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Recent studies have shown that, compared with healthy individuals, patients

with type 2 diabetes (T2D) suffer a higher severity and mortality of COVID-19.

When infected with this retrovirus, patients with T2D are more likely to face

severe complications from cytokine storms and be admitted to high-

dependency or intensive care units. Some COVID-19 patients are known to

suffer from various forms of acute respiratory distress syndrome and have a

higher mortality risk due to extreme activation of inflammatory cascades. Using

a conditional false discovery rate statistical framework, an independent

genome-wide association study data on individuals presenting with T2D

(N = 62,892) and COVID-19 (N = 38,984) were analysed. Genome-wide

association study data from 2,343,084 participants were analysed and a

significant positive genetic correlation between T2D and COVID-19 was

observed (T2D: r for genetic = 0.1511, p-value = 0.01). Overall, 2 SNPs

(rs505922 and rs3924604) shared in common between T2D and COVID-19

were identified. Functional analyses indicated that the overlapping loci

annotated into the ABO and NUS1 genes might be implicated in several key

metabolic pathways. A pathway association analysis identified two common

pathways within T2D and COVID-19 pathogenesis, including chemokines and

their respective receptors. The gene identified from the pathway analysis

(CCR2) was also found to be highly expressed in blood tissue via the GTEx

database. To conclude, this study reveals that certain chemokines and their

receptors, which are directly involved in the genesis of cytokine storms, may

lead to exacerbated hyperinflammation in T2D patients infected by COVID-19.
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Introduction

Coronavirus disease 2019 (COVID-19) is caused by the

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2). This virus mainly utilises the angiotensin-converting enzyme

2 (ACE2) receptor to enter human tissues. ACE2 is expressed

within multiple human organs and is highly expressed in type

2 alveolar cells of the lungs, enabling the retrovirus to readily

infect humans expressing a complicit receptor. Petrosillo et al.

(2020) Though clinical symptoms of SARS-CoV-2 can vary in

their severity, patients typically present with fever, headache,

shortness of breath, and chest pain. Moreover, COVID-19

patients with comorbidities such as type 2 diabetes (T2D),

hypertension, and cardiovascular disease exhibit a higher risk

of severe complications and mortality compared to those without

such associated comorbidities. Sanyaolu et al. (2020) Previous

studies have suggested that regular inflammatory responses and

immune system dysfunctions occur as a consequence of

hyperglycaemia which, in turn, arises due to insulin resistance

caused by hyperinsulinemia. Norouzi et al. (2021) Further, some

studies also have shown that the more severe symptoms of

COVID-19, including acute respiratory distress syndrome

(ARDS) and respiratory failure, may be induced by an

imbalanced immune response due to the over-production of

cytokines (also known as a cytokine storm). Such imbalances can

also increase vascular permeability and lead to multiple organ

failures. Costela-Ruiz et al. (2020) In addition, the alveoli

experience severe inflammatory reactions which initiate a

dysfunctional cascade of inflammatory thrombosis in the

pulmonary vasculature that can lead to local coagulopathies.

(Abou-Ismail et al., 2020).

T2D is characterised as a condition of low-grade chronic

systematic inflammation that can be measured in the form of

elevated concentrations of the pro-inflammatory cytokines IL-1,

IL-6, and tumour necrosis factor alpha [TNF-α]), as well as by
levels of C-reactive protein and monocyte (macrophage) adhesion

to the endothelium. King (2008) In addition, the concentrations of

certain chemokines, including CCL1, CCL2, CCL4, and CXCL10,

are significantly higher in patients with T2D. Patients with T2D

also often face a higher risk of infection with diseases such as

COVID-19 and show a poor prognosis and a higher risk of

mortality. (Muller et al., 2005; Roncon et al., 2020). As such,

studies have shown that the second most prevalent comorbidity in

patients with severe COVID-19 infections is T2D. Roncon et al.

(2020) Some studies have suggested that systemic inflammatory

responses and immune system dysfunction might be related to the

hyperglycaemia and insulin resistance caused by the dysfunction of

beta cells in the pancreas. Norouzi et al. (2021) In addition, the

occurrence of acute hyperglycaemia during a COVID-19 infection

can significantly increase the concentrations of inflammatory

mediators (cytokines and chemokines), thus enhancing the risk

of multiple organ failure and acute cardiovascular events. (Norouzi

et al., 2021).

Although some common physiological patterns have been

observed between COVID-19 and T2D, the literature lacks any

systematic analysis of the shared genetic loci between patients

presenting the two conditions. This knowledge could help to

develop better therapeutic strategies for COVID-19 patients with

T2D symptoms. In this study, we analysed genome-wide

association study (GWAS) summary statistics of T2D and

COVID-19 using a pathway association-based approach and

conditional false discovery rate (cFDR) to investigate the

shared molecular pathways and genetic architectures between

T2D and COVID-19. In addition, we used pleiotropy-based

conditional and conjunctional FDR (conjFDR) statistics to

discover common genetic determinants of the two traits.

Materials and methods

GWAS samples

GWAS summary statistics for T2D (https://www.ebi.ac.uk/

gwas/studies/GCST006867) (Xue et al., 2018) and COVID-19

(https://www.ebi.ac.uk/gwas/studies/GCST011073) (COVID-19

Host Genetics Initiative, 2020) were obtained from the GWAS

Catalog. The T2D summary statistics consisted of 62,892 case

subjects and 596,424 control subjects. The COVID-19 summary

statistics consisted of 38,984 case subjects and 1,644,784 control

subjects. COVID-19 data were obtained from samples of

European ancestry and T2D data were obtained from mixed

samples of European (N = 655,666) and South Asian (N = 3,650)

ancestry. The T2D data were generated by meta-analysing the

Diabetes Genetics Replication and meta-analysis (34,940 cases

and 114,981 controls), Genetic Epidemiology Research on

Ageing (6,905 cases and 46,983 controls), and the full cohort

release of the United Kingdom BioBank databases (21,147 cases

and 434,460 controls) by using the software METAL. Willer et al.

(2010) There were 5.1 million and 8.9 million genetic variants in

the T2D and COVID-19 GWAS summary statistics, respectively.

The lift over of single nucleotide polymorphisms (SNPs) and

conversion of SNPs into rs IDs were performed using the NCBI

Genome Remapping Service and UCSC Table Browser,

respectively.

Pleiotropy analyses

We used conditional quantile-quantile (Q-Q) plots

(Andreassen et al., 2013), fold enrichment plots and linkage

disequilibrium score regression (Bulik-Sullivan et al., 2015)

(LDSC) to evaluate the pleiotropic enrichment and genetic

correlations between T2D and COVID-19 GWAS summary

statistics. We followed the instructions provided on the

GitHub page (https://github.com/bulik/ldsc/) and performed

the analysis using Python 3.
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To improve the discovery rate of genetic variants correlated with

T2D and COVID-19, we computed the cFDR statistics. Andreassen

et al. (2013) The cFDR method is based on an empirical Bayesian

statistical framework and used the GWAS summary statistics for a

trait of interest alongside those for a conditional trait to estimate the

posterior probability that an SNP has no association with the

primary trait, provided that the p-values for that SNP in both

the primary (T2D) and conditional (COVID-19) traits are as

small as, or smaller than, the observed p-value. Thus, by re-

ranking the test statistics of the main phenotype based on the

strength of the connection with the secondary phenotype, this

approach increases the likelihood of identification of genetic

variations linked with the primary characteristic.

The conjFDR statistic was used to investigate the genetic

variations shared by the two phenotypes. The conjFDR statistic is

an extension of the cFDR statistic and is defined as the maximum

of twomutual cFDRs for a specific SNP. It estimates the posterior

probability that an SNP is null for either trait or both, given that

the p-values for both phenotypes are as small as, or smaller than,

the individual p-values for each trait. For cFDR and conjFDR, we

chose a conservative threshold of 0.05 per pairwise comparison.

Manhattan plots based on the conjFDR were created to highlight

the genomic positions of the common genetic loci.

To minimise possible biases due to complicated linkage

disequilibrium (LD) patterns, all analyses were performed after

removing SNPs from the extended major histocompatibility

complex (MHC) (hg19 position chromosome 6:

25,11,9106–33,85,4733) and the 8p23.1 (hg19 location

chromosome 8: 72,42,715–12,48,3982) genomic regions.

We defined the independent significant SNPs according to

the Functional Mapping and Annotation (FUMA) protocol

(https://fuma.ctglab.nl/). SNPs having a conjFDR <0.05 and at

r2 < 0.6 with each other were considered independent significant

SNPs and a fraction of the independent significant SNPS in

approximate linkage disequilibrium with each other at r2 < 0.

1 were considered lead SNPs. In addition, we used the default

parameters from FUMA to determine the distinct genomic loci

and their borders.

Genomic loci definition and functional
annotation

We used SNPnexus (Oscanoa et al., 2020) to annotate the

shared SNPs into genes and identify the overrepresented

pathways for the genes nearest the identified shared loci

between T2D and COVID-19.

Gene-based analysis

PASCAL (Pathway scoring algorithm) (Lamparter et al.,

2016) was applied to the T2D and COVID-19 GWAS

summary statistics separately. Individual SNPs (p < 0.05) from

the summary statistics were first mapped using a 20 kb window

around the 5′ and 3’ UTRs. The maximum number of SNPs per

gene allowed by PASCAL was 3,000. LD information was

retrieved from the 1,000 Genomes European Panel and the

significant p-value thresholds for T2D and COVID-19 were

2.26 × 10–6 (0.05/22,135 genes from the hg19 list) as the

entire UCSC list (hg19) used by PASCAL to make

calculations is included in this number of genes.

Gene network analysis

FunCoup v.4.0 (https://funcoup4.scilifelab.se/search/) was

employed to expand the list of significant genes between T2D

and COVID-19 with their interactors. The FunCoup database

combines ten different types of functional couplings among

genes to infer functional association networks: protein

interaction (PIN), mRNA co-expression (MEX), protein co-

expression (PEX), genetic interaction profile similarity (GIN),

shared transcription factor binding (TFB), co-miRNA regulation

by shared miRNA targeting (MIR), subcellular co-localisation

(SCL), domain interactions (DOM), phylogenetic profile

similarity (PHP), and quantitative mass spectrometry (QMS).

Gene networks for T2D and COVID-19 were constructed with

five shared genes between T2D and COVID-19. Expansion

parameters for constructing the gene networks included a

confidence threshold (0.8), a maximum number of 30 nodes

per expansion step, and a query depth of one. The network

expansion approach was used to find the strongest interactors for

each query gene while ignoring the ties between common

neighbours. Furthermore, for each gene network established

with the associated p-values, enriched term analyses (Kyoto

Encyclopaedia of Genes and Genomes (KEGG), GO biological

function, and GO molecular function) were conducted. After

adjusting for multiple comparisons using false discovery rate

(FDR), gene network representation depicts the most important

KEGG pathways based on their q-values. The node sizes

represent the gene relevance across the whole network, while

each KEGG pathway’s involved nodes are denoted in black.

Functional annotation

GENE2FUNC, one of the functions in FUMA (Functional

Mapping and Annotation of Genome-Wide Association Studies)

(https://fuma.ctglab.nl/), was used to annotate common genes

between T2D and COVID-19 and their interactors. Several

GENE2FUNC functions were utilised, including a heatmap of

gene expression and an enrichment analysis of differentially

expressed genes (DEG). Using GTEx v8 (54 tissue types) data,

a gene expression heatmap was generated. On the related

heatmaps, the average of normalised expression per label
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(zero means across samples) was presented. TPM (Transcripts

Per Million) for GTEx v8 are the expression values. Heatmaps

provide normalised expression values (zero mean normalisation

of log2 transformed expression), with greater relative expression

of a gene indicated by a deep red label and lower relative

expression of a gene indicated by a dark blue label.

Pathway enrichment analysis

To detect the pathways shared between T2D and COVID-19,

four pathway enrichment analysis methods (GSA-SNP2 (Yoon

et al., 2018), MAGENTA (Segrè et al., 2010), PASCAL

(Lamparter et al., 2016), and i-GSEA4GWAS (Zhang et al.,

2010)) were used to identify enriched pathways in each

disease (Figure 1). GSA-SNP2 (Yoon et al., 2018) performs

pathway-based analysis by testing the enrichment of

associated genes in each pathway using Z-statistics of the

random set models to assess pathways and a monotone cubic

spline trend to determine SNP counts. MAGENTA (Segrè et al.,

2010) performs pathway-based analysis on SNPs within a gene

boundary using weighted Kolmogorov-Smirnov statistics that

compare the ranks of genes within uniform distributions.

PASCAL (Lamparter et al., 2016) calculates gene-based test

statistics for all genes and carries forward the gene-based

results to conduct a pathway-based test using chi-square

statistics (including pathways with 10–200 genes only) that

convert the corresponding p-value based on the pathway. The

Benjamini–Hochberg procedure was used to account for

multiple comparisons in the pathway-based analysis.

i-GSEA4GWAS (Zhang et al., 2010) performs pathway

analysis by using SNP label permutations to modify GWAS

SNP p-values and rectify the genes and gene sets. It then

multiplies the proportion ratio factor to the enrichment score

to obtain the significant proportion-based enrichment score.

Manhattan plots of the gene sets in each pathway were

constructed and used to highlight the results of the

association test for a given pathway.

Canonical pathways from curated gene sets (https://www.

gsea-msigdb.org/gsea/msigdb/collections.jsp#C2) and ontology

gene sets (https://www.gsea-msigdb.org/gsea/msigdb/

collections.jsp#C5) in MSigDB (Subramanian et al., 2005;

Liberzon et al., 2015) were used in the pathway enrichment

analysis in all four pathway-based association approaches.

Significant SNPs (p < 0.05) were mapped to genes if they

were located within a range of 20 kb upstream or downstream

of genes’ transcription start sites. In order to capture potential

regulatory SNPs in a gene’s 5′ and 3′ untranslated regions and to

prevent erroneous SNP-to-gene assignments brought on by

wider windows, the 20-kb window offered the ideal width

FIGURE 1
Flow chart for finding shared pathways between T2D and COVID-19. Blue square points describe the steps of multiple pathway enrichment
analysis. Orange square points describe the steps of pleiotropic analysis. T2D: type 2 diabetes; COVID-19: coronavirus disease 2019; FDR: False
Discovery Rate; LD: linkage disequilibrium; GWAS: genome-wide association study; SNPs: Single nucleotide polymorphisms.
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(Ghosh et al., 2013). Furthermore, we restricted the downstream

analyses to pathways with 10–200 genes only in order to avoid

testing over narrow or broad functional pathways (Wang et al.,

2007) In addition, significant pathways were determined with a

threshold of FDR <0.05.

Material and data availability

The data underlying this article are available and downloaded

in the GWAS Catalog (Buniello et al., 2019) at https://www.ebi.

ac.uk/gwas/studies/GCST006867 (GWAS summary statistics for

T2D) (Xue et al., 2018) and https://www.ebi.ac.uk/gwas/studies/

GCST011073 (GWAS summary statistics for COVID-19)

(COVID-19 Host Genetics Initiative, 2020) and can be

accessed with GWAS Catalog study accessions

GCST011073 and GCST006867 respectively.

Results

Pathway enrichment analysis of T2D

With respect to canonical pathways, we found 84 pathways

to be the most significant (FDR <0.05) among the gene sets with

a KEGG antigen processing and presentation pathway

(p-value = 1.78 × 10–13, q-value = 3.45 × 10–10) using the

GSA-SNP2 method (Supplementary Table S1A). In addition,

among 198 pathways in total, the most significant pathway was

the cyclin D associated events in the G1 pathway (Reactome)

(p-value < 0.001, q-value = 0) with i-GSEA4GWAS

(Supplementary Table S1B). Among 39 pathways, the most

significant one was the maturity onset diabetes of the young

(KEGG) (p-value = 7.78 × 10–8, q-value < 0.01) with PASCAL

(Supplementary Table S1C). We also found the most significant

pathway was the maturity onset diabetes of the young in the

KEGG database (p-value = 5 × 10–6, q-value = 0) with

MAGENTA (Supplementary Table S1D).

Using the gene ontology database, the most significant

gene set in the Gene Ontology Biological Process category was

the insulin secretion pathway out of 130 pathways in total

(p-value = 1.61 × 10–13, q-value = 8.02 × 10–10) with GSA-

SNP2 (Supplementary Table S1A). In addition, the most

significant gene set in the Gene Ontology Biological

Process category was the interferon-gamma-mediated

signalling pathway out of 383 pathways in total (p-value <
0.001, q-value = 0) with i-GSEA4GWAS (Supplementary

Table S1A). We found the most significant gene set in the

Gene Ontology Biological Process category was the insulin

secretion pathway among 112 pathways in total (p-value = 0,

q-value = 0) with PASCAL (Supplementary Table S1C). We

did not find any significant pathways among the gene sets

with MAGENTA.

Pathway enrichment analysis of COVID-19

In the canonical pathway database, we did not identify any

significant pathways among the gene sets when using GSA-SNP2.

However, we found 21 significant pathways among the gene sets,

with Reactome chemokine receptors binding a chemokines

pathway (p-value < 0.001, q-value = 0) with i-GSEA4GWAS

(Supplementary Table S2A). Among the gene sets, 38 pathways

were found to be significantly (FDR <0.05) associated with

COVID-19 and the Reactome linked glycosylation pathway

was the most significant (p-value = 0, q-value = 0) with

PASCAL (Supplementary Table S2B). We did not find any

significant pathways among the gene sets with MAGENTA.

With respect to gene ontology pathways, we did not find any

significant pathways among the gene sets with GSA-SNP2.

However, 23 pathways were significant among the gene sets,

with the Gene Ontology Molecular Function G-protein coupled

chemoattractant receptor activity pathway being the most

significant (p-value < 0.001, q-value < 0.001), with

i-GSEA4GWAS (Supplementary Table S2A). We found

151 pathways had a significant association with COVID-19 in

the Gene Ontology Biological Process category, where the

synapse assembly pathway was the most significant (p-value =

0, q-value = 0), with PASCAL (Supplementary Table S2A). We

did not find any significant pathways among the gene sets when

using MAGENTA.

Common pathways between T2D and
COVID-19

To determine the common pathways between T2D and

COVID-19, we compared the significant pathways that were

shared between them. We found four pathways (Supplementary

Table S3A) in common between T2D and COVID-19 using

iGSEA4GWAS: the chemokine binding, G-protein coupled

chemoattractant receptor activity pathways (CCR2 and

CCR3), the TFAP2 family pathway (TFAP2B), and the

ventricular cardiac muscle cells differentiation pathway (RARB

and PROX1) in the canonical pathway and gene ontology

database. The chemokine binding pathway plays a role in

recruiting immune cells to infection sites, and G-protein

coupled chemoattractant receptor functions in mediating

leukocytes’ chemotaxis and promoting innate and adaptive

host immune responses. Furthermore, we found 15 pathways

(Supplementary Table S3B) shared between T2D and COVID-19

using PASCAL, which were associated with various organs and

biological processes, such as the heart, axons and calcium

channels, in the canonical pathway and gene ontology

database. However, no overlapping pathways were found

between the four pathway-based analysis software. Five genes

(CCR2, CCR3, TFAP2B, RARB and PROX1) (Figure 2) were used

to construct the gene expression heatmaps with GTEx v8
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(representing 54 tissues) to investigate their expression in all

tissue types.

Genetic correlation and genetic overlap
between T2D and COVID-19

Genome-wide LD score regression analyses showed

significant positive genetic correlations between T2D and

COVID-19 (r for genetic = 0.15, p-value = 0.01). We observed

an enrichment of associations with COVID-19 across different

levels of association with T2D (Figure 3A), indicating a small

polygenic overlap between COVID-19 and T2D. We also

constructed reverse conditional Q-Q plots (Figure 3B) for

T2D conditional upon different levels of association with

COVID-19. At a threshold of cFDR <0.05, we identified

471 loci associated with T2D conditional upon COVID-19

(Figure 4A). The reverse cFDR analysis revealed 17 loci

associated with COVID-19 conditional upon T2D (Figure 4B).

Functional annotation of shared loci
between COVID-19 and T2D

Basedona threshold of conjFDR<0.05,we identified two loci shared
between COVID-19 and T2D: ABO (rs505922, intronic) and NUS1

(rs3924604, intronic) (Figure 5). By comparing the effect directions of the

shared independent loci (conjFDR <0.05), both these independent loci

were showing consistent direction. One (rs505922) was showing positive

effect while another one (rs3924604) was showing negative effect. These

two genes were identified through two distinct SNPs using SNPnexus.

(Oscanoa et al., 2020). We found eight pathways (Supplementary Table

FIGURE 2
Shared genes tissue expression plot with GTEx v8 (54 tissues). Tissues are ordered by clusters for the plot. TPM: Transcript per million.

FIGURE 3
(A) Conditional quantile-quantile (Q–Q) plots of nominal vs. empirical coronavirus disease 2019 (COVID-19) –log10 p-values (corrected for
inflation) below the standard genome-wide association study (GWAS) threshold of p < 5 × 10–8 as a function of the significance of the association
with type 2 diabetes (T2D) at the levels of p ≤ 0.10, p ≤ 0.01, and p ≤ 0.001. (B) Conditional Q-Q plots of nominal vs. empirical T2D −log10 p-values
(corrected for inflation) as a function of the significance of the association with COVID-19 at the level of p ≤ 0.10, p ≤ 0.01, and p ≤ 0.001. The
dashed line indicates the null hypothesis. SNP: single-nucleotide polymorphism; c19: coronavirus disease 2019; t2d: Type 2 Diabetes.
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S4) to be significantly overrepresented among the genes nearest the

identified loci shared between COVID-19 and T2D, with the defective

DHDDs causing retinitis pigmentosa 59 pathway (p-value = 1.88 × 10–4)

being the most significant.

Gene-based analysis

PASCAL analysis revealed an association of 394 genes in T2D

(Supplementary Table S5A) and an association of 58 genes in

COVID-19 (Supplementary Table S5B). After comparing the

significant genes in T2D and COVID-19, five genes

(Supplementary Table S5C) were found to be shared between

T2D and COVID-19: PTPRD, CSMD1, MAGI1, ASIC2, DAB1.

Gene network analysis

FunCoup has detected several interactors for T2D and

COVID associated genes identified by PASCAL. Gene

network for shared genes between T2D and COVID-19 was

constructed (Figure 6) after including 35 genes

(30 subnetwork genes plus 5 query genes) (Supplementary

Table S6A) and considering 92 links between them.

Enrichment analysis for KEGG and GO terms

(Supplementary Table S6B) has shown association of

different biological processes, including endocytosis

(q-value = 4.58 × 10–3), central nervous system

development (q-value = 3.64 × 10–9), and protein domain

specific binding (q-value = 5 × 10–9) etc.

FIGURE 4
(A)Manhattan plot of type 2 diabetes (T2D) conditional upon coronavirus disease 2019 (COVID-19) for conditional false discovery rate (cFDR) <
0.05. (B) Manhattan plot of coronavirus disease 2019 (COVID-19) conditional upon type 2 diabetes (T2D) for conditional false discovery rate
(cFDR) < 0.05.
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Functional annotation

Gene expression heatmap based on GTEx V8 RNA-Seq data

for T2D and COVID-19 associated genes togethers with

FunCoup interactors (5 genes +30 subnetwork query genes)

(Figure 7) was constructed. Specifically, six genes (ATP2A2,

APP, ATN1, CTNNB1, ACTN4 and HSPA8) display increased

expression levels in all available tissues compared with other

genes included in the analysis. Moreover, most of the genes

display the trend showing low or moderate relative expression

levels on brain tissues. Differential expression gene analysis

(DEG) (Figure 8) showed that all brain tissues were highly

FIGURE 5
Manhattan plot of coronavirus disease 2019 (COVID-19) and type 2 diabetes (T2D) for conjunctional false discovery rate (conjFDR) < 0.05.

FIGURE 6
Shared gene networks constructed with Pascal associated genes and its FunCoup interactors, Node sizes scale to emphasize gene importance
in the whole network, while participating nodes for KEGG metabolic endocytosis pathway are marked in black. Nodes encircled in black are shared
genes between COVID-19 and T2D.
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upregulated while breast mammary tissue, ovary tissue and

adipose tissue were highly downregulated contrast to other

tissues.

Discussion

In this study, the shared genetic association between T2D and

COVID-19 was investigated using four pathway enrichment

analysis methods (GSA-SNP2, i-GSEA4GWAS, PASCAL and

MAGENTA) in Gene Ontology and canonical pathway

databases. After the correction for multiple comparisons using

FDR ≤0.05 as the criterion for a significant pathway, both

PASCAL and i-GSEA4GWAS identified significant pathways

between T2D and COVID-19 (15 pathways and 4 pathways

respectively). The top shared pathways between T2D and

COVID-19 included the chemokine binding, G-protein

coupled chemoattractant receptor activity pathways and the

ventricular cardiac muscle cellular differentiation pathway.

Among these shared pathways, CCR2 and CCR3 are the

common chemokines receptors found between the molecular

mechanisms. Further, in our gene-based analysis, five genes

(DAB1, ASIC2, MAGI1, CSMD1 and PTPRD) were shared

between T2D and COVID-19. DEG analysis showed that

these genes and their interactors mainly have a low or

moderate expression level in the cerebellar hemisphere and

cerebellum tissue. We also identified two shared SNPs

(rs505922 and rs3924604) with conjFDR <0.05.
Among the shared genes between T2D and COVID-19 by

PASCAL, the PTPRD gene encodes a member of the protein

tyrosine phosphatase family which regulates cellular processes

including differentiation and cell growth. DNMT1 promotes the

DNA methylation of PTPRD, thus contributing to the silencing

of insulin signalling in T2D patients. Chen et al. (2015) PTPRD

expression levels were lower and correlated in T2D. A previous

study showed that SARS-CoV-2 interacts with open reading

frame 8 (ORF8) and ORF8 interacts with DNMT1. Gordon

et al. (2020) There might be a possible interaction for PTPRD

between T2D and COVID-19. Furthermore, the expression

pattern of the identified gene CSMD1 in COVID-19 shows

important similarities to basal cell-related carcinomas.

Iwabuchi et al. (2022) While CSMD1 might be associated with

insulin sensitivity and lipid levels in type 2 diabetes patients, this

gene may also have an important impact on long-term elevated

HbA1c levels. (Goswami et al., 2016).

Our study provides insight into the links between T2D and

COVID-19 in terms of susceptibility loci, genes and genetic

pathways. We used pathway association and statistical

FIGURE 7
Shared gene expression heatmaps constructed with GTEx v8 (54 tissues) Gene and Tissues are ordered by clusters for the heatmap.
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analyses to evaluate the association between T2D and COVID-

19. We found that T2D was related to COVID-19 but not vice

versa, which is consistent with the current findings in the

literature. There was also a lack of evidence for T2D

associated with the risk of COVID-19. Au Yeung et al. (2021)

Previous studies have revealed that COVID-19 patients can

develop new-onset diabetes and severe metabolic

complications of pre-existing diabetes due to high

concentrations of glycated haemoglobin. Accili (2021)

Another study has also proposed a causal relationship

regarding the onset of type 1 diabetes due to the observation

that an increase in the risk of developing type 1 diabetes appears

to coincide with COVID-19 infection status. Unsworth et al.

(2020) Significant pathways were shared between the two

phenotypes in the pathway association analysis, including the

chemokine binding and the chemokine receptors pathways. Even

though the GWAS Summary Statistics for T2D were

predominantly from European descent, which might affect the

results of the genetic correlation between T2D and COVID-19.

We still got similar results comparing to the study. Chang et al.

(2021) We found two SNPs that were shared between T2D and

COVID-19 (conjFDR <0.05). Further, our analysis revealed a

significant positive correlation between the genetic variants

associated with T2D and COVID-19. The conjFDR analysis of

the two shared genes, ABO and NUS1, indicated that COVID-19

and T2D might be connected to immune function and

chemokine activation status. Certain glycosyltransferases are

related to immune cell recruitment such as leukocyte rolling

through binding to selectins. Sperandio et al. (2009) Protein

glycosylation is also associated with the regulation of T-cell

activation. (Marth and Grewal, 2008).

The ABO gene potentially plays a role in the pathogenesis of

COVID-19 and T2D. This gene encodes a glycosyltransferase

that catalyses the transfer of nucleotide donor sugars to the H

antigen to form A and B antigens. Patenaude et al. (2002) These

transferase enzymes and nucleotide donor sugars also induce the

FIGURE 8
Shared genes DEG plots constructed with GTEx v8 (54 tissues). Significantly enriched DEG sets (Pbon < 0.05) are highlighted in red.
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production of inflammatory mediators such as IL-6 and TNF-α
in the endothelium. Rizzo et al. (2014) A study hypothesised that

ABO might be a severity locus in COVID-19 rather than an

infection locus. Goel et al. (2021) A previous study also

mentioned that blood type O might have a lower risk of

SARS-CoV-2 due to the anti-A or anti-B antibodies contribute

to viral neutralization or anti-A isoagglutinins bounded by

SARS-CoV-2 blocked the interaction between the virus and

ACE2 receptor. Arend (2021) In addition, a study also shown

that people with the O blood type were having a lower risk of

developing T2D. Fagherazzi et al. (2015) However, the

underlying molecular mechanisms under that is still unclear.

A previous study has also shown that ABO is a possible marker

for T2D and COVID-19 as people with blood type A are at a

higher risk of T2D and being infected with SARS-CoV-

2 simultaneously, whereas blood type O may be associated

with a lower risk of SARS-CoV-2 and T2D. (Meo et al., 2016;

Li et al., 2020).

The NUS1 gene, located at chromosome 6q22.1, is involved

in dolichol synthesis and protein glycosylation. It encodes a

membrane protein-Nogo-B receptor (NgBR), which is a

subunit of cis-prenyltransferase. NgBR is an enzymatic

complex that is essential for protein N-glycosylation, a process

that can alter the structure and function of proteins by steric

influences or by mediating interactions with glycan-binding

proteins. (Harrison et al., 2011). Pro-inflammatory cytokines

can also change the cell surface N-glycosylation of endothelial

cells, indicating that glycosylation can modulate inflammatory

vascular diseases. (Reily et al., 2019). In addition, Nogo-B

interacts with Interferon-induced transmembrane protein 3

(IFITM3) and IFITM3 suppressed the SARS-CoV-2 for the

induce of IL-6 production. (Clement et al., 2022).

Furthermore, a previous study has shown in mouse models

that N-glycosylation defects, such as those in which

N-acetylglucosaminyltransferase-IVa is inactive, can impair

insulin release and lead to hyperglycaemia by abnormal

N-glycosylation of pancreatic beta-cell glucose transporter-2

(GLUT-2) in T2D. (Ohtsubo, 2010; Reily et al., 2019).

Another study shown that NGBR knockout mice resulted in

increased blood glucose, insulin resistance and beta-cell loss.

(Chen et al., 2021).

Multiple pathway enrichment approaches were used to

identify pathways that are shared between the two diseases.

Both pathways identified by our analysis—the chemokine

binding pathway and G-protein coupled chemoattractant

receptor activity pathway—were directly linked to immune-

related activities through chemokines. Chemokines can bind

to G-protein coupled seven-transmembrane receptors

(chemokine receptors) on the surfaces of leukocytes, to

glycosaminoglycans attached to the core proteins of cell

surfaces and proteoglycans in the extracellular matrix.

Kuschert et al. (1999) Glycosaminoglycans activate

chemokines, triggering them to mobilise and recruit various

immune cells. Chemokine receptors belong to the G protein

coupled receptor superfamily and recruit dendritic cells.

Murdoch and Finn (2000) The findings from our pathway

analysis implicate that certain chemokine receptors are

common between T2D and COVID-19, namely, CCR2 and

CCR3. Previous studies have shown that some chemokine

receptors, including CCR2, are involved in the pathogenesis of

COVID-19 and of T2D. (Coperchini et al., 2020; Lim et al., 2021).

CCR2 is a chemokine receptor for various monocyte

chemoattractant proteins (MCPs), such as CCL2, CCL7 and

CCL8, and is a key functional receptor for CCL2. CCL2, also

known as monocyte chemoattractant protein 1 (MCP-1), is a

chemokine that binds to CCR2 and CCR4. CCL2 attracts

monocytes, memory T-cells, and dendritic cells to sites of

infection or inflammatory areas triggered by tissue damage.

Daly and Rollins (2003) CCL2 also shows chemotactic activity

for monocytes and basophils. Glycosaminoglycan binding and

oligomerisation are essential for CCL2 to exert its in vivo effects

and mediate the cytokine storm inflammatory response.

Proudfoot et al. (2003) CCL2 is a key factor in the pathology

of cytokine storms and promotes monocyte recruitment by

acting both locally and remotely. The expression of CCL2 by

insulin-producing cells can lead to insulitis and islet destruction.

Also, CCL2 concentrations are higher in the plasma of T2D and

COVID-19 patients than in the plasma of healthy controls.

(Kretowski et al., 2016; Huang et al., 2020).

CCR3 binds and reacts to a variety of chemokines such as

CCL5 and CCL7. CCL5 act as a chemoattractant for blood

monocytes, memory T-helper cells and eosinophils. Baggiolini

and Dahinden (1994) A study showed that CCL5 was

upregulated in COVID-19 patients compared to non-COVID-

19 patients. Zhou Y. et al. (2020) Furthermore, patients with T2D

were significantly higher in CCL5 levels as compared to the

control group. Herder et al. (2006) CCL7 attracts macrophages

during inflammation and is found at elevated levels in

bronchoalveolar lavage fluid (BALF) from severe COVID-19

patients. Zhou Z. et al., 2020

Further, we observed no overlap among the pathways/gene

sets identified by PASCAL and i-GSEA4GWAS in COVID-19.

As each analytical method adopts a different statistical procedure

with various underlying assumptions, including the chi-square

test statistic (PASCAL) and Kolmogorov-Smirnov-like statistics

(i-GSEA4GWAS), to compute the gene scores and pathway

scores, different analytical methods may identify different top-

ranking pathways. Shared pathways or genes of T2D and

COVID-19 identified by different methods can be further

validated using experiments or various publicly available

databases to provide support for the findings. We used GTEx

gene expression data to validate the genes of the chemokine and

chemokine receptor pathways as delineated in the gene ontology

database (CCR2 and CCR3). We found that these two genes

exhibit a moderate level of expression in whole blood tissue. It is

reasonable for us to speculate that the upregulation of the
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chemokine receptors related to immune response might

contribute to a cytokine storm.

Our study has several limitations. Firstly, it is challenging to

investigate the commonly shared molecular mechanisms

between traits that experience constant mutational changes

such as COVID-19. Further studies which utilise animal

models are required to determine the causal genetic variants

or genes that underlie the shared associations detected in this

study and deduce whether the same causal genetic variants are

involved in COVID-19 and T2D.Secondly, we could not identify

another replication or validation cohort because we employed all

the GWAS summary statistics to maximise the statistical power

of both phenotypes. Lastly, our analysis was mainly based on data

derived from the European population, so the results may not be

applicable to different ethnic backgrounds. Despite these

limitations, this is one of the first studies that examine the

genetic overlap between COVID-19 and T2D using a

comprehensive genetic analysis augmented with a pathway-

based association analysis. Our study revealed little or no

overlap between T2D and COVID-19 among European

individuals. The novel loci and the shared pathways

implicated that immunity is key to commonly shared

molecular mechanisms between COVID-19 and T2D. The

pathway association analysis provided significant support for

the importance of chemokines and their receptors in T2D and

COVID-19 aetiology.

In conclusion, our study has demonstrated genetic pleiotropy

between T2D and COVID-19 and has identified shared genetic

loci (ABO andNUS1) which were validated with a pathway-based

analysis. Our results suggest a complex interplay of immune

system-related gene pathways in the pathophysiology of

chemokines and chemokine receptors. These findings are

important for the development of actionable targets for novel

therapies to treat COVID-19 patients with T2D and provide

important implications for COVID-19 genetic aetiology.
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