plant stages (Hochholdinger et al., 2018), and this
concept has been applied toN uptake as well.Meanwhile, the work done
by Schneider et al. (2020) showed barley nodal roots demonstrated
equivalent importance of water uptake as seminal roots since the
seedling stage. Given that N flux into plant roots with water via
mass flow, this study enlightens the possibility that nodal roots
might also be important in N uptake from an early stage.

FIGURE 1
N transport and assimilation in the barley plant at a cellular level. In the transport process, different forms of N including nitrate, ammonium and urea are
transported via different classes of proteins in different concentrations. In the assimilation process, the conversion of nitrate and urea into ammonium is
happened first, followed by GS-GOGAT cycle to convert ammonium into glutamine (Gln) and glutamate (Glu). Created with BioRender.com.
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4 Physiological aspects relevant to
nitrogen use efficiency

4.1 Nitrogen transporter activities and
metabolism of different N forms

N molecules pass through the plasma membrane of root cells,
initiating the N uptake process, mediated by several N transporters
(Tsay & Hsu, 2010; Hove et al., 2015; Han et al., 2016; Figure 1).
Nitrate (NO3

−) is widely considered as the most common form
absorbed by crops since nitrification is continuously taking place in
the soil under the effect of soil bacteria, converting ammonium (NH4

+)
into NO3

−. Therefore, most research has focused on NO3
−. After NO3

−

is taken up by roots, it is reduced into nitrite (NO2
−) by NO3

−

reductase (NR), then further reduced into NH4
+ by NO2

− reductase
(NiR). Subsequently, N in the NH4

+ form will undergo several
enzymatic reactions and be converted into organic forms,
predominantly amino acids (Tsay & Hsu, 2010). To illustrate,
glutamate and glutamine are synthesized in the plastid, which are
the two primary sources of the amine group for other amino acids
(Tsay & Hsu, 2010; Han et al., 2016). This process is primarily
regulated by two enzymes, which are glutamine synthetase (GS)
and glutamate synthetase (GOGAT) (Tsay & Hsu, 2010; Han et al.,
2016). Moreover, it has been determined that NO3

− has an important
role in regulating lateral root growth (Zhang & Forde, 2000; Liu B.
et al., 2020).

NH4
+ has often been overlooked due to its lower availability in

soils and adverse effects on several domesticated plants including

barley (Britto & Kronzucker, 2002; Liu et al., 2013; Chen et al.,
2020; Naz et al., 2021). Interestingly, wheat cultivars, Yitpi and
Wyalkatchem, have been determined to prefer NH4

+ over NO3
−

(O’Sullivan et al., 2016). Moreover, NH4
+ can become more

significant in certain environments including low N conditions,
and soil environments unfavored by nitrification. Initially, crops
will preferentially absorb NH4

+ in nutrient-depleted soils, since
unlike NO3

− it does not need to undergo energy-dependent
transformation once inside the root (Boudsocq et al., 2012).
Further, soil acidification and insufficient soil organic matter
could inhibit bacterial processes, such as nitrification.
Subsequently, NH4

+ would become more abundant since less
NH4

+ would be converted into NO3
−. Accordingly, selecting

barley genotypes for better use of NH4
+ could improve its NUE

performance in field conditions featured by N deficiency, acidity,
and low organic matter contents. Nevertheless, differing from
NO3

− uptake, a high accumulation of NH4
+ is toxic to barley.

Therefore, a more effective use of NH4
+ additionally requires plants

to have improved detoxifying mechanisms. It has been shown in
barley that NH4

+ toxicity is caused by a great level of NH4
+ efflux

across the cell membrane which consumes a huge amount of
metabolic energy (Britto et al., 2001). Hence, more efficient
utilization of NH4

+ into amino acids via GS-GOGAT cycle
mentioned above could potentially work as a detoxifying process
by reducing NH4

+ accumulation and efflux while also improving
overall N utilization into nutrients.

Urea is an organic form of N and is intensively used as N
fertilizer in agricultural fields. Urea is hydrolyzed into NH3 and

FIGURE 2
The regulatory role of cytokinin (CK) in the barley plant. The degradation and biosynthesis of CK is majorly controlled by two enzymes, CK oxidase and
phosphate-isopentenyl transferase (IPT). The increase in CK level will lead to a series changes of above-ground plant performance associated with N
metabolism. The upwards arrows and downwards arrows indicate the increase and decrease in the corresponding traits, respectively. Created with
BioRender.com.
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ammonium carbamate (H2NCOONH4), and this process is
catalyzed by urease (Figure 1). Although only a limited
number of studies have yielded the role of urea itself on plant
NUE since the major opinion is that urea uptake by plants is not
significant in the past, today’s studies have established several
classes of proteins capable to absorb and transport urea (Witte,
2011). For instance, urea transporter (DUR3) and aquaporins
(AQP) have been found to act in active and passive urea transport
of several plants such as Arabidopsis, maize and barley (Liu et al.,
2003; Zanin et al., 2014; Hove et al., 2015). It might offer crops the
opportunity to absorb more N with more efficient urea transport
while also reducing urea losses as NH3 since more urea uptake
occurs before being converted into gases.

4.2 Hormonal regulation to communicate
below-ground with above-ground plant
responses: Cytokinin as an example

Cytokinin (CK) is a plant hormone responsible for plant cell
division, which has been suggested as a key substance
communicating N availability with plants and coordinating
the metabolism from roots to shoots (Lu et al., 1990). The
responses of barley relevant to NUE in accordance with CK
varied between different plant organs (Figure 2). Two main
enzymes, namely phosphate-isopentenyl transferase (IPT) and
cytokinin oxidase (CXK) are responsible for CK synthesis and
degradation, respectively (del Mar Rubio-Wilhelmi et al., 2011;
Ramireddy et al., 2018). Through transgenic approaches, the
overexpression of IPT has been done in wheat, engendering a
higher CK content with delayed leaf senescence and NR activity,
which are positively associated with N remobilization and
utilization process, respectively (Sýkorová et al., 2008;
Masclaux-Daubresse et al., 2010). However, no significant
increase in grain yield was observed (Sýkorová et al., 2008).
Meanwhile, CXK has been overexpressed in barley, leading to the
breakdown of CK (Holubová et al., 2018). It leads to a larger root
system without a significant yield sacrifice (Holubová et al.,
2018). Interestingly, at the same time, the thousand-grain
weight was shown to be reduced while increases in tiller and
grain numbers and the higher accumulation of nutrients were
recorded (Holubová et al., 2018). Accordingly, grain productivity
is under sophisticated control via CK as a signal between roots
and above-ground plant, and more investigation into the
molecular level would merit future research on barley NUE.

5 Conclusion

In conclusion, it must be acknowledged that there is limited
amount of research has examined NUE in barley, especially
considering the below-ground performance. First, several classes of
candidate NUE genes have been identified in barley while only a few
have been proved to be associated with root traits such as NAC
domain protein gene. Moreover, most identified root-related QTLs are
not consistent across experiments due to statistical limitations, and
biological knowledge gaps including phenotyping platforms and the

understanding of relevant phenotypes. Given the advances in plant
genomic areas such as whole-genome sequencing technologies and the
development of meta-analysis algorithm of GWAS, a large gap still
exists in the association between plant phenotypes and N levels. At
morphological and anatomical levels, future studies should not be
limited to root biomass and length but pay more attention to RSA
traits and RCS.Moreover, more research into nodal roots is also highly
demanded. Regarding physiological aspects, different N forms are
absorbed via different transporters. Most NUE research focuses on
investigating the effects of NO3

− transporters. Nevertheless, a more
effective uptake of NH4

+ and urea can be potentially desirable for
barley plants adapting to a wider range of environments and reducing
N losses from the system. Lastly, hormonal regulation is a
sophisticated mechanism to be examined for communicating roots
with above-ground plant responses.
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