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The TEOSINTE BRANCHED1 (TBI1), CYCLOIDEA (CYC), and PROLIFERATING

CELL NUCLEAR ANTIGEN FACTORS (PCF1 and PCF2) proteins truncated as TCP

transcription factors carry conserved basic-helix-loop-helix (bHLH) structure,

related to DNA binding functions. Evolutionary history of the TCP genes has

shown their presence in early land plants. In this paper, we performed a

comparative discussion on the current knowledge of the TCP Transcription

Factors in lower and higher plants: their evolutionary history based on the

phylogenetics of 849 TCP proteins from 37 plant species, duplication events,

and biochemical roles in some of the plants species. Phylogenetics

investigations confirmed the classification of TCP TFs into Class I (the PCF1/

2), and Class II (the C- clade) factors; the Class II factors were further divided into

the CIN- and CYC/TB1- subclade. A trace in the evolution of the TCP Factors

revealed an absence of the CYC/TB1subclade in lower plants, and an

independent evolution of the CYC/TB1subclade in both eudicot and

monocot species. 54% of the total duplication events analyzed were biased

towards the dispersed duplication, and we concluded that dispersed

duplication events contributed to the expansion of the TCP gene family.

Analysis in the TCP factors functional roles confirmed their involvement in

various biochemical processes which mainly included promoting cell

proliferation in leaves in Class I TCPs, and cell division during plant

development in Class II TCP Factors. Apart from growth and development,

the TCP Factors were also shown to regulate hormonal and stress response

pathways. Although this paper does not exhaust the present knowledge of the

TCP Transcription Factors, it provides a base for further exploration of the gene

family.
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1 Introduction

Gene family size is a variable across different plant species,

exhibiting essential functional roles for adaptation, growth and

development, and speciation (Templeton, 2008). Protein

classification and their coding genes involves two main

approaches namely: i) generating varying family size and

membership in profile-based protein databases such as the

Hidden Markov Models (HMM), Pfam, InterPro, and

SUPERFAMILY, and ii) categorizing these gene families based

on parameter-based clustering of pairwise alignments. Gene

duplication events (polyploidy), deletion, and the creation of

new genes among other factors contribute to the expansion of

gene family size (Flagel and Wendel, 2009; Magadum et al.,

2013). As a result, genome size varies in individual plant species.

The advent of gene transcriptomics has enabled the

identification, study, characterization, and manipulation of

numerous plant genomes and gene families (Chen et al., 2019;

Li et al., 2022a; 2022b). Characteristic investigation of gene

families contributes to the understanding of evolutionary

relationship and functional differences (Li M. et al., 2022).

Among characterized gene families, the TEOSINTE

BRANCHED1/CYCLOIDEA/-PROLIFERATING CELL

FACTOR1 (TCP) gene family controls growth and

development in plants; named from four unrelated proteins

exhibiting diverse roles, and was first described in 1999, as a

small group of plant genes encoding proteins sharing the TCP

domain (Zhu, 2020). The cycloidea (CYC) from Antirrhinum

majus, controls the floral lateral bilateral symmetry through

genes differentially acting along the dorsoventral axis of the

flower (Luo et al., 1996; Crawford et al., 2004; Busch et al.,

2019). The Teosinte branched 1 (TB1) in Zea mays, encodes a

protein with homology to the cycloidea gene of snapdragon

(Doebley et al., 1997; Lukens and Doebley, 2001). Research

has shown the CYC/TB1 genes to regulate apical dominance,

repressing the growth of axillary organs, and enabling the

formation of female inflorescences (Meshi and Iwabuchi,

1995; Yang et al., 2016). Lastly, the Proliferating Cell Factors

1 and 2 (PCF1/2) fromOryza sativa binds to the promoter region

in the Proliferating Cell Nuclear Antigen (PCNA) gene (Kosugi

and Ohashi, 1997). The PCF 1 and 2 are involved in the

meristematic tissue-specific expression of rice PCNA gene

through binding to the sites IIa and IIb, leading to the

formation of either homodimer or heterodimers (Kosugi and

Ohashi, 2002). The afore-mentioned genes: TB1, CYC, and PCFs

are known as the TCP transcription factors (TCP TFs),

characterized by the presence of a TCP domain, a 59 amino

acid expanse forming a non-canonical basic-helix-loop-helix

(bHLH) structure (Cubas et al., 1999). Although their ancestry

remains unknown (Navaud et al., 2007), their biological roles and

mode of action are conserved in plant species from the

bryophytes to the angiosperms. Up to date, there have been

several breakthroughs in the identification and computation of

TCP TFs in numerous plant species including: A. thaliana

(Aggarwal et al., 2010), G. biloba (Yu L. et al., 2022), P. edulis

(Liu et al., 2018), S. lycopersicum (Parapunova et al., 2014), L.

chinense (Hwarari et al., 2022), etc. However, in some plant

orders, the TCP TFs have not yet been identified (Manassero

et al., 2013). Research on the TCP gene expression have

supported the biological functions of TB1, CYC, and PCF

genes, tailoring the TCP domain to be involved in DNA

binding activities, dimerization, and protein to protein

interactions (Kosugi and Ohashi, 2002). Recent reports have

shown their involvement in the regulation of biotic and abiotic

stresses (Yu Z. et al., 2022; Hwarari et al., 2022).

Although the comprehension of the biochemical roles

and evolution of the TCP TFs has improved in the past

decade, there are still some gaps. In this article, we compared

and discussed the current knowledge on the classification of

TCP TFs in 37 plant species from lower plants to higher

plants. We believe this paper will contribute valuable insights

to the TCP gene family knowledge base. Additionally, we

utilized available genomic data from current and previous

research in TCP phylogenetic and evolution analysis to

answer some important questions regarding the TCP gene

family.

2 TCP conserved domains

The TCP domain is highly conserved throughout plant

species, forming a bHLH secondary structure, comprising of

approximately 58–62 amino acid residues involved in: DNA

binding, protein to protein interactions, and protein nuclear

localization. The divergent evolution of the TCP domain from

the bHLH domain was by insertion of a short stretch in the

basic region thereby splitting the long helix into two (Aggarwal

et al., 2010). Nonetheless, the TCP domain structure has

remained intact (Kosugi and Ohashi, 1997; Cubas et al.,

1999). The protein structural analysis of the bHLH TFs has

shown that the TCP domain is characterized by a basic residue-

rich region forming a typical fold of 3 short β -strands (β1, β2,
and β3) and two consecutive α-helices (α-1 and α-2) (Sun et al.,

2020). However, the TCP domain is different to the bHLH

domain (Carrara and Dornelas, 2021). Recent demonstrations

have exhibited that the topology of the TCP domain is different

from the typical bHLH structure by comparing the ß-strand

conformation of the basic region in a typical TCP domain with

that of a typical bHLH protein (MyoD, PDB:1mdy), and

concluded that the bHLH domain of TCP conforms to a

new topology distinct from a typical bHLH structure.

Interestingly, their analysis in rice OsPCF6 protein, disclosed

that the TCP domain dimerize with other two TCP domains,

each forming a stable conformation that adopts the ribbon-

helix-helix (RHH) fold rather than the bHLH motif previously

predicted. Implying that the TCP protein can also be classified

Frontiers in Genetics frontiersin.org02

Zhou et al. 10.3389/fgene.2022.1060546

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1060546


into the RHH family (Liu et al., 2019; Sun et al., 2020). Although

these findings are not conclusive, the homology modelling of

TCP protein has also demonstrated their ability to form

homodimers and/or heterodimers with other TCP proteins

to bind DNA (Parapunova et al., 2014).

To confirm these findings, we compared 3D protein

structures of TCP proteins from 11 plants species against

a single bHLH protein representative from A. thaliana

(Figure 1). Protein structure analysis confirmed the

presence of 3β-strands and 2α-helices in TCP domain, and

2β-strands and 2α-helices in the bHLH protein structure.

The first and the second helices of the TCP domain were

amphipathic with alternating hydrophobic and hydrophilic

residues. Our analysis concurred with previous TCP protein

structure investigations (Pilar Cubas et al., 1999). Recently,

we have also analysed the TCP protein structure of the L.

chinense, and showed that most of the LcTCP proteins carry

2 to 3β-strands, and 2α-helices with alternating hydrophobic

regions and are less mobile (Hwarari et al., 2022). Other

researches have also exhibited that the TCP protein contain

potential sites of phosphorylation and regions linked by a

conserved Glycine-Aspartate-Serine residues, highly

frequent in loops and Proline (Cubas et al., 1999;

Tarczewska and Greb-Markiewicz, 2019; Edwards and

Gorelick, 2022).This result generally confirms that the

TCP bHLH domain is rather distinct from the bHLH

domain.

2.1 TCP proteins classification

The Class I TCP TFs referred to as PCF1 and PCF2, are

essential for DNA binding and dimerization, they also carry the

TCP domain, and are characterized by two highly conserved

sequences, DRHxK and RxRRxR, in the N- and C- terminal,

respectively (Figure 2) (Liu et al., 2019). Although, some class II

TCP proteins lack the conserved N-terminal part in the basic

region, such as the S. lycopersicum TCP26 (Parapunova et al.,

2014), B. rapa TCP12a/TCP1c (Du et al., 2017). The main

distinction between Class I and Class II is that, Class I has a

four-amino acid deletion within the TCP domain which is absent

in Class II. Deeper analysis has shown a full conservation of Class

I TCP amino acids within the lower plants as compared to the

higher plants (Horn et al., 2015). To confirm these findings, we

constructed TCP domain logo for class I and II using the protein

alignments of the TCP domain (Figures 2A,B). The TCP domain

comparisons evidenced the presence of 4 amino acid deletion in

angiosperms which was absent in the lower plants TCP Class I.

Suggesting that the lower plants are the first forms of life or rather

the extend of evolution was different between the two plant

clades (Qin et al., 2021). Other researchers have also shown that

the Class I TCP domain is flanked by short regions recognizing a

6–10 base pair binding sequence of GGNCCC or CCNNCC,

which is absent in the Class II TCP domain (Kosugi and Ohashi,

2002). In contrast, the GGNCCC has also been shown in PCF5 of

rice, a Class II member (Liu et al., 2020), which has led to

FIGURE 1
3D protein structure comparison of Arabidopsis bHLH3 against other 11 TCP proteins. Specific names of the TCP protein are highlighted below
the image. 3D protein structures were searched against the online PDB database (https://www.rcsb.org/) and viewed using the chimera software.
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conclusions that these genes share a core sequence, the

GGNCCC, and they have differing flanking sequences leading

to either competition or cooperation (Savadel et al., 2021).

The TCP Class II-clade, otherwise known as the CIN clade,

was first isolated from snapdragon cin-mutant producing

abnormal leaves and petals with rolled edges (Lan and Qin,

2020). Distinctively, the CIN protein carries conserved residues

which are exclusive to the PCF proteins. In comparison, the Class

II TCP domain has less conservation, studies have shown that the

HLH region is 90% conserved, carrying Alanine (A)-25, Leucine

(L)-35, (G)-36, Tryptophan (W)-46, and L-47. Additionally,

there are notable distinctions in HELIX II, the first L residue

has been replaced by Isoleucine (I) and Valine (V). The third L

residue has also been replaced by an I residue (Martín-Trillo and

Cubas, 2010; Liu et al., 2019). In total, our TCP domain

comparisons, showed that lower plants Class II TCP domain

is fully conserved, and exhibit significant differences in the

protein sequence arrangements (Figure 2) in both the lower

and higher plants.

The CYC/TB1 factors are a subdivision of Class II TCP

proteins, and are angiosperm-specific. Protein structural studies

of the CYC and TB1 genes have shown that they both have a

21 residue long basic region that includes a putative bi-partite

nuclear localisation signal (NSL). In addition, they are

characterized by the presence of an angiosperm conserved

18–20 amino acid Arginine-rich motif (the R-domain)

(Figure 2C). Although, a few CIN-like proteins have also been

shown to carry the R-domain (Wang et al., 2021). The R-domain

forms an α-helix structure that coils similarly to leucine zippers

which functions in protein-protein interaction (PPIs) mediation,

and in evolutionary/developmental and phylogenetic studies

(Busch and Sassone-Corsi, 1990). It is predicted to have

originated independently in two separate clades, one of which

is the ECE clade. The ECE denotes a conserved motif (Glu-Cys-

Glu) between the TCP- and R-domain, found in most member of

this clade (Smith et al., 2004).

3 Phylogenetics and evolution in TCP
gene family

System classification of the TCP gene family based on the

molecular phylogeny facilitates the building of functional and

genomic studies (Mondragón-Palomino and Trontin, 2011).

FIGURE 2
TCP protein sequence domain logos in: (A) lower plants (B) higher plants, (C) The angiosperm specific R-domain, present in the CYC/
TB1 subclade. The sequence logos were generated by WebLogo online tool (http://weblogo.berkeley.edu/), based on the alignments of the TCP
domains. The overall height of each stack letter indicates the sequence conservation at that position (measured in bits), whereas the height of the
symbols within the stack reflects the relative frequency of the corresponding amino acid at that position. The black arrow depicts 90%
conserved loci within the whole family. The red arrow depicts the key DNA binding site for the two subgroups. Top logo shows the TCP domain
conserved within the lower plants. Bottom logo shows the TCP domain the higher plants.
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849 TCP proteins from 37 plant species were analyzed using the

Parsimony, Maximum Likelihood (ML) and the Bayesian

method. Results were consistent with corresponding values.

Figure 3 shows the protein ML phylogenetic tree, our analyses

concurred with previous findings that the TCP gene family can be

divided into three main groups: the PCF, CIN, and the CYC/TB1

(Citerne et al., 2003). Likewise, the Bayesian inference methods

have sorted TCP sequences in groups of high similarity, the class

I (PCF1/2 clade) and class II (CIN and CYC/TB1) (Manassero

et al., 2013; Liu et al., 2019; Yu L. et al., 2022). Nonetheless,

distinctions have not been made whether the class I or class II

TCP subfamily was the first to appear in plant kingdom due to

the fact that lower plants believed to be first forms of plant life like

Marchantia polymorpha carry both classes (Sharma et al., 2013).

Some predictions have displayed the CIN-like TCP sub-clade in

the Class II, to be more ancestral than the CYC/TB1-like TCPs

since the Class II TCPs belong to the CIN-like TCP sub-clade in

the non-vascular plants (Wang J. et al., 2022).

Further classifications of the TCP sequences have been

shown within the phylogenetic analyses into smaller groups of

high sequence similarity and possibly biological functionality. In

this analysis, we divided the phylogram into eight subgroups

(A-H). The PCF-clade comprised group A to D, the CYC/

TB1 proteins clustered in a monophyletic group (Group E),

and the CIN clade was carried in the groups F to G

(Figure 4B). Group A in PCF clade had the highest number of

proteins while group G in the CIN-clade had the least number of

proteins. Other studies have also shown divisions of 8–10 groups

depending on: the total number of sequences included in the

phylogenetic research, TCP protein clustering on the same

branch, and sequence structures both within and outside the

TCP domain (Wang et al., 2018). We also noted that some of the

plant species were fully represented in individual groups, such as

G. max and P. trichocarpa, suggesting that they have undergone

various gene expansion and duplications types, and also that

their proteins are involved in a wide range of biological functions

(Ling et al., 2020; Wang J.-L. et al., 2022). In addition, research

has also shown that the TCP monocot clade can be organized

into at least 20 groups, each with sequences from different

species. These sequences sharing amino acid motifs extending

to the TCP and carboxyl domains, and an average identity greater

than 64% with the majority resembling well-supported clades of

the phylogeny (Mondragón-Palomino and Trontin, 2011).

To fully understand evolution of the TCP gene family, we

also analyzed the evolution of plant species in question

(Figure 4A). Analysis showed that all these plants had a

common ancestor, and evolutionarily events like speciation

led to the formation of different plant clades and orders

(Berger et al., 2016). However, monophyly of the liverwort

(M.polymorpha) and bryophytes (S. fallax and P. patens) were

shown to have diverged earlier, suggesting that these are amongst

the earliest land plants (Fernandez-Pozo et al., 2022; Kumar et al.,

2022). On the other hand, angiosperms diverged later into several

different clades through speciation, these include the basal,

magnoliid, eudicot and monocot angiosperms, possibly during

the angiosperm evolution. These findings concurred with

previous studies on the angiosperm species diversity and

expansion (Qin et al., 2021; Hu et al., 2022).

4 TCP gene family duplication events

Characterization of the TCP gene family in different plant

species has yielded inconsistences in the total number of TCP

proteins, motif arrangement and conserved domain structures.

The highest and lowest total number of TCP family members are

N. tabacum (61) (Chen et al., 2016) and S. officinarum (2)

according to online plant transcription factor database (PTFD;

http://planttfdb.gao-lab.org/) (Tian et al., 2019). TCP genes form

small families in different species which have engendered larger

members of angiosperms (Li X. et al., 2022). Genome-wide

searches have indicated that the expansion of the TCP gene

family is by independent gene or whole-genome duplication.

Lower plants, P. patens, S. moellendorffii and M. polymorpha,

have been branded with less total number of TCP genes and none

in the unicellular algae (Chlamydomonas), this may be

accounted for by the fact that angiosperms have a renowned

history of WGDs driven form autopolyploid and allopolyploid

FIGURE 3
Evolutionary relationships of TCP subgroups in 28 plant
species. An unrooted neighbour-joining treewas constructedwith
the trimmed multiple sequence alignment of MEGA 11. The
phylogenywas constructed using 1,000 bootstrap replication
value, bootstrap values of less than 70% are indicated by red circles
on tree branches. Groups A-H were designated according to
ancestral relationship of different branches and their clockwise
appearance within each tree. Groups are distinguished by different
branch color schemes.
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events (Van de Peer et al., 2009; Li X. et al., 2022). The expansion

of the monocot TCP-like genes was mainly through two rounds

of whole genome duplication (WGD) (Mondragón-Palomino

and Trontin, 2011). Several systematic analyses of the

orthologous clades from B. distachyon, O. sativa, Z. mays and

S. bicolor demonstrated that their common ancestor was formed

by 21 genes. These findings were also supported by other WGD

research in the angiosperm genome (Landis et al., 2018; Wang

et al., 2020). Although, the TCP genes have been defined as

evolutionary conserved plant transcription factors grouped

according to similarity, differences among them have been

related to the probability of insertion or loss of introns during

evolution of the species. This phenomenon may suggest that

functional diversity and expression control methods have

involved more replication fragments, gene doubling, and other

duplication events (Li et al., 2021).

Gene duplication events may take the form of segmental or

single-gene duplications, involving: tandem, proximal, dispersed,

and transposed duplications (Wang et al., 2012). Duplication

event researches have shown that segmental duplications are the

main driving force for expansion and evolution of the TCP gene

family (Cannon et al., 2004; Wang et al., 2012). In support to

these findings, research in Tartary buckwheat (Yang M. et al.,

2022), and M. acuminata (Wang J. et al., 2022) have shown that

the segmental duplication was responsible for the expansion of

TCP gene family, and that the TCP gene family has undergone

three WGDs during evolution. Therefore, to further understand

the gene duplication events of TCPmembers in 17 different plant

species, we computed for duplication event types using the plant

duplicate gene database, PDGD (http://pdgd.njau.edu.cn8080)

(Lee et al., 2012) (Figure 5). We observed that dispersed

duplication event was the most prevalent duplication event

constituting 54% of the total duplication events among the

analyzed plant species, while tandem duplication events had

the least prevalence of 1%. Analysis of duplicate gene pairs for

each plant species showed higher percentages of dispersed

duplication events in G. hirsutum. Tandem duplication events

were only prevalent in M. domestica and G. hirsutum.

Transposed duplication events were also noticed in all the

plant species except in H. vulgare (Figure 5A). Therefore, we

concluded that the dispersed duplication event contributed to a

greater extend the expansion of the TCP gene family bringing

about inconsistencies in the total number of TCP proteins within

plant species (Figure 5B).

In addition, the CYC/TB1clade has undergone several

duplications and diversifications at the base of core eudicots,

FIGURE 4
TCP phylogenetic analysis. (A) The interspecies phylogenetic tree constructed using Xshell ortholog finder, and the phylogenetic trees was
constructed using online iTOL software. (B) Summary of TCP protein distribution within the phylogenetic tree shown in Figure 3. The analysed TCP
proteins were grouped into eight groups (A–H) according to close ancestry and phylogeny relationships. Different color schemes represent increase
in the total number of TCP proteins in specific plant species, with blue (0) to red (highest total number).

Frontiers in Genetics frontiersin.org06

Zhou et al. 10.3389/fgene.2022.1060546

http://pdgd.njau.edu.cn8080/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1060546


giving rise to three distinct clades: CYC1, CYC2, and CYC3

(Reeves and Olmstead, 2003; Smith et al., 2004). The CYC1 is

more diverse than the other two copies, containing about 8%

more sequence divergence in the TCP domain (Zhao et al., 2019),

and it is sister clade to the CYC2 and CYC3 clades. While, the

CYC3 clade is the only clade that does not contain additional

duplications from other lineages. Notably, the CYC2 exhibits the

greatest number of within-clade duplication, and contains

CYCLOIDEA and its orthologs (Howarth and Donoghue,

2006). The TB1, a single copy from Zea mays is more similar

to genes in the CYC1 clade, compared to CYC2 and CYC3

(Doebley et al., 1997).

5 MicroRNAs target TCP genes and
gene ontology of TCP gene family

ThemiRNAs control gene expression by binding to the target

messenger RNA (mRNA), studies have shown the

miR319 among other mRNAs to bind the TCP genes for

effective regulation of their biological functions (Fang et al.,

2021; Gao et al., 2022). Accumulating evidence has revealed

the role of miR319-regulated TCPs (MRTCPs) in various

biological pathways controlling growth and development and

abiotic stress regulations (Fang et al., 2021). In A. thaliana the

CIN-like TCP clade comprise eight members, divided into two

clades based on the presence of microRNA (miRNA) binding

sites outside the TCP domain. miRNA binding sites exist in

TCP2, TCP3, TCP4, TCP10, and TCP24 and are post-

transcriptionally regulated by miR319. On the other hand, a

small clade called the TCP5-like CIN-TCPS is formed by TCP5,

TCP13, and TCP17, and it is critical in plant thermophogenesis

(Han et al., 2019). Nonetheless, other miRNAs have been shown

to bind TCP genes, a total of nine microRNAs have been shown

to regulate twenty TCP genes in three Apiaceae species with

miR319 having most target genes targeting 11 TCP genes,

miR172 and miR181 targeting 3 TCP genes each. Thereby,

evidencing that the miRNAs target TCP genes to execute their

biological functions (Pei et al., 2021). Studies in sweet potato have

identified 4 IbTCP genes containing miR319-bindibg sites,

further investigation have confirmed that IbmiR319 plays a

crucial role in leaf anatomical morphology, and inhibits the

expression levels of IbTCP11/17 (Ren et al., 2021). The

miR319 is also involved in modulating leaf morphogenesis

and flowering, and the positive regulation of leaf senescence

in Arabidopsis through the overexpressed ApTCP2 influencing

the JA biosynthesis (Zhu et al., 2022). The miRNA319 target

3 TCP genes in C. nankingense (CnTCP2/4/14). Expression

analysis in Arabidopsis transgenic confirmed that the CnTCP4

negatively regulates the cold stress by downregulating the cold-

induced genes such as AtCBF1/2/3, AtCOR15A, and

AtKIN1(Tian et al., 2022).

6 Biological functions

Similar to other transcription factors, the TCP factors have

undergone considerable evolutionary measures and

rearrangements that created novel protein biological functions

(Bornberg-Bauer and Albà, 2013). Thus, they regulate several

FIGURE 5
Duplication events different plant species. (A) Shows the number of duplication event types present in individual plant species, and (B) The total
number of duplication events in investigated plant species. Different color backgrounds on the bar represent different gene duplication events. Also
described in the key, top right corner.
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aspects of plant development including; whole plant stature, leaf

morphogenesis and maturation, inflorescence stem growth and

floral organ development (Chai et al., 2017). To have an insight of

the potential biological roles of the TCP genes, we performed

Gene ontology analysis using A. thaliana TCP protein sequences

(Figure 6). We observed that many processes were assigned to the

biological processes (BP), mainly involved in growth and

development, concurring with previous findings (İlhan et al.,

2018; Kiseleva et al., 2022). A fewer processes in molecular

function (MF), also had significant fold changes, and most of

them were involved in DNA binding, supporting previous

findings that TCPs are involved in DNA binding (Kosugi and

Ohashi, 2002; He et al., 2021). The least number of processes

were assigned to the cellular component (CC) category, although

significant fold changes were observed. We assumed that fewer

TCPs were involved with cell and cytoplasm processes. In

accordance with studies in Tartary buckwheat (Yang Q. et al.,

2022).

FIGURE 6
Gene Ontology Analysis of the TCP proteins in A. thaliana. GO terms were assigned using the online tool Gene Ontology Resources (http://
geneontology.org/) from A. thaliana gene IDs.
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6.1 Class I TCP gene

Expression analysis of the Class I TCP genes in A. thaliana

(AtTCP15/14/8/22) has demonstrated that the plants that lack

functionality in Class I TCPs display poor stamen elongation.

Suggesting that the Class I TCPs are involved in stamen

elongation. For instance, AtTCP15 regulates the expression

of the Small Auxin Up RNA 63 (SAUR63) gene family,

which is involved in both petal and stamen development

suggesting a AtTCP15- SAUR63 mode of action in the

regulation of stamen development. Studies have also shown

that AtTCP14 and AtTCP15 are required for optimal petiole

and hypocotyl elongation during heat stress (Gastaldi et al.,

2020; Ferrero et al., 2021). Overexpression analysis of Class I

GbTCP, a homolog of AtTCP15 yielded fewer trichomes on the

stem, smaller flowers, longer pedicel, and more buds.

Interestingly, the overexpression of GbTCP in A. thaliana

promoted root hair initiation and elongation. Further

analysis demonstrated that GbTCP regulates the biosynthesis

of jasmonates (LOX4, AOS, AOC3, and OPCL1) and other

phytohormones including Ethylene and Auxin Response

genes (Hao et al., 2012).

The Class I TCP transcription factors are also involved in

abiotic stress regulation. The PeTCP10 in P. edulis was recently

shown to alleviate salt stress, and reduce cellular damage in A.

thaliana. Additional biochemical analysis exhibited that

overexpressed PeTCP10 increases chlorophyll content,

improves antioxidant capacity, and reduces water loss.

Implying that the PeTCP10 might regulate salt stress through

the CBL/SCaBP-CIPK/PKS pathway. Additionally, PeTCP10 was

also shown to repress seedling growth and seed germination

under high saline conditions (Pandey et al., 2015; Xu et al., 2021).

Previous research has also heralded similar pathway in salt stress

regulation by AtMYB49 (Zhang et al., 2020), and OsTCP19 in the

AB14-mediated pathway (Mukhopadhyay and Tyagi, 2015).

Recently, the CmTCP9 from C. morifolium expressed in A.

thaliana has enhanced the enlargement of leaves and petals,

and shown to interact with multiple hormone pathway protein,

such as the GA3ox4, a key enzyme in the biosynthesis of

gibberellin (Yu et al.).Furthermore, the class I TCPs are

involved in plant biotic stress defence. The expression patterns

of StTCP23 from Potato were analysed in susceptible variety

inoculated with pathogen Streptomyces turgidiscabies. Their

results prompted a suggestion that StTCP23 decrease the

pathogenicity of bacterial scab in Potato (Bao et al., 2019).

The PIF4 transcription factors bind to the GA20ox1 and the

growth regulator genes, HB1 and PRE6, for gibberellin

biosynthesis (Filo et al., 2015). AtTCP14 and AtTCP15 were

shown to significantly play a role in hormonal biosynthesis, by

directly participating in the induction of HB1 and PRE6 and

targeting the same genes targeted by PIF4, enhancing

PIF4 binding affinity to growth regulator genes (Ferrero et al.,

2019).

6.2 Class II TCP genes

The TCP CIN-clade is involved in cell elongation in the

hypocotyl (Rath et al., 2022). In A. thaliana TCP4 and TCP24

suppress photomorphogenesis as compensatory measures to

promote hypocotyl elongation. Analysis in the Chirita

heterotricha CYC homologous genes, ChCYC1C and

ChCYC1D has led to the conclusion that the ChRAD genes

contain promoter binding sites for the CYC genes. Directly

targeting the ChCYC1 genes, and enhancing the floral

dorsoventral asymmetry (zygomorphy) in C. heterotricha and

other core eudicots (Yang et al., 2010; Rath et al., 2022). In

T.fournieri, TfTCP8 and TfTCP13 genes were demonstrated to

reduce the leaf breadth, affirming previous research that ectopic

overexpression of AtTCP15 a homologous gene to TfTCP8

narrows leaf size (Huang and Irish, 2015; Zhang et al., 2021).

The OsPCF7 in rice has been shown to have a great relationship

with rice tiller and heading. Comparative expression analysis

between transgenic rice carrying the OsPCF7 gene with the wild

seedlings evidenced its functional roles in increasing shoot

height, root length, and grain yield. Deeper analysis in the

mode of function demonstrated that the OsPCF7 increased the

expression of downstream genes, the Class IKNOX genes such as:

STM, KNAT2, KNAT6, LOX2, AS1 and indoleacetic acid-induced

protein3 (IAA3) (Li et al., 2020).

Comparative expression analysis of the CIN-clade in

Antirrhinum majus between wild type and the CIN-mutant

genes, has shown that the CIN-clade inhibits excess cell

proliferation, maintaining the leaf surface flatness by

regulating its phytohormonal pathways. Molecular analysis

revealed that CIN-clade TCPs directly bind to genomic

regions promoting the transcription of cytokinin receptor

homolog HISTININE KINASE 4 (AmHK4) and INDOLE-3-

ACETIC ACID INDUCIBLE3/SHORT HYPOCOTYL 2 (IAA3/

SHY2) (Das Gupta et al., 2014). Ectopic expression of G.

raimondii TCP11 in A. thaliana has shown that GrTCp11

suppresses JA and Ethylene biosynthesis pathways thereby,

reducing root hair elongation; through targeting genes that are

directly associated with AtLOX4, AtAOC3, AtJAZ1, AtJAZ2, and

AtMYC2 (Hao et al., 2021).

6.2.1 TB1 genes
The TB1 subfamily regulates branching in various plant

species (Aguilar-Martínez et al., 2007). Expression analysis of

G. hirsutum TCP62 have proved these findings, and showed a

high enrichment in the auxiliary buds and phyllophores.

Nonetheless, overexpression of GhTCP62 in A. thaliana has

shown a negative regulation of total number of shoots and

reduced growth vigor (Liu J. et al., 2021). The Branched and

Indeterminate spikelet 1 (BDI1), which encodes a TCP

transcription factor, and highly conserved in both wild and

cultivated barley has been shown to play a crucial role in

determining barley inflorescence architecture and spikelet
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development; through regulating the gene transcription of cell

wall modification and known Trehalose-6-phosphate

homeostasis (Shang et al., 2020). The COMPUSITUM1

(COM1) in Class II CYC/TB1 subclade, working independent

of the COM2 has been shown to inhibit spike-branching through

boundary defined signals linked to the SM identity pathway,

VRS4(HRA2)—COM1- HvLG1 (Poursarebani et al., 2020).

Ranunculales, a sister order to three eudicots, P. somniferum,

E. californica, and C. vesicaria, has been shown to play a crucial

role with a wide diversity in developmental traits through the

expression of CYL genes (Zhao et al., 2018). Although, the mode

of action still requires further research. The overexpression of V.

vaccinium TCP18 has been demonstrated to significantly

decrease seed germination which can be alleviated by

stratification and low temperature regulation, through a

negative feedback loop. VvTCP18 is downregulated by low

temperatures further preventing its binding to the FT, thereby

retaining the normal function of the FT (Maurya et al., 2020; Li

et al., 2021). Additional regulatory roles of theTCP gene

members from various plant species are summarized in Table 1.

7 Conclusion and perspectives

Characterization and expression research of the TCP TFs has

progressed quite well in the past decades, and has improved the

understanding of the TCP gene family. In this article, we

summarized recent findings and answered a few questions in

regard to the TCP gene family through phylogenetic and

duplication analysis. TCP factors have been classified into the

TABLE 1 Summary of some genes and their biological functions

Plant species Gene ID Transgenic
plant

Function Reference

P. TRICHOCARPA PtrTCP10 P. trichocarpa Salt stress Wang et al. (2022c)

G. BARBADENSE GhTCP A. thaliana root hair initiation and elongation Hao et al. (2012)

T. FOURNIERI TfTCP8/13 A. thaliana Leaf and flower shape Zhang et al. (2021)

G. HIRSUTUM GhTCP62 G. hirsutum Regulates branching Liu et al. (2021b)

A.thaliana Regulates shoot growth vigor

O.SATIVA OsPCF7 O.sativa Regulates rice grain yield Li et al. (2020)

P. eDULIS PeTCP10 A.thaliana Regulates salt stress Chen et al. (2019)

Inhibits seed germination and seedling under salt stress

C.
NANKINGENSE

CnTCP4 A.thaliana Inhibits cold-inducible gene expression Tian et al. (2022)

CnTCP9 A.thaliana Leaf development (Yu et al., 2022b)

C. morifolium Flower enlargement

C. PUMILA CpCYC C. pumila Floral zygomorphy, horizontal orientation of flowers, dorsal petal and lateral
staminodes orientation

Liu et al. (2021a)

Z. JUJUBE ZjTCP16 A. thaliana Leaf morphogenesis Yang et al. (2022b)

Z. jujuba Cell proliferation

H. VULGARE BDI1 H. vulgare Inflorescence architecture Shang et al. (2020)

COM1 T. aestivum L Spikelet development (Poursarebani et al.,
2020)Inhibits spikelet development

P. SOMNIFERUM EsaCYL1/2 E. californica Axillary shoot branching Zhao et al. (2018)

C. vesicaria Regulation of petal size and stamen number

Affect floral symmetry

V. VACCINIUM VcTCP18 A. thaliana Seed germination rate Li et al. (2021)

B.PAPYRIFERA BpTCP8/
9/14

A. thaliana Prevent rosette branch outgrowth Zhao et al. (2020)

D. LATIFLORUS DlTC12-C D. latiflorus Inhibits lateral branch growth Jin et al. (2022)

G. RAIMONDII GrTCP11 A. thaliana Inhibits root hair elongation Hao et al. (2021)

Suppresses JA and Ethylene pathways

A. PALMATUM ApTCP2 A. thaliana Modulate leaf morphogenesis Zhu et al. (2022)

Affect flowering

Positively regulate leaf senescence

M.
POLYMORPHA

MpTCP1 Controls cell proliferation and redox processes Busch et al. (2019)
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PCF-, CIN-, and CYC/TB1 clades. This diversity has brought a

wide range of biological functionality in hormonal, growth and

development, biotic and abiotic, and other numerous biological

processes. Implying a crucial role within the TCP gene family.

Biomolecular studies have also revealed the basis of

functionality of the TCPs, which is the bHLH domain

responsible for DNA-binding and protein to protein

interaction. Suggesting that TCPs can bind to other proteins

or DNA to effectively perform their biological roles. Although,

the TCP TFs may carry similar TCP domain in different plant

species, studies have also revealed inconsistencies in the TCP

gene family size amongst plant species. This phenomenon can

be related to duplication and deletion events of plant genome

that contribute to the expansion of gene families. Several

duplication events have been discussed and shown to have

contributed to the overall expansion of the gene family notably,

here we concluded that the dispersed duplication event

contributed to a greater extend in the investigated plant

species. Evolution can also be accounted for in plant

diversity, we investigated the evolution of TCP genes,

basically we noted that the PCF-clade was fully conserved in

bryophytes, lycophytes and liverworts as compared to the

angiosperms, and that lower plants lacks the R-domain in

the CYC/TB1 subclade. This we related to the fact that the

angiosperm evolution brought about increased speciation and

probably deletions within the TCP conserved motifs and

domain. Nonetheless, TCP genes in other plants are still yet

to be characterized and their substantial functional roles

elucidated.

Future characterizations of TCP gene family should provide

resources for plant genetic improvements, offer directions for

practical use, and fully disclose the regulatory mechanism by

which the TCP genes control abiotic stress response, and

growth and development through genetic transformation or

gene editing (Min et al., 2022). In addition, future TCP protein

to protein network studies should map different pathways that

interact with the other proteins. In conclusion, cumulative

knowledge gained from these summarized studies will

generate novel morphologies of agronomic interests and help

bio-engineer enhanced resistant plants to environmental stress

and pathogens.
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