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Background: Hepatocellular carcinoma (HCC) is a malignancy with a poor

prognosis. This study aimed to distinguish patients with HCC having distinct

tumour immune microenvironment (TIME) features and construct an immune-

related gene signature (IRGs) to assess prognosis and provide a basis for

personalised therapies.

Methods: Transcriptomic data of patients with HCC were downloaded from

The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)

databases. We assessed the immune cell infiltration in each HCC specimen

using single sample gene set enrichment analysis (ssGSEA) and classified all

patients with HCC into high- and low-immune clusters using a hierarchical

clustering algorithm. The ESTIMATE and CIBERSORT computational methods

were employed to verify the stability and effectiveness of the immune clusters.

Subsequently, the differentially expressed genes (DEGs) of the high- and low-

immune clusters and the immune-related genes intersected to obtain the

immune-related DEGs. The least absolute shrinkage and selection operator

(LASSO) was then employed to screen the optimal genes for the construction of

a prognostic predictive signature and to divide patients into high- and low-risk

subgroups. The predictive efficacy of the IRGs was further confirmed using

Kaplan–Meier survival curves, univariate and multifactorial Cox regression and

time-dependent ROC curves in the TCGA and GSE14520 validation cohorts.

Furthermore, we developed a nomogram to predict the prognosis. Tumour

mutation burden (TMB) was also analysed in the risk groups. Additionally, gene

ontology and gene set variation analysis were used for biological function and

pathway exploration. Lastly, drug sensitivity analyses were employed to

investigate prospective therapeutics in the two risk populations.

Results: Immune cluster analysis based on ssGSEA could well distinguish the

TIME characteristics of patients with HCC. The stromal score, immune score

and ESTIMATE score were all lower in the low-immune cluster. Meanwhile,

most of the immune checkpoint-related genes and HLA family genes were
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overexpressed in the high-immune cluster, suggesting that this cluster could be

a beneficial population for immune checkpoint inhibitors therapy. There were

1,617 DEGs between the two immune clusters, of which 414 genes intersected

with immune-associated genes. Furthermore, Cox regression analysis revealed

49 DEGs that were associated with survival. Then, 19 DEGswere screened using

the LASSO algorithm for IRGs construction and patients were classified into

high- and low-risk groups. Both the constructed signature and nomogram had

good prognostic predictive efficacy. The signature-based risk score was an

independent prognostic predictor in both the TCGA and GSE14520 cohorts.

Additionally, there was no significant difference in TMB between the two risk

populations. Lastly, the half-maximal inhibitory concentrations of certain

chemotherapeutic and targeted therapeutic agents differed between the

two risk groups.

Conclusion:Our study provides a personalized tool for predicting the prognosis

and TIME landscape of HCC and a basis for developing personalised treatment

regimens.

KEYWORDS

immune-related gene, hepatocellular carcinoma, single sample gene set enrichment
analysis, prognosis, immune infiltration

Introduction

According to the GLOBOCAN 2020 report (Sung et al., 2021),

hepatocellular carcinoma (HCC) accounts for 90% of all primary

liver cancer and is one of the most common cancers in humans,

characterized by insidious onset, poor prognosis and high mortality

(Huang et al., 2020; Llovet et al., 2021). Despite advancements in

diagnostic and therapeutic approaches for HCC, the prognosis for

individuals with HCC remains poor, with an estimated 5-year

survival rate of only 18% (Craig et al., 2020). Current systemic

treatments, such as tyrosine kinase inhibitors (TKIs) and immune

checkpoint inhibitors (ICIs), provide patients with more therapeutic

choices; however, the high heterogeneity of HCC limits their efficacy

and compromises the precision of prognostic prediction (Liu et al.,

2016). Hence, sensitive and reliable indicators are needed to assess

individualized differences and prognosis, thereby providing a

reliable basis for the development of personalised patient

treatment strategies.

With the rapid development of tumour immunology, ICI-based

immunological therapies have achieved significant progress in the

management of various tumours, providing novel options for the

treatment of HCC (Jácome et al., 2021;Mamdani et al., 2022; Teixeira

Farinha et al., 2022). The main advantage of immunotherapy is its

relatively long-lasting effect; however, ICIs are only 12–20% effective

compared to monotherapy (Abd El Aziz et al., 2020). In the

CheckMate 459 (Yau et al., 2022) and KEYNOTE-240 (Finn

et al., 2020b) clinical trials, ICSs monotherapy failed to meet the

pre-defined clinical trial endpoints. In terms of combination therapy,

the phase II study of nivolumab plus ipilimumab achieved results.

The Investigator-assessed objective response rate (ORR) was 32%

(Yau et al., 2020). In the phase III clinical trial (IMbrave150), the

median OS was 19.2 months with atezolizumab plus bevacizumab

and 13.4 months with sorafenib (Cheng et al., 2022). In addition, the

combination of Pembrolizumabwith Lenvatinib also showed efficacy

in phase I clinical trials. The ORR was 36% and the median OS was

22months (Finn et al., 2020a). Together, the above studies suggest the

potential of immunotherapy in HCC.

The evolution of tumours is closely linked to the tumour

immune microenvironment (TIME), which contains a variety of

immune cells, stromal cells and cytokines, all of which can interact

with tumour cells to form a highly complex system. Increasingly,

studies have demonstrated that the regulation of immune system

networks in TIME and tumour interactions have a significant

impact on tumour prognosis and response to immunotherapy (Pitt

et al., 2016; Binnewies et al., 2018; Galon and Bruni, 2019). In

addition, TIME is a heterogeneous environment, and the TIME

characteristics of individuals are often the result of randomisation

across factors. Therefore, the development of novel and effective

immune-related predictive biomarkers to analyse the correlation

between TIME and HCC can help to determine the prognosis and

TIME features of patients with HCC, allowing for the personalised

selection of therapeutic strategies for ICIs.

The present study uses single sample gene set enrichment

analysis (ssGSEA) and cluster analysis to classify patients with

HCC into high- and low-immune clusters, whereas ESTIMATE

and CIBERSORT analyses verify the stability and validity of the

immune clusters. Furthermore, LASSO regression analysis

establishes an immune-related gene signature (IRGs) to further

validate the prognostic value of the IRGs in The Cancer Genome

Atlas (TCGA) andGSE14520 independent cohorts. Additionally, we

construct a nomogram to predict the prognosis of patients with

HCC. Furthermore, Tumour mutation burden (TMB) also analyses
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the high- and low-risk groups. Gene set variation analysis (GSVA)

and Gene Ontology (GO) analysis were also used for biological

function and pathway exploration in this study. Finally, the IC50 of

certain chemotherapeutic and targeted therapeutic agents were also

analysed in high- and low-risk populations. Our results will not only

help to determine the prognosis of clinical patient with HCC, but

also provide a basis for the selection of personalized clinical

treatment regimens. However, the conclusions need to be further

validated in real-world prospective clinical trials.

Materials and methods

Data sources

The transcriptome expression data, mutation data and

relevant clinicopathological parameters of patients with HCC

in the TCGA-LIHC cohort were downloaded from the TCGA

repository (https://portal.gdc.cancer.gov/). Strawberry Perl

was used for transcriptomic and clinical data collation.

Transcriptome data and relevant clinicopathological data of

the independent validation cohort (GSE14520) were obtained

from the Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/). Additionally, immune-related genes

were obtained from the ImmPort database (https://www.

immport.org/shared/home).

Immune cluster analysis of HCC based on
ssGSEA

Gene set enrichment analysis (GSEA) is a computational

method that classifies sets of genes with common functions

(Subramanian et al., 2005), whereas ssGSEA analyses the

FIGURE 1
Single sample gene set enrichment analysis -based immune cluster analysis. (A) The hepatocellular carcinoma samples from The Cancer Genome
Atlas cohort were divided into a high immune cell infiltration cluster (orange) and a low immune cell infiltration cluster (green). (B) The principal
component analysis plot of the distribution status of the high- and low-immune clusters. (C) Enrichment levels of different types of immune cells in the
high- and low-immune clusters. Tumour purity, ESTIMATE score, immune score and stromal score are displayed for each sample in combination
with clustering information. (D)Violin plots of ESTIMATE score, immune score and stromal score in different immune clusters. (E)The box plot shows the
difference in immunecell infiltrationbetween the two clusters basedon theCIBERSORTalgorithm. (F,G)Boxplots show the differences in the expression
of immune checkpoint-related genes and HLA family genes in the two clusters, respectively. *p < 0.05, **p < 0.01 and ***p < 0.001.,
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absolute enrichment of one gene set per sample within a

given data set (Barbie et al., 2009). In the present study,

ssGSEA was used to generate the enrichment fraction of

29 immune cells in each sample (Chen et al., 2022). The

patients in the TCGA cohort were further classified into low-

and high-immune clusters using cluster analysis. In this

process R packages ‘GSVA’, ‘limma’, ‘GSEABase’, ‘sparcl’

for cluster analysis, ‘Rtsne’ package for principal

component analysis (PCA) and ‘ggplot2’ for the

visualisation of the results were used.

Correlation analysis of immune clusters
and TIME

ESTIMATE is an expression data-based tumour purity

determination algorithm that predicts the level of infiltrating

stromal cells and immune cells (Yoshihara et al., 2013). First, the

R package ‘ESTIMATE’ was used to calculate the number of

stromal and immune cells in the tumour tissue of each HCC case

in the TCGA cohort. The total of the immune and stromal scores

is the ESTIMATE scores were inversely related to tumour purity.

Furthermore, the R package ‘reshape2’was utilised to reconstruct

the data, and the ‘pheatmap’ and ‘ggpubr’ packages were used to

draw heat maps and violin maps, respectively, of stromal cells,

immune cells and ESTIMATE scores in the high- and low-

immune clusters.

CIBERSORT implements a machine-learning algorithm for

the high-throughput characterization of different cell types

(Newman et al., 2015). The fractions of the 22 tumor-

infiltrating immune cells were determined by the R packages

“CIBERSORT”, “preprocessCore”, “e1071” and “parallel” and

further analyzed for differences in tumour-infiltrating immune

cells (TIICs) in the two immune clusters.

Moreover, we further analysed the status of human leukocyte

antigen (HLA) and immune checkpoint-related genes in the

high- and low-immune typing groups, and the packages

‘ggplot2’ and ‘ggpubr’ were employed to visualize the results.

FIGURE 1
(Continued)
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FIGURE 2
Differentially expressed genes between the high and low-immune clusters. (A) Volcano map of differentially expressed genes between the
high- and low-immune clusters. (B) The Venn diagram shows the 414 intersecting genes that were obtained after intersecting the differentially
expressed genes and immune-related genes. (C) Heat map of the expression of 414 intersecting genes in different immune clusters. (D,E)
Enrichment of differentially expressed genes between the high- and low-immune clusters in terms of biological function via GO analysis.
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FIGURE 3
Identification of immune-related differentially expressed genes (DEGs) associated with prognosis for signature construction. (A) Forest plot of
49 immune-related DEGs significantly associated with overall survival in patients with hepatocellular carcinoma (HCC). (B,C) LASSO coefficient and
partial likelihood deviance of the prognostic signature. (D) Heat map of 49 prognosis-related genes expressed in HCC tumour samples and normal
samples.
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Identification of differentially expressed
immune-related genes in the two immune
clusters

The ‘limma’ package identified differentially expressed genes

(DEGs) between different immunophenotypes of HCC tumours

(fold change (FC) > 1.5, false discovery rate (FDR) < 0.05). The

‘ggplot2’ and ‘pheatmap’ packages were used to generate volcano

maps and expression heat maps of DEGs, respectively. The ‘venn’

package was used to map Venn diagrams to identify shared genes

between DEGs and immune-related genes.

Additionally, gene ontology (GO) analysis of DEGs was

performed using the R package ‘clusterProfiler’, ‘org.Hs.eg.db’

and ‘DOSE’. Furthermore, the ‘ggplot2’, ‘circlize’, ‘RColorBrewer’,

‘ggpubr’ and ‘ComplexHeatmap’ packages were employed to map

enrichment outcomes and explore the enrichment of DEGs in

cellular components, molecular function and biological processes.

Construction of an IRGs in HCC

The R packages ‘glmnet’, ‘timeROC’, ‘survival’, ‘survminer’

and ‘caret’ were employed to obtain prognosis-related genes and

construct IRGs. First, univariate Cox regression analysis screened

DEGs associated with survival (p < 0.05) for further analysis. The

LASSO algorithm was performed on the univariate prognostic

genes to screen the optimal genes to construct the model. Risk

scores for all cases were calculated using the following formula:

Risk scores � ∑n

i�1Coefficient(i)*Expression(i). Expression(i)
and Coefficient(i) indicate the expression values and regression

coefficient for each signature gene, respectively. Patients with

HCC in the TCGA training cohort and GEO independent

validation cohort were categorised into low- and high-risk

groups based on the median risk scores.

Evaluation of the IRGs in HCC

Survival analysis was performed using the ‘survivor’ and

‘survminer’ packages for the high- and low-risk groups.

Moreover, risk curves, risk heat maps, survival curves and

survival status plots were created for patients in the TCGA

and GEO cohorts. Univariate and multivariate Cox regression

analyses were used to determine the prognostic potential of the

risk score of the signature. Time-dependent receiver operating

characteristics (ROC) analyses were performed using the

‘survminer’, ‘survivor’ and ‘timeROC’ packages, which

assessed the prognostic predictive value of the developed

signatures. Additionally, Kaplan–Meier (KM) curves were

used to analyse survival differences between the high- and

low-risk subgroups based on different clinical characteristics

(age, gender, tumour stage and tumour grade), thereby

determining whether the developed IRGs applied to patients

with HCC with different clinicopathological parameters. The

‘ComplexHeatmap’ was employed to draw the status heat map

for high- and low-risk groups and clinicopathological

parameters. The ‘ggpubr’ package was used to draw box plots

of risk scores for different clinical subgroups to identify the

correlation of the developed IRGs with different

clinicopathological parameters.

Correlation between signature and TMB

The downloaded mutation data were collated using the

Strawberry Perl script to generate TMB data for each HCC

sample. The package ‘Limma’ was used to analyse the TMB

differences between the different risk groups, and the results were

plotted using ‘ggpubr’. Additionally, the optimal cut-off values of

TMB were obtained using the R software, and patients were

further divided into low- and high-TMB groups. Furthermore,

the ‘survivor’ and ‘survminer’ were employed to generate the

K-M curves of patients in the high- and low-TMB groups

combined with the high- and low-risk groups. Finally, the

‘maftools’ package was employed to plot the mutation

waterfalls of the 20 genes with the most frequent mutations.

TABLE 1 Immune-associated signature genes.

Genes Coef HR HR (95%CI) p-value

IL15RA 0.318 1.543 1.260-1.889 <0.001

ENG −0.314 0.744 0.594-0.932 0.010

RNASE2 0.061 1.251 1.054-1.484 0.010

HBEGF 0.298 1.454 1.111-1.903 0.006

TNFRSF4 0.241 1.472 1.139-1.903 0.003

PTX3 0.168 1.305 1.038-1.640 0.023

TNFRSF11B 0.120 1.224 1.074-1.396 0.003

HMOX1 0.141 1.258 1.091-1.451 0.002

IL7R −0.137 0.840 0.716-0.986 0.033

TLR2 0.003 1.262 1.040-1.532 0.019

LGMN 0.074 1.338 1.037-1.727 0.025

CCL20 0.013 1.111 1.029-1.198 0.007

VDR 0.025 1.262 1.000-1.592 0.050

NR1I2 −0.006 0.862 0.767-0.969 0.013

OSM −0.288 1.364 1.010-1.841 0.043

CCR7 −0.365 0.734 0.556-0.969 0.029

FYN −0.055 0.744 0.578-0.958 0.022

IKBKE 0.027 1.432 1.160-1.767 <0.001

GDF10 0.185 1.354 1.095-1.674 0.005

HR, hazard ratio; CI, confidence interval.
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GSVA

GSVA is a computational method used to detect pathway

activity in a sample population (Hänzelmann et al., 2013). The

GSVA analysis based on R software provides the enrichment of

the Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway in different risk groups and analyses the correlation

between the KEGG pathway and signature gene mRNA

expression. Accordingly, R packages ‘limma’, ‘reshape2’,

‘ggplot2’, ‘GSVA’, ‘GSEABase’ and ‘pheatmap’ were used.

Nomogram construction

Tumour stage and risk scores were used to construct

nomograms for 1-, three- and 5-year overall survival (OS)

based on independent prognostic analysis results.

Calibration curves for Hosmer–Lemeshow test were drawn

(method = ‘boot’, B = 1,000) to evaluate if the predicted

outcomes of the nomogram were in good agreement with

the reality. This process utilised the ‘survival’, ‘regplot’ and

‘rms’ packages.

FIGURE 4
Prognostic values of the immune-related gene signature in The Cancer Genome Atlas (TCGA) cohort. (A) Heat map showing expression levels
of the 19 immune-related genes in the TCGA cohort. (B) Kaplan–Meier curve for overall survival (OS) in the TCGA cohort. (C) Scatter plot of
correlation between risk score and OS in the TCGA cohort. (D) Risk score distribution in the TCGA cohort. (E) Survival time and status in the TCGA
cohort.
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Drug sensitivity analysis

To explore the potential clinical significance of the IRGs in

drug therapy, the ‘pRRophetic’ package was employed to obtain

the IC50 of different therapeutic agents in the high- and low-risk

groups (Chen et al., 2021), and box plots were drawn using the

‘ggpubr’ for drugs with differences in IC50 (p < 0.001).

Statistical analysis

R software was used to perform all statistical analyses.

The significance of differences between K-M survival

curves was determined using the log-rank test.

Additionally, two-tailed p-values <0.05 were considered

significant.

FIGURE 5
Prognostic values of the immune-related gene signature in the GSE14520 validation cohort. (A) Heat map showing expression levels of the
19 immune-related genes in the validation cohort. (B) Kaplan–Meier curve for overall survival (OS) in the validation cohort. (C) Scatter plot of
correlation between risk score and OS in the validation cohort. (D) Risk score distribution in the validation cohort. (E) Survival time and status in the
validation cohort.
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FIGURE 6
Assessment of the immune-related gene signature. (A) Forest plot for univariate Cox and (B)multivariate Cox regression analysis in The Cancer
Genome Atlas (TCGA) cohort. (C) Receiver operating characteristic (ROC) curves of 1-, three- and 5-year survival for the predictive signature in the
TCGA cohort. (D) The calibration curves for 1-, three- and 5-year OS in the TCGA cohort. (E) Forest plot for univariate Cox and (F) multivariate Cox
regression analysis in the validation cohort. (G) ROC curves of 1-, three- and 5-year survival for the predictive signature in the validation cohort.
(H) The calibration curves for 1-, three- and 5-year overall survival in the validation cohort.
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Results

Construction of HCC clustering based on
ssGSEA

A total of 374 HCC tumour samples were obtained from the

TCGA database for transcriptomic data. The level of infiltration

of 29 immune cells in each HCC sample was obtained using

ssGSEA. Patients were further divided into low- (n = 296) and

high-immune clusters (n = 78) using a hierarchical clustering

algorithm (Figures 1A,B). The heat map suggested that most

immune cells infiltrate at higher levels in the high-immune

cluster than in the low-immune cluster (Figure 1C).

Furthermore, violin plots showed that all three scores were

lower in the low-immune cluster than in the high-immune

cluster (p < 0.001) (Figure 1D), which was consistent with the

results of ssGSEA. This also reflected the low level of tumour

purity in the high-immune cluster. Additionally, CIBERSORT

analysis showed that the proportion of CD8+ T Cells, activated

memory CD4+ T Cells, T follicular helper cells, resting dendritic

FIGURE 7
Correlation analysis of the immune-related gene signature with clinicopathological parameters in The Cancer Genome Atlas cohort. (A) Heat
map of the distribution of clinicopathological parameters in the high- and low-risk groups. (B,C) Kaplan–Meier survival curves of low- and high-risk
groups sorted by gender, (D,E) age, (F,G) TNM stage and (H,I) tumour grade. Different levels of risk scores in patients with hepatocellular carcinoma
were stratified by (J) gender, (K) age, (L) TNM stage and (M) tumour grade.
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cells and regulatory cells (Tregs) were higher in the high-immune

cluster than in the low-immune cluster (p < 0.05) (Figure 1E).

Box plots revealed that the expression of most immune

checkpoint-related genes and HLA family-related genes were

also significantly higher in the high-immune cluster than in the

low-immune cluster (Figures 1F,G). Thus, the above results

highlight the reliability of the ssGSEA-based immune clusters.

Exploration of DEGs between the high-
and low-immune clusters

Using differential analysis, we obtained 1,617 DEGs between

the high- and low-immune clusters, of which 246 were down-

regulated and the remaining 1,371 were up-regulated in the high-

immune cluster (Figure 2A). After intersecting the DEGs with the

1793 immune-related genes derived from the ImmPort database,

we obtained 414 immune-related DEGs (Figure 2B). The heat

map displays the expression of the immune-related DEGs in the

high- and low-immune clusters (Figure 2C).

Additionally, we also explored the biological functions of

DEGs in the different immune clusters using GO analysis. In

terms of biological processes, the DEGs were enriched in antigen

binding, extracellular matrix structural constituent,

glycosaminoglycan binding, immunoglobulin receptor binding,

immune receptor activity and other processes. Regarding cellular

components, the DEGs were enriched in the external side of the

plasma membrane, immunoglobulin complex, MHC protein

complex and MHC class II protein complex. Additionally,

DEGs were also enriched in the positive regulation of

leukocyte activation, positive regulation of lymphocyte

activation, leukocyte-mediated immunity, activation of

immune response and other molecular functions (Figures 2D, E).

Construction of the IRGs in HCC

We extracted 49 genes significantly associated with survival

(p < 0.05) using Cox regression analysis of the 414 immune-

related DEGs, of which nine were favourable prognosis genes

(Figure 3A). The heat map displays the expression of

49 prognosis-related genes in HCC tumour samples and

normal samples (Figure 3D). Furthermore, LASSO regression

analysis on prognosis-related DEGs revealed 19 genes for

FIGURE 8
Nomogram construction and assessment. (A) Nomogram for predicting the 1-, three- and 5- years survival of patients with hepatocellular
carcinoma. (B) Receiver operating characteristic curves of 1-, three- and 5-year survival for the predictive Nomogram. (C) The calibration curves for
1-, three- and 5-year overall survival. *p < 0.05, **p < 0.01 and ***p < 0.001.

Frontiers in Genetics frontiersin.org12

Wang et al. 10.3389/fgene.2022.1064432

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1064432


signature construction (Figures 3B,C). We calculated risk scores

for each patient with HCC based on the risk coefficients and

expression of the 19 genes screened (Table 1). All patients were

divided into high-risk and low-risk groups based on risk scores.

Validation of the IRGs in HCC

We first evaluated the prognostic predictive value of the

signature in the TCGA training cohort. The heat map shows the

expression status of the 19 genes in the risk groups (Figure 4A).

K-M survival curves suggested that patients in the low-risk group

had significantly better survival than those in the high-risk group

(p < 0.001) (Figure 4B). Correlation analysis suggested a negative

correlation between risk scores and OS (correlation coefficient =

-0.33, p < 0.001) (Figure 4C). Further evaluation of the survival

status and risk score distribution of patients revealed that the

low-risk group had a better prognosis than the high-risk group

(Figures 4D, E).

In the GSE14520 validation cohort, we also observed a trend

in the expression of the 19 risk model genes in the risk groups

(Figure 5A). K-M survival curves suggested that patients in the

low-risk group had significantly better survival than those in the

high-risk group (p < 0.001) (Figure 5B). The correlation analysis

suggested a negative correlation between risk scores and OS

(correlation coefficient = -0.28, p < 0.001) (Figure 5C).

Furthermore, the survival status and risk score distribution of

patients in the different risk groups in the validation cohort also

suggested that the patients with HCC in the low-risk group had a

better prognosis than those in the high-risk group (Figures 5D,

E). These findings highlight the validity and stability of the IRGs

constructed based on the LASSO algorithm.

We further assessed the prognostic predictive efficacy of the

IRGs using COX regression analyses and ROC curves, which

FIGURE 9
Correlation of the immune-related gene signaturewith tumourmutation burden (TMB) in hepatocellular carcinoma. (A)Violin plot of TMB in the
high- and low-risk groups. (B) Kaplan–Meier curve of high-TMB and low-TMB. (C) Kaplan–Meier curve of the patients in the high- and low-TMB
groups combined with the high- and low-risk groups. (D) Mutant gene waterfall plot in the high- and (E) low-risk groups.
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revealed that the risk score was an independent prognostic

indicator, with a hazard ratio (HR) of 3.771 and 3.451 in the

univariate and multifactorial Cox analyses, respectively (p <
0.001) (Figures 6A,B). Additionally, the tumour stage was

considered an independent prognostic factor with an HR of

1.680 (p < 0.001) and 1.419 (p = 0.002). The area under the ROC

curve for risk score at 1-, three- and 5-year was 0.813, 0.752 and

0.737, respectively (Figure 6C), and the calibration curves

suggested a good agreement between the survival prediction

results of risk score and the actual outcome (Figure 6D). In

the GSE14520 cohort, risk score and tumour stage were also

independent prognostic predictors (Figures 6E, F). The area

under the ROC curve at 1-, three- and 5-year was 0.642,

0.645 and 0.665, respectively (Figure 6G). Moreover, the

calibration curve suggested good prognostic predictive efficacy

of risk score (Figure 6H).

FIGURE 10
The Gene Set Variation Analysis. (A) Heat map highlighting the differences in functional pathways in the high- and low-risk groups. (B) The
correlation between the KEGG pathway and signature gene mRNA expression.
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Correlation of the IRGs with
clinicopathological parameters in HCC

The heat map illustrates the status of different

clinicopathological parameters in the risk groups

(Figure 7A). Stratified K-M curves suggested that patients

with HCC having different gender, age, tumour stage and

grade had worse survival in the high-risk group than in the

low-risk group (Figures 7B–I), demonstrating the stability and

wide applicability of the IRGs. Moreover, analysis of risk scores

in different clinicopathological parameters revealed lower risk

scores in tumour Stage I + II and grade G1+2 than in Stage III +

IV and grade G3+4, without significant differences in age and

gender (Figure 7J–M).

Nomogram construction and validation
in HCC

Based on the outcomes of Cox regression, risk scores and

tumour stage were used to construct a nomogram to predict the

prognosis of patients with HCC (Figure 8A). The corresponding

scores of tumour stage and risk score in the nomogram were

calculated and the sum of the two was used as a predictive tool for

FIGURE 11
Investigation of drug sensitivity in risk groups. (A–P) Comparison of IC50 values for different agents in the high- and low-risk groups.
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prognosis. The area under the ROC curve for the 1-, three- and 5-

year OS was 0.805, 0.831 and 0.829, respectively (Figure 8B). The

calibration curves indicated the good predictive efficacy of the

nomogram (Figure 8C).

Correlation of the IRGs with TMB in HCC

TMB is the number of somatic non-synonymous mutations

in a given genomic region and can indirectly reflect the capacity

and extent of neoantigen generated by tumours and predict the

effectiveness of immunotherapy for some tumours (Chan et al.,

2019). Box plots revealed no significant difference in TMB levels

between the high- and low-risk groups (Figure 9A). KM curves

showed that higher TMB in HCC was associated with a poorer

OS (Figure 9B). Notably, survival analysis showed significant

differences between the four groups of high-risk/high-TMB, low-

risk/low-TMB, high-risk/low-TMB and low-risk/high-TMB (p <
0.001), with the worst OS observed in the high-TMB/high-risk

group and the best OS observed in the low-TMB/low-risk group

(Figure 9C). Additionally, the mutation frequency in the high-

risk group was 88.83% compared to 82.97% in the low-risk group

(Figures 9D, E). In the high-risk group, the genes with the highest

mutation frequencies were TP53 (40%), TTN (25%) and

CTNNB1 (24%), whereas CTNNB1 (27%), TTN (23%) and

MUC16 (16%) were observed in the low-risk group.

GSVA of the IRGs in HCC

GSVA was used to explore the differences in biological

behaviour between the two risk groups. The high-risk group

was enriched in pathways related to ubiquitin-mediated protein

hydrolysis, cell cycle, protein export, RNA polymerase, DNA

replication, homologous recombination, mismatch repair and

nucleotide excision repair, which are associated with tumour

biological behaviour. Moreover, functions such as nitrogen

metabolism, fatty acid metabolism and multiple amino acid

metabolisms were enriched in the low-risk group

(Figure 10A). Additionally, we analysed the correlation

between the 19 genes in the signature and different signalling

pathways. Furthermore, a broad correlation between the

expression of the IRGs and tumour-related signalling

pathways was observed (Figure 10B).

Drug sensitivity in the risk groups

Drug sensitivity analysis showed differences in IC50 values

between the different chemical and targeted agents in the

different risk groups (p < 0.001) (Figure 11A-P). Notably, the

IC50 values of the targeted therapeutics axitinib, bosutinib,

erlotinib, nilotinib and gefitinib were lower in the low-risk

group than in the high-risk group, suggesting that patients

with HCC in the low-risk group may be more sensitive to

small molecule targeted therapeutics. However, contrary

results were observed for most chemotherapeutic agents

including doxorubicin, bleomycin, etoposide, gemcitabine and

paclitaxel, suggesting that high-risk patients may benefit more

from chemotherapy.

Discussion

HCC is one of the most common malignancies and is

characterized by high aggressiveness, a tendency to metastasis

and frequent recurrence (Llovet et al., 2021; Sung et al., 2021).

Although recent improvements and optimizations of

comprehensive treatment modalities, including surgery,

interventional therapy, radiotherapy, chemotherapy, targeted

therapy and immunotherapy, have been reported, the high

degree of heterogeneity and poor prognosis of HCC remains

an insurmountable problem.

Increasingly studies report that TIME has a significant

impact on the occurrence, progression, treatment response

and long-term prognosis of patients with HCC (Kurebayashi

et al., 2018; Llovet et al., 2022). Additionally, with the rapid

development of immunotherapy in the treatment of solid

tumours, its use in HCC has garnered increasing attention.

However, due to the low overall efficiency and response rate

of immunotherapy, the superior population or prediction system

for immunotherapy requires further exploration. Although the

predictive value of PD-L1 expression, a classical efficacy

prediction marker for ICIs, has been extensively evaluated in

many tumour types (Reck et al., 2019; Paz-Ares et al., 2020), its

predictive value for patients with HCC treated with ICIs remains

unexplored (Macek Jilkova et al., 2019). TMB has also been

reported as a potential predictor of the efficacy of ICIs in non-

small cell lung cancer, melanoma and other malignancies (Chan

et al., 2019; Samstein et al., 2019). However, it is unclear whether

TMB in HCC can influence the response to ICIs owing to limited

data (Shrestha et al., 2018; Rizzo and Ricci, 2022). Microsatellite

instability (MSI) degree is another potential predictor of ICIs

treatment (Chang et al., 2018). Theoretically, MSI-high degree

(MSI-H) increases neoantigens, leads to effector lymphocyte

activation and increases tumour sensitivity to ICIs (Svrcek

et al., 2019). Non-etheless, data on the value of this predictor

in HCC are scarce, with MSI-H being reported in less than 3% of

patients (Goumard et al., 2017; Rizzo and Ricci, 2022). As TIME

is constructed by tumour cells in conjunction with immune cells

in the tumour microenvironment, it may be theoretically difficult

for individual indicators to accurately predict patient prognosis

and immunotherapy efficacy. Therefore, understanding the

characteristics of TIME and immune cell infiltration in HCC

is essential for the development of novel and accurate prognostic

and therapeutic efficacy predictive biomarkers.
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In this study, an unsupervised hierarchical clustering method

based on ssGSEA was employed to analyse the immune clusters

of patients with HCC and classify them into high- and low-

immune clusters, thereby identifying patients with HCC patients

having different TIME characteristics and inferring their

response to immunotherapy. The ESTIMATE and

CIBERSORT algorithms further validated these findings,

suggesting that stromal cells, immune cells and ESTIMATE

scores were significantly higher in the high-immune cluster

than in the low-immune cluster. Studies have shown that

tumours characterised by high infiltration of effector immune

cells such as CD8+ T Cells and activation of immune checkpoints

are considered to be ‘hot immune tumours’, which benefit highly

from ICI treatments (Galon and Bruni, 2019; Liu and Sun, 2021).

Notably, most of the immune checkpoint-related genes,

including PD-L1, PD-1, CTLA-4 and LAG3, are more highly

expressed in the high-immune clusters than in the low-immune

clusters, suggesting that patients with HCC in the high-immune

cluster fit the basic profile of an ‘immune hot tumour’ and are

potential beneficiaries of treatment with ICIs. Additionally,

polymorphisms in the HLA genes are speculated to be

involved in biological behaviours such as the immune escape

of tumours (Sabbatino et al., 2020). HLA class I has been reported

to be highly expressed in cancer cells, which may contribute to

the antitumour effects of cytotoxic T lymphocyte-based cancer

immunotherapy (Akazawa et al., 2019). In this study, most of the

HLA genes were also highly expressed in the high-immune

cluster, supporting the conclusion that the high-immune

cluster is more likely to benefit from treatment with ICIs than

those in the low-immune cluster.

To further explore the predictive value of immune-related

genes in the prognosis of HCC, we extracted 19 of these DEGs for

the construction of IRGs based on the LASSO algorithm and

classified all patients into high- and low-risk groups. We further

validated this signature in the TCGA and GSE14520 cohorts via

K-M survival curves, univariate and multivariate Cox regression

analysis and ROC curves. The results indicated that the signature

had a reliable and good prognostic predictive power and could be

applied to patients with HCC having different clinicopathological

parameters.

Currently, advanced HCC is treated systemically with

chemotherapy, targeted therapies and immunotherapy;

however, the survival benefit remains poor. Precise

individualized treatment and a combination of different

systemic therapies are the future trends in the management

of advanced HCC. The IRGs constructed in this study provide

the basis for the selection of some chemotherapeutic agents

and targeted drugs. In a recent study, ICI avelumab in

combination with the TKI axitinib showed antitumour

activity with controlled toxicity in patients with advanced

HCC (Kudo et al., 2021). Our results suggested that the low-

risk group was more sensitive to axitinib than the high-risk

group. Moreover, bevacizumab in combination with erlotinib

was found to be effective in patients with sorafenib-resistant

HCC (He et al., 2019). Similarly, in this study, the low-risk

group benefited more from erlotinib-targeted therapy.

Notably, consistent results were observed with small-

molecule targeted therapeutics such as bosutinib, nilotinib

and gefitinib. However, most chemotherapeutic agents,

including doxorubicin, bleomycin, etoposide, gemcitabine

and paclitaxel, had lower IC50 values in the high-risk

group, suggesting that high-risk patients could be more

sensitive to chemotherapeutic agents.

Although the IRGs was validated by different methods, there

remain some limitations. First, in retrospective studies, there may

be some bias in the included cases. Second, we only used

GSE14520 cohort for external validation, whereas we still need

data from our own clinical cohort of patients with HCC for

prospective analysis to test the applicability of the predictive

signature.

Conclusion

The immune cluster analysis based on the ssGSEA

algorithm could effectively predict the immune

microenvironment characteristics of patients with HCC and

distinguish between ‘hot immune tumours’ and ‘cold immune

tumours’, which could provide a basis for the selection of

treatment for ICIs. Additionally, the IRGs constructed based

on the LASSO algorithm was a good predictor of prognosis for

patients with HCC, which could guide the selection of

personalised treatment regimens. In the future, we will

conduct prospective studies to further validate our results

in clinical patients with HCC.
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