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Background: Clear cell renal cell carcinoma (CCRCC) has a high incidence and

poor prognosis. Cuproptosis, an independent pattern of cell death associated

with copper, plays an important role in cancer proliferation and metastasis. The

role of cuproptosis-related genes (CRGs) in CCRCC is unclear.

Methods: Transcriptome and clinical information for CCRCC were downloaded

from The Cancer Genome Atlas (TCGA) database. After dividing the training and

testing cohort, a 4-CRGs risk signature (FDX1,DLD,DLAT, CDKN2A) was identified in

the training cohort using Least absolute shrinkageand selectionoperator (LASSO) and

Cox regression analysis. The effect of the 4-CRGs risk signature on prognosis was

assessed using Kaplan-Meier (KM) curves and time-dependent receiver operating

characteristic (ROC) curves and verified using the testing cohort. For different risk

groups, the immune statue was assessed using the CIBERSORT algorithm, the

ssGSEA method and immune checkpoint expression data. Finally, a competitive

endogenous RNA (ceRNA) network was constructed using miRTarbase and starBase

databases to identifymolecules thatmay have a regulatory relationship with CRCCC.

Results: There were significant changes in the overall survival (OS), immune

microenvironment, immune function, and checkpoint gene expression among

the different risk groups. A ceRNA network consisting of one mRNA, two

miRNAs, and 12 lncRNAs was constructed.

Conclusion: The 4-CRGs risk signature provides a new method to predict the

prognosis of patients with CCRCC and the effect of immunotherapy. We

propose a new cuproptosis-associated ceRNA network that can help to

further explore the molecular mechanisms of CCRCC.
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1 Introduction

Renal cell carcinoma (RCC) is one of the top ten most

common cancers in the world, ranking sixth and eighth in

new cases in men and women, respectively (Siegel et al.,

2020). Clear cell renal cell carcinoma (CCRCC), is the most

common type of RCC, accounting for about 75–80% of RCCs

(Nabi et al., 2018). Early diagnosis of RCC is difficult because

only 6–10% of patients present with typical symptoms, such

as hematuria, back pain, or abdominal mass (Patard et al.,

2003). Furthermore, the effect of chemotherapy and

radiation therapy in patients with CCRCC is not ideal,

and tumor removal is the best treatment option

(Sonpavde et al., 2012). Immunotherapy is an emerging

and promising therapeutic option, and some immune

checkpoint inhibitors (ICIs) have been approved for

metastatic CCRCC (nivolumab) after failed targeted

therapy or in combination with targeted drugs

(pembrolizumab + axitinib/avelumab + axitinib) as first-

line therapy (Motzer et al., 2015; Motzer et al., 2019; Rini

et al., 2019). However, in actual clinical practice, there are

still problems regarding which treatment methods can be

used for individual patients, especially advanced patients.

Therefore, it is necessary to establish a reliable predictive

model to predict patient survival and guide the choice of

different treatment options. We aimed to identify potential

targets with prognostic implications for CCRCC from the

perspective of cuproptosis, a newly discovered pattern of cell

death.

Copper accumulates within cells and can induce cell

death when a certain concentration is reached (Tsvetkov

et al., 2022). In tumors, copper is involved in cell

proliferation, epithelial-mesenchymal transition (EMT),

angiogenesis, immunity, inflammation, and metastasis of

tumors (De Luca et al., 2019; da Silva et al., 2022).

Copper chelation may inhibit these processes to exert

anti-tumor and anti-metastatic effects (Denoyer et al.,

2015; Shanbhag et al., 2021). Copper ionophores have

recently been shown to induce a novel mechanism of cell

death (cuproptosis) (Tsvetkov et al., 2022). There have been

studies on copper ion carriers that play a role in anti-tumor

activity. For example, disulfiram has a significant tumor

growth inhibition effect in patients with prostate (Safi

et al., 2014) and breast cancer (Zhang et al., 2010;

Allensworth et al., 2015). Disulfiram can improve the

survival rate of patients treated with cisplatin and

vinorelbine for non-small cell lung cancer (Nechushtan

et al., 2015). Cuproptosis-related genes may serve as new

targets for cancer treatment, but there are few studies on

copper ionophores and cuproptosis.

Here, we downloaded the TCGA-KIRC dataset to

identify differential genes associated with cuproptosis in

tumor tissue and normal samples and validated them

using the GSE53757 dataset. A risk score model

containing four cuproptosis-related genes was constructed

using LASSO and Cox regression, and the correlation

between the risk score model and immune function,

immune infiltrates, immune escape, and cancer treatment

drugs were analyzed. Finally, a possible ceRNA network was

constructed by searching for miRNAs and lncRNAs

associated with cuproptosis-related genes using TCGA,

miRTarbase, and starBase databases.

2 Materials and methods

2.1 Data collection

The RNA-sequencing TPM data and corresponding clinical

data of KIRC were retrieved from the TCGA database (https://

portal.gdc.cancer.gov/), including 541 KIRC samples with

complete survival data and 72 normal samples. The RNA-

sequencing TPM data and corresponding clinical data of LGG

were retrieved from the TCGA database (https://portal.gdc.

cancer.gov/), including 479 LGG samples. The

GSE22541 dataset was downloaded from GEO (http://www.

ncbi.nlm.nih.gov/geo) and included 68 CCRCC samples with

survival data. The GSE53757 dataset was downloaded from GEO

(http://www.ncbi.nlm.nih.gov/geo) and included 72 CCRCC

samples and 72 normal samples (von Roemeling et al., 2014).

FDX1, LIPT1, LIAS, DLD, DLAT, PDHA1, PDHB, MTF1, GLS,

and CDKN2A are thought to be cuproptosis-related genes and

are involved in two structurally distinct copper-loaded

ionophores (Tsvetkov et al., 2022).

2.2 Expression patterns of cuproptosis-
related genes in clear cell renal cell
carcinoma

RNA-sequencing TPM data from the TCGA database were

used to compare the expression of cuproptosis-related genes

in CCRCC specimens and normal specimens using the

Wilcoxon rank-sum test. Statistical significance was set at

p < 0.05. The GSE53757 dataset was used for further

validation.

2.3 Correlation analysis and GO and KEGG
analysis

For significant prognosis-related cuproptosis-related

genes, we performed gene co-expression analysis in

TCGA CCRCC patients and set the absolute value of the

correlation coefficient to greater than 0.4 with a p-value less

than 0.001 to obtain the co-expression genes. To further
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understand the potential role of cuproptosis-related genes in

CCRCC, GO and KEGG analyses were performed on co-

expressed copper death-related genes.

2.4 Construction and validation of the 4-
CRGs risk signature

We divided the training and testing cohorts into a ratio

of 7:3 for patients with CCRCC. Clinical statistical analysis

of the training and testing groups was performed using the

chi-square test. In the training cohort, a univariate Cox

regression analysis of cuproptosis-related genes was

performed to identify the significant prognostically related

genes. For significant prognosis-related cuproptosis-related

genes, we used LASSO regression analysis to obtain

independent prognostic genes in the training set. LASSO

regression improves the accuracy and interpretability of the

model and reduces the risk of overfitting (Tibshirani, 1997).

Multivariate Cox regression analysis was conducted to

obtain regression coefficients for independent prognostic

genes. Finally, a 4-CRGs risk signature was established based

on the multivariate Cox regression coefficient beta value,

and the formula was as follows: risk score = EXPgene1p β1 +
EXPgene2pβ2 + EXPgene3pβ3 + . . . + EXPgenenpβn, where
EXP is the expression level and β represents the regression

coefficient from the multivariate Cox. In both cohort, by

calculating the risk score for each sample, patients were

divided into low- and high-risk groups using the median cut-

off value. Furthermore, the KM curve was used to compare

FIGURE 1
(A) Identification of differentially cuproptosis-related expressed genes in TCGA cohort. (B) Identification of cuproptosis-related genes with
prognostic value.

Frontiers in Genetics frontiersin.org03

Sun et al. 10.3389/fgene.2022.1061382

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1061382


the overall survival (OS) between the two groups using the

log-rank test. A time-dependent ROC curve analysis was

used to assess the predictive power of the 4-CRGs risk

signature. Finally, we perform external validation with the

external validation cohort GSE22451 and TCGA-LGG. In

each independent external validation cohort, based on the

risk score, patients were classified into two groups.

Maximally selected rank statistics was applied by using an

R package “survival”, and “survminer” to identify the

optimal cutting point to divide patients.

2.5 Construction of nomogram

We screened for prognostic predictive factors including

clinical characteristics and risk scores. Specifically, the

univariate Cox proportional hazard model was employed

to analyze the correlation between the risk score and OS, and

multivariate Cox regression analysis was used to evaluate

whether the established risk score could serve as an

independent prognostic predictor. Further, to

comprehensively assess patient survival, we constructed a

nomogram integrating distinct clinicopathological

information, including age, stage, and risk score, using

the “rms” package. Additionally, the decision curve

analysis (DCA) of 1, 3, and 5 years was calculated to

evaluate whether the synthetic nomogram we established

was suitable for clinical application.

2.6 Immune function, immune infiltrates,
immunomodulatory, and drugs

We used the CIBERSORT algorithm to assess the degree of

infiltration of 22 immune cells in different CCRCC samples

(Newman et al., 2015). Single-sample gene set enrichment

analysis (ssGSEA) was applied to explore the different

infiltration degrees of immune-related functions in different

CCRCC samples of the TCGA database using the R package

“GSVA”.

TIMER is a website that can systematically analyze immune

infiltration in various malignancies (https://timer.cistrome.org/)

(Li et al., 2020). We investigated the relationship between gene

expression and gene markers of TILs in CCRCC.

TISIDB (http://cis.hku.hk/TISIDB/index.php) was used to

investigate the association of genes with immunostimulators in

CCRCC.

The “pRRophetic” R package was used to predict the half-

maximal inhibitory concentration (IC50) of some drugs in each

sample regarding tumor treatment.

2.7 ceRNA network

We used RNAseq data from the TCGA database and

miRNAseq data, including 541 KIRC samples and 72 normal

samples. The difference analysis was performed using the

DESeq2 package, and |logFC|>1 and adj. p < 0.05 were set as

TABLE 1 Characteristics of training, testing, and total cohort.

Clinical features Type Total
(N = 518)

Testing cohort
(N = 154)

Training cohort
(N = 364)

p-value

Age ≤65 329 (63.51%) 99 (64.29%) 230 (63.19%) 0.8905

Age >65 189 (36.49%) 55 (35.71%) 134 (36.81%)

Stage Stage I 261 (50.39%) 81 (52.6%) 180 (49.45%) 0.439

Stage Stage II 58 (11.2%) 20 (12.99%) 38 (10.44%)

Stage Stage III 116 (22.39%) 34 (22.08%) 82 (22.53%)

Stage Stage IV 83 (16.02%) 19 (12.34%) 64 (17.58%)

Gender Female 175 (33.78%) 45 (29.22%) 130 (35.71%) 0.1846

Gender Male 343 (66.22%) 109 (70.78%) 234 (64.29%)

T T1 267 (51.54%) 82 (53.25%) 185 (50.82%) 0.6336

T T2 70 (13.51%) 24 (15.58%) 46 (12.64%)

T T3 170 (32.82%) 45 (29.22%) 125 (34.34%)

T T4 11 (2.12%) 3 (1.95%) 8 (2.2%)

N N0 230 (44.4%) 69 (44.81%) 161 (44.23%) 1

N N1 15 (2.9%) 4 (2.6%) 11 (3.02%)

N Unknown 273 (52.7%) 81 (52.6%) 192 (52.75%)

M M0 414 (79.92%) 131 (85.06%) 283 (77.75%) 0.1085

M M1 78 (15.06%) 17 (11.04%) 61 (16.76%)

M Unknown 26 (5.02%) 6 (3.9%) 20 (5.49%)
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thresholds to obtain the differential expression of lncRNAs

(DElncRNAs) and miRNAs (DEmiRNAs) between CCRCC

patients and normal patients. Subsequently, cuproptose-

related miRNAs (CRMs) were predicted using the

miRTarBase database (Huang et al., 2020). DEmiRNAs

and CRMs were intersected to obtain cuproptosis-related

DEmiRNAs (CRDEMs). Cuproptosis-related lncRNAs

(CRLs) were predicted using the starBase database (Li

et al., 2014). CRLs and DElncRNAs were intersected to

obtain the cuproptosis-related DElncRNAs (CRDELs).

Subsequently, we integrated the interactions between

CRDEMs, CRDELs, and cuproptosis-related genes to

construct a ceRNA regulatory network. Finally, Cytoscape

(version 3.8.0) software was used to visualize the ceRNA

regulatory network.

2.8 Statistical analysis

All statistical analyses were conducted using R version

4.1.2 software (https://www.r-project.org/). Univariate Cox

hazard regression analyses were performed to identify the

independent prognostic cuproptosis-related genes. Survival

analysis was conducted by the Kaplan-Meier (K-M) method

with the log-rank test. We also compared the expression of

cuproptosis-related genes at different clinical stages by using

the Wilcoxon rank-sum test.

3 Results

3.1 Identification of differentially
expressed cuproptosis-related genes in
normal and tumor samples

We compared the expression of cuproptosis-related genes

between 541 CCRCC samples and 72 normal samples using the

Wilcoxon rank-sum test in the TCGA cohort. We found that

LIAS and CDKN2A were significantly upregulated in tumor

samples, and FDX1, DLD, DLAT, PDHA1, PDHB, MTF1, and

GLS were significantly downregulated in tumor samples

(Figure 1A).

3.2 Identification of cuproptosis-related
genes with prognostic value

To obtain reliable survival results for CCRCC, we first

excluded samples with a survival time of less than 30 days. In

total, 518 samples were obtained (Table 1). Nine differentially

expressed cuproptosis-related genes (FDX1, DLD, DLAT,

PDHA1, PDHB, MTF1, GLS, LIAS, and CDKN2A) were

identified. Through the KM curve, we found that 9 selected

genes all had an impact on the prognosis of CCRCC, including

FDX1 (hazard ratio, HR = 0.49; 95% confidence interval, 95%

CI = 0.36–0.67; p < 0.001), LIAS (HR = 0.61; 95%CI =

FIGURE 2
Results of GO and KEGG enrichment analysis of cuproptosis co-expression genes (A) FDX1; (B) LIAS (C)DLD; (D)DLAT; (E) PDHA1; (F) PDHB; (G)
MTF1; (H) GLS.
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0.45–0.83; p = 0.002), DLD (HR = 0.53; 95%CI = 0.39–0.72; p <
0.001), DLAT (HR = 0.46; 95%CI = 0.33–0.63; p < 0.001),

PDHA1 (HR = 0.63; 95%CI = 0.46–0.85; p = 0.003), PDHB

(HR = 0.57; 95%CI = 0.42–0.78; p < 0.001), MTF1 (HR = 0.59;

95%CI = 0.43–0.80; p = 0.001), GLS (HR = 0.65; 95%CI =

0.48–0.88; p = 0.005), and CDKN2A (HR = 1.49; 95%CI =

1.10–2.02; p = 0.011) (Figure 1B).

3.3 Clinicopathological features

We compared the expression of cuproptosis-related genes at

different clinical stages using the Wilcoxon rank-sum test. FDX1,

LIAS, DLD, DLAT, PDHA1, PDHB,MTF1, and GLS were highly

expressed in T1 compared with T3, and CDKN2A was expressed

at lower levels in T1 than in T3 (Supplementary Figure S1).

FIGURE 3
The 4-CRGs risk signature in the training cohort. (A) The CRGs with prognostic values were assessed by the univariate Cox proportional hazards
regressionmodel in the training cohort. (B,C) The selection of CRGs for risk signature by LASSO analysis in the training cohort. (D) K-M curves for OS
in the training cohort. (E–G) The risk score, survival status, and heatmap of 4 CRGs in the training cohort. (H) Time-dependent ROC curves for OS in
the training cohort.
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FIGURE 4
(A) K-M curves for OS in the testing cohort. (B–D) The risk score, survival status, and heatmap of 4 CRGs in the testing cohort. (E) Time-
dependent ROC curves for OS in the testing cohort. (F–I) Differential expression of FDX1, DLD, DLAT, and CDKN2A in the GSE53757 dataset. (J) K-M
curves for PFS in the GSE22541. (K) K-M curves for OS in the LGG.
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Compared to N1, FDX1 and LIAS were highly expressed in N0

(Supplementary Figure S2). FDX1, LIAS, DLD, DLAT, PDHA1,

PDHB, MTF1, and GLS were highly expressed in M0 compared

with M1, and CDKN2A was expressed at lower levels in M0 than

in M1 (Supplementary Figure S3). FDX1, LIAS, DLD, DLAT,

PDHA1, PDHB, and MTF1 were highly expressed in Stage

1 compared to Stage 3 and 4, and CDKN2A had lower

expression in Stage 1 compared to Stage 3 and 4

(Supplementary Figure S4).

3.4 GO and KEGG

For significant prognosis-related cuproptosis-related genes,

we performed gene co-expression analysis in TCGA tumor

patients and set the absolute value of the correlation

coefficient to greater than 0.4 with a p-value less than 0.001 to

obtain the co-expression genes. For co-expression genes, we

performed GO and KEGG enrichment analyses and sorted

them by p values (Figure 2). We found that co-expression

genes were significantly enriched in the mitochondria during

cell localization. The TCA cycle is thought to be associated with

cancer progression, the site of biological processes in the

mitochondria. This is consistent with Tsvetkov et al. (2022)’s

view that Cu causes cell death by influencing the TCA cycle. The

enrichment analysis results showed that co-expression of genes is

correlated with autophagy and ubiquitin-mediated proteolysis,

which provides a research direction for further exploration of the

mechanism of cuproptosis.

3.5 Construction of the 4-CRGs risk
signature

We found no significant differences between the training and

testing cohorts in terms of age, sex, or TNM staging (Table 1). In

the training cohort, univariate Cox regression analysis yielded

eight cuproptosis-related genes that were significantly associated

with prognosis (Figure 3A). Using lasso regression method, six

optimal variables were obtained from the above 8 cuproptosis-

prognostic-related gene (Figures 3B,C). By Cox regression

analysis, the signature was finally established: risk score =

EXP FDX1 p −0.499501220246694 + EXP DLD

p −0.59322127824406 + EXP DLAT p −0.659153532219121 +

EXP CDKN2A p 0.199116740963518. The KM curve showed

that the prognosis of the high-risk group was worse than that of

the low-risk group (Figure 3D, log-rank p < 0.001; HR = 2.55,

95%CI = 1.73–3.76). ROC curves were used to assess the accuracy

of the established models in predicting overall survival (OS) in

patients with CCRCC. As shown in Figure 3H, the AUC values at

1, 3, and 5 years were 0.684, 0.688, and 0.670, respectively,

indicating the robustness and accuracy of the model in

predicting patient prognosis.

3.6 Validation of the 4-CRGs risk signature
and validation of differential expression of
FDX1, DLD, DLAT, and CDKN2A in CCRCC

In the testing cohort, the KM curve showed that the

prognosis of the high-risk group was worse than that of the

low-risk group (Figure 4A, log-rank p = 0.006; HR = 2.31, 95%

CI = 1.28–4.17). ROC curves were used to assess the accuracy of

the established models in predicting OS in patients with CCRCC.

As shown in Figure 4E, the AUC values at 1, 3, and 5 years were

0.665, 0.632, and 0.666, respectively, indicating the robustness

and accuracy of the model in predicting patient prognosis.

We validated the differences in the expression of FDX1,DLD,

DLAT, and CDKN2A between CCRCC and normal samples

using GSE53757. The results showed that FDX1, DLD, and

DLAT exhibited low expression in CCRCC, whereas CDKN2A

was highly expressed in CCRCC (Figures 4F–I). This is consistent

with the results obtained from the TCGA dataset. We further

verify the above prediction method in external data cohorts”

GSE22541” and “TCGA-LGG”. In GSE22541 validation cohort,

we divided the CCRCC patients into high-risk and low-risk

groups based on the risk score. Survival comparison showed

that low-risk group had significantly better prognosis outcome

than high-risk group (Figure 4J). In addition, In TCGA-LGG

validation cohort, we also found that based on the high and low-

risk groups divided by risk score. Different groups have

significantly different prognostic outcomes (Figure 4K). This

demonstrates the generalization power of cuproptosis-related

signature and has some value for the prediction of other cancers.

3.7 Nomogram and decision curve analysis

Univariate and multivariate Cox regression analyses showed

that risk score, stage, and age were prognostic predictors of

TGGA-KIRC (Figures 5A,B). Nomograms are widely used for the

prognostic assessment of tumors. Various clinical features have

prognostic value in clinical practice. Therefore, we established a

nomogram containing multiple clinicopathological

characteristics and risk scores. The scores for each variable

were calculated and combined to predict the prognosis of

patients with CCRCC (Figure 5C). DCA (Figure 5E) also

proved that the nomogram combined with various clinical

features had a better clinical application value.

3.8 Immune function and immune
infiltrates

We used the CIBERSORT algorithm to estimate differences

between 22 tumor-infiltrating immune cells between the low-

and high-risk groups. Figure 6D shows that plasma cells, T cells

CD8, T cells, regulatory T cells (Tregs), and activated NK cells
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FIGURE 5
The construction of a nomogram for predicting survival. (A,B) Screening the independent predictors for OS in KIRC by univariate and
multivariate Cox proportional hazards regression model. (D) A nomogram including risk score and clinicopathological features was constructed to
predict 1/3/5-year OS. (C) The calibration plots for predicting 1/3/5-year OS are based on the CRGs nomogram. (E)Decision curve analysis (DCA) for
the evaluation of the net benefits of CRGs and nomogram.
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were more enriched in high-risk groups, while naive B cells,

T cells, CD4 memory monocytes, macrophages M0,

macrophages M1, and macrophages M2 were more enriched

in the low-risk group. This indicates that there are differences in

immune cell infiltration in different risk groups, suggesting that

cuproptosis -related genes are closely related to immune cell

infiltration.

The ssGSEA method was applied to KIRC patients in the

high- and low-risk groups to assess the differences in immune

function between the high- and low-risk groups. Figure 7A shows

that Type-I-IFN-Response, HLA, Cytolytic activity,

Inflammation-promoting, T-cell-co-inhibition, Checkpoint,

T-cell-co-stimulation, APC-co-stimulation, CCR, and

parainflammation were upregulated in the high-risk group,

suggesting that cuproptosis-related genes are involved in

immune regulation.

We further investigated the links between FDX1, DLD,

DLAT, and CDKN2A and the TIL gene markers in the TIMER

database (Supplementary Material S1). DLD was strongly

correlated with STAT3 (rho = 0.419), STAT5B (rho =

0.47), and CD4 (rho = −0.401) (Supplementary Figure S5).

There was a strong correlation between DLAT and TGFBR2

(rho = 0.49), STAT3 (rho = 0.501), AHR (rho = 0.449),

STAT5B (rho = 0.571), MRC1 (rho = 0.437), CD7

FIGURE 6
Correlation of CRGs signature with immunity. (A) Heatmap of the scores of immune-related functions between different risk groups. (B,C) The
association between risk score and expression of PDCD1 or CTLA4 (D)Boxplots comparing the scores of immune cells between different risk groups.
*p < 0.05; **p < 0.01, ***p < 0.001.
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(rho = −0.417), and TGFBR2 (rho = 0.49) (Supplementary

Figure S5). STAT3, STAT5B, and CD7 simultaneously show a

strong correlation with DLD and DLAT, suggesting that

STAT3, STAT5B, and CD7 may be associated with

cuproptosis genes in an important link with levels of

immune infiltration.

FIGURE 7
Construction of the ceRNA network. (A) Volcano plot of 255 differentially expressedmiRNAs. (B) Venn diagram of the intersection of DEmiRNAs
and CRMs. (C) Volcano plot of 1010 differentially expressed lncRNAs. (D) Venn diagram of the intersection of DElncRNAs and CRLs. (E) ceRNA
network associated with cuproptosis: red indicates up-regulation in CCRCC, blue indicates down-regulation in CCRCC.
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3.9 Immunomodulators and screening
drugs

We explored the relationship between cuproptosis-related genes

and immunomodulators associated with model building and found

that FDX1, DLD, DLAT, CDKN2A, and immunostimulants were

significantly associated. Specifically, high expression of FDX1 was

significantly associated with TNFRSF8 (Rho = −0.402), and high

expression of DLD was significantly correlated with TNFRSF4

(Rho = −0.648), TNFRSF18 (Rho = −0.435), and TNFRSF25

(Rho = −0.6). DLAT was significantly correlated with TNFRSF4

(Rho = −0.522), TNFRSF8 (Rho = −0.436), TNFRSF18

(Rho = −0.557), TNFRSF25 (Rho = −0.642), CDKN2A, and

TNFRSF18 (Rho = 0.398) (Supplementary Figure S6). Hence,

FDX1, DLD, DLAT, and CDKN2A may play important roles in

immune interactions and may be associated with tumor immune

evasion.

We found that PDCD1 and CTLA4 (immune checkpoints)

were elevated in patients with high-risk scores (Figures 6B,C).

These discoveries suggested that patients of high-risk scores may

be more sensitive to ICB therapy.

Finally, we predicted some drugs for tumor treatment using

the pRRophetic R package and obtained some drugs that may

show different sensitivities in patients in the high-risk and low-

risk groups. Specifically, the low-risk group was more sensitive to

AKT. inhibitor.VIII, AP.24534, AS601245, AUY922, axitinib,

and AZ628, and the high-risk group were more sensitive to

A.443654, ABT.888, AG.014699, AICAR, and AMG.706

(Supplementary Figure S7).

3.10 ceRNA

We analyzed DElncRNAs and DEmiRNAs between

541 KIRC samples and 72 normal samples and obtained a

total of 255 DEmiRNAs, of which 129 were upregulated,

126 were downregulated; and 1010 DElncRNAs, of these,

777 were upregulated and 233 were downregulated. Using the

miRTarBase database, 148 CRMs were identified. Thirteen

CRDEMs were obtained by intersecting the CRMs with the

DEmiRNAs. Subsequently, 795 CRLs were predicted using the

starBase database, and 31 CRDELs were obtained by intersecting

CRLs with DElncRNAs. Based on the existing theory that

lncRNA inhibits the degradation of mRNA by miRNA

through competitive binding of miRNA, we constructed a

ceRNA network containing one mRNA, two miRNAs, and

12 lncRNAs (Figure 7E).

4 Discussion

We screened 10 copper ion carrier genes that are thought

to be associated with cuproptosis. Nine out of 10 genes had

differences in expression in CCRCC patients and non-tumor

patients, and all 9 genes were valuable in assessing the

prognosis of patients with CCRCC. We then looked for

genes that were co-expressed with cuproptosis-related genes

and found that cuproptosis-related genes may be associated

with autophagy and ubiquitin-mediated proteolysis.

Autophagy is associated with the survival of tumor cells

but can either promote or inhibit apoptosis in different

cellular contexts (Levy et al., 2017). Such context-

dependent effects of autophagy are poorly understood;

therefore, studying the relationship between apoptosis and

autophagy may be a new research direction. Ubiquitin-

mediated proteolysis is closely associated with cell

proliferation. Studies have shown that the driving force of

the cell cycle is the activation of cyclin-dependent kinases

(CDKs), the activities of which are controlled by ubiquitin-

mediated proteolysis of key regulators such as cyclins and

CDK inhibitors (Nakayama and Nakayama, 2006). However,

the link between cuproptosis and ubiquitin-mediated

proteolysis needs to be experimentally confirmed. Using

LASSO and multivariate Cox regression, we included four

genes and constructed cuproptosis gene-related signatures

containing FDX1, DLD, DLAT, and CDKN2A, of which

FDX1, DLAT, and CDKN2A are correlated with CCRCC

prognosis (Bian et al., 2022). Because FDX1, DLD, DLAT,

and copper ion carriers are positively correlated, CDKN2A

and copper ionophores are negatively correlated (Tsvetkov

et al., 2022), which is consistent with the predictions. FDX1 is

a reductase that reduces cu2+ to cu1+ to promote cuproptosis

(Tsvetkov et al., 2022). FDX1 may modulate TP73 tumor

suppressor through IRP2 to regulate tumor suppression

(Zhang et al., 2020a), and FDX1 may be a gene related to

KIRC (Khouja et al., 2022). DLD is a homodimeric flavin-

dependent enzyme that catalyzes NAD+-dependent oxidation

of dihydrolipoamide and participates in the TCA cycle to

convert pyruvate to acetyl-CoA (Fleminger and Dayan, 2021).

DLD may destroy cancer cells by producing ROS and by

chelation with DNA (Dayan et al., 2019). DLAT is the

subunit E2 of the PDC complex in the TCA cycle (Goh

et al., 2015). DLAT may promote apoptosis by influencing

energy production. CDKN2A encodes the tumor suppressors

p15 INK4b and p16 INK4a to inhibit CDK4 and CDK6, which

prevent pRB phosphorylation and block cell cycle progression

(Hannou et al., 2015). CDKN2A mutations may play a role in

renal cancer metastasis by influencing the expression of p16/

p14 (Sun et al., 2021). In summary, cuproptosis-related genes

may play important roles in CCRCC.

CCRCC is an immunogenic tumor whose tumor immune

microenvironment has many different immune cells infiltrates

with various immunomodulatory molecules, which may have

a significant impact on the prognosis of patients, as well as the

effect of immunotherapy (Díaz-Montero et al., 2020). The

cytolytic activity index (CYT) in CCRCC is the highest among

Frontiers in Genetics frontiersin.org12

Sun et al. 10.3389/fgene.2022.1061382

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1061382


18 human cancers (Rooney et al., 2015), and spontaneous

regression in 1% of patients are considered immune-mediated

(Janiszewska et al., 2013). CD8+ T cells play an important role

in tumor immunity, and their anti-tumor activity is the basis

of ICI therapy (Şenbabaoğlu et al., 2016). Activated CD8+

T cells have a significant positive effect on the prognosis of

some tumor patients, such as those with early colon cancer

(Pagès et al., 2005; Galon et al., 2006). However, for CCRCC,

infiltration of CD8+ T cells is associated with a high tumor

grade and poor prognosis (Díaz-Montero et al., 2020). Our

study showed that the high-risk group divided by the

cuproptosis-related signature had a significant increase in

the infiltration of CD8+ T cells compared with the low-risk

group, which is consistent with most studies. TILs that do not

mediate anti-tumor function may be associated with Tregs

(Díaz-Montero et al., 2020; Hah and Koo, 2021). We found

that the Treg infiltration levels were significantly higher in the

high-risk group than in the low-risk group. STAT5B, a marker

gene for Tregs, is highly correlated with the DLD and DLAT

genes involved in signature construction and may be the key

gene mediating elevated Treg infiltration levels in the high-

risk group. In addition, immune checkpoint molecules are also

important factors that block CD8+ T cells from exerting anti-

tumor effects (Díaz-Montero et al., 2020). We found that both

the most important immune checkpoint molecules,

PDCD1 and CTLA-4, were positively correlated with the

risk scores. In addition, we also found that the high-risk

group had a higher TIDE value, which also suggested that

the high-risk group was more likely to develop immune

escape.

To make the cuproptosis-related signature more clinically

relevant, we screened some of the drugs with different

sensitivities in the high-risk and low-risk groups. Patients in

the low-risk group had greater sensitivity to axitinib, an anti-

VEGF-targeted drug used for the treatment of metastatic RCC

(Hsieh et al., 2017).

The ceRNA hypothesis proposes that lncRNAs, as

competing endogenous RNAs, regulate mRNA expression

by competing for shared miRNAs (Karreth and Pandolfi,

2013). Specifically, upregulated lncRNA can competitively

bind to miRNA, causing miRNA expression to be

downregulated to inhibit the degradation of mRNA by

miRNA and promote mRNA expression. We constructed a

ceRNA network containing one upregulated mRNA, two

down-regulated miRNAs, and 12 up-regulated lncRNAs. In

the ceRNA network, we constructed CDKN2A, an

upregulated mRNA whose high expression is thought to be

associated with poor prognosis in CCRCC. Hsa-mir-124-3p, a

downregulated miRNA predicted to bind to CDKN2A, is

considered a key miRNA in CCRCC, inhibiting tumor

migration, invasion, and proliferation (Butz et al., 2015).

XIST, MALAT1, NEAT1, and LINC00240 up-regulated

lncRNA were predicted to bind to hsa-mir-124-3p and

promoted the proliferation and metastasis of other cancers

by modulating hsa-mir-124-3p, but there are no related

studies in CCRCC (Feng et al., 2016; Liu et al., 2018a; Xiao

et al., 2019; Zhang et al., 2020b). In cervical cancer, Hsa-mir-

125b-5p expression was downregulated, and CDKN2A

expression was upregulated, suggesting that hsa-miR-125a-

5p-CDKN2A is a possible ceRNA network (Wang et al., 2021).

Hsa-mir-125b-5p was also found to be downregulated in

bladder (Canturk et al., 2014) and prostate cancer (Lin

et al., 2020). XIST, a lncRNA, has been shown to promote

the progression of various cancers through its high expression

(Liu et al., 2018b; Liu et al., 2019; Ning et al., 2021; Zheng et al.,

2021). We found that the upregulated lncRNA XIST targets

both hsa-mir-124-3p and hsa-miR-125b-5p and is positively

correlated with CDKN2A. A XIST-hsa-mir-124-3p/hsa-miR-

125b-5p-CDKN2A ceRNA network may exist in CCRCC and

play an important role in its prognosis and development.

However, this study has some limitations and deficiencies.

First, our study was retrospective, and prospective studies are

needed to confirm these findings. Second, our conclusions were

all obtained by data analysis and need to be further confirmed by

experiments.
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