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Background: Auditory neuropathy (AN) is a specific type of hearing loss

characterized by impaired language comprehension. Apoptosis inducing

factor mitochondrion associated 1 (AIFM1) is the most common gene

associated with late-onset AN. In this study, we aimed to screen the

pathogenic variant of AIFM1 in a Chinese family with AN and to explore the

molecular mechanism underlying the function of such variant in the

development of AN.

Methods:One patient with AN and eight unaffected individuals from a Chinese

family were enrolled in this study. A comprehensive clinical evaluation was

performed on all participants. A targeted next-generation sequencing (NGS)

analysis of a total of 406 known deafness genes was performed to screen the

potential pathogenic variants in the proband. Sanger sequencing was used to

confirm the variants identified in all participants. The pathogenicity of variant

was predicted by bioinformatics analysis. Immunofluorescence and Western

blot analyses were performed to evaluate the subcellular distribution and

expression of the wild type (WT) and mutant AIFM1 proteins. Cell apoptosis

was evaluated based on the TUNEL analyses.

Results: Based on the clinical evaluations, the proband in this family was

diagnosed with AN. The results of NGS and Sanger sequencing showed that

a novel missense mutation of AIFM1, i.e., c.1367A > G (p. D456G), was identified

in this family. Bioinformatics analysis indicated that this variant was pathogenic.

Functional analysis showed that in comparison with the WT, the mutation

c.1367A > G of AIFM1 showed no effect on its subcellular localization and

the ability to induce apoptosis, but changed its protein expression level.

Conclusion: A novel variant of AIFM1was identified for the first time, which was

probably the genetic cause of AN in a Chinese family with AN.
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Introduction

Auditory neuropathy (AN) is a type of auditory disorder

mainly characterized by impaired speech comprehension ability,

which manifests as a group of specific syndromes in audiology,

also known as the auditory neuropathy spectrum disorder

(ANSD) (Starr et al., 1996; El-Badry and McFadden, 2009;

Talaat et al., 2009).

The pathophysiology of AN indicates that the outer hair

cells show normal function, whereas the inner hair cells and

auditory nerves as well as their synapses are dysfunctional.

The clinical manifestations include: (1) the degree of impaired

speech recognition rate is inconsistent with the degree of

hearing impairment, and the word comprehension ability

and speech discrimination ability are poor, especially in

noisy environment (Elrharchi et al., 2020); (2) the

audiological examination is characterized by normal

cochlear microphonic (CM) and meaningful otoacoustic

emission (OAEs), but the auditory brainstem response

(ABR) waveform is either missing or illegible in the patient

(Starr et al., 1996). Studies showed that the prevalence rate of

AN in neonates is 0.009%, and about 6.5% of the congenital

sensorineural hearing loss is caused by AN (Boudewyns et al.,

2016). AN is also one of the refractory diseases leading to

hearing and speech communication disorders in both infants

and adolescents, accounting for 10% of permanent hearing

loss in children (Chinese Multi-center Research Collaborative

Group on Clinical Diagnosis and Intervention of Auditory

Neuropathy, 2022).

According to the age of onset, cases of AN are divided into

two groups, i.e., congenital AN and late-onset AN. Studies have

shown that the etiology of AN is complex, with about 48% as

idiopathic, 10% related to various factors, such as ototoxic drugs

and metabolic, immune, and infectious factors, and about 42% as

genetic (Moser and Starr, 2016). There are three types of

inheritance pattern for AN: autosomal recessive, autosomal

dominant, and X-linked recessive (Wang et al., 2020). To

date, among the over 20 genes associated with AN, apoptosis

inducing factor mitochondrion associated 1 (AIFM1) is

considered as the most prevalent gene associated with the

late-onset AN and X-linked recessive inheritance mode (Zong

et al., 2015; Wang et al., 2020).

First cloned and named in 1999, AIFM1 is located in the

Xq25-q26 region of human chromosomes (Susin et al., 1999).

The AIFM1 gene is 36.471 kb in length, containing a total of

16 exons and encoding a 613-amino acid apoptosis-inducing

factor (AIF). The AIF is a flavin protein with oxidoreductase

activity, composed of two flavin adenine dinucleotide (FAD)

domains, a nicotinamide adenine dinucleotide (NADH)

binding domain, a C-terminal domain with oxidoreductase

activity, and a mitochondrial localization signal (MLS) at the

N-terminal (Yuste et al., 2011). The AIFM1 has two main

functions. First, it is involved in the caspase-independent

death effect when mitochondria are transferred to nuclei

under apoptosis stimulation, resulting in caspase-

independent programmed cell death (Joza et al., 2001).

Second, as a NADH oxidoreductase that is dependent on

FAD, AIFM1 is crucial for oxidative phosphorylation, redox

control, and respiratory chain activity in the organism (Ghezzi

et al., 2010; Itai et al., 2011).

To date, a total of 19 AIFM1 variants have been identified

as pathogenic factors for AN (https://www.hgmd.cf.ac.uk/;

accessed on 03 October 2022). It is conceivable that there

are other AIFM1 variants still remaining uncovered

responsible for pathogenesis of AN. Therefore, in this

study, we attempted to detect the pathogenic variants of

AIFM1 in a Chinese family with AN enrolled in our

hospital and to further investigate the effects of this variant

on AN development.

Materials and methods

Subjects

One patient and eight unaffected individuals from a

Chinese family as well as a total of 200 Chinese individuals

with no genealogical relationships (i.e., controls) were

included in this work. A comprehensive clinical evaluation,

including the disease history and the audiological tests, was

performed on all participants. The audiological tests included

the pure tone threshold (PTA), distortion product otoacoustic

emission (DPOAE), auditory brainstem response (ABR),

speech discrimination score (SDS), and auditory steady-

state response (ASSR). The informed consent was signed by

each participant prior to the clinical evaluation. The study was

conducted in accordance with the Declaration of Helsinki

with all procedures performed in accordance with the ethical

standards of Shandong Provincial Hospital (Approval #

SWYX: NO. 2021-511).

Targeted next-generation sequencing

The genomic DNA was extracted from 1 ml whole blood

using the Genomic Blood DNA Extraction Kit (Axygen, San

Francisco, CA, United States) according to the manufacturer’s

instruction. The proband’s DNA was diluted and then

fragmented, ligated, amplified, and purified. GenCap® deafness
gene capture probe V4.0 and GenCap® mitochondrial ring gene

capture probe V1.0 (MyGenostics, Beijing, China) were used to

capture the exon regions and the adjacent 20-bp intron regions of

406 genes of the proband. After elution, amplification, and

purification, the captured regions were double-ended

sequenced using Illumina HiSeq X TEN high-throughput

sequencing platform (Illumina, United States). The detailed
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procedures of library preparation, sequencing, and

bioinformatics analysis were described in our previous study

(Xiao et al., 2016).

Polymerase chain reaction (PCR)
amplification and Sanger sequencing

PCR was performed in a 50-μl reaction mixture with the

specific primers (forward primer 5′-TCCCTTTGTATGAAG
CTAACTGG-3′ and reverse primer 5′-CCATTACAAGTG
TTCTTTGAGCC-3′), as previously described (Bai et al.,

2014). After the purification, the PCR products were

sequenced by the ABI 3500 Genetic Analyzer (Thermo

Scientific, Applied Biosystem, CA, United States). Nucleotide

variations were identified by aligning the sequences with the

AIFM1 available (GenBank accession NM_004208.4) using the

Chrome software.

Pathogenicity assessment of AIFM1 variant

The harmfulness of variant was evaluated with pathogenicity

prediction tools and databases, including REVEL (Ioannidis

et al., 2016), SIFT (http://sift.jcvi.org/), PolyPhen-2 (http://

genetics.bwh.harvard.edu/pph2/), and Mutation Taster (http://

www.mutationtaster.org/). The novelty of variant was

determined by screening based on the 1000 Genomes (1000G)

and Exome Aggregation Consortium (ExAC) databases as well as

the literature and publicly available databases, i.e., the Deafness

Variation Database (DVD) (http://deafnessvariationdatabase.

org/; accessed on 03 October 2022) and the ClinVar database

(http://www.ncbi.nlm.nih.gov/clinvar/; accessed on 03 October

2022).

A total of eight AIFM1 protein sequences of eight animal

species, including Homo sapiens (O95831), Pan troglodytes

(K7BTY6), Bos taurus (A0A4W2I7F3), Macaca mulatta

(F7C728), Canis lupus familiaris (A0A8C0JLH6), Rattus

norvegicus (Q9JM53), Mus musculus (Q9Z0X1), and Danio

rerio (Q5XFY2), were downloaded from the UniProt database

to perform the multiple sequence alignment by the Clustal

Omega online tools (https://www.ebi.ac.uk/Tools/msa/

clustalo/; accessed on 03 October 2022) to assess the

conservation of the AIFM1 proteins.

Modeling analysis of AIFM1 protein
structure

To determine the effects of AIFM1 variant on the protein

structure, the 3-dimensional (3D) molecular structures of human

wild type (WT) and mutant AIFM1 proteins were simulated

using an automated homology modeling program I-TASSER

(http://zhanglab.ccmb.med.umich.edu/; accessed on

03 September 2022) with the protein structure visualized by

Swiss-PdbViewer 4.1.

Cell culture

The Shandong Provincial Key Laboratory of Otology

provided the HEK293 cells, which were cultured in the

Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, Grand

Island, NY, United States) containing 10% fetal bovine serum

(FBS) (Gibco, Grand Island, NY, United States) and 1%

penicillin/streptomycin (Macgene, Beijing, China) with 5%

CO2 at 37°C.

Transient transfection and
immunofluorescence analysis

The WT and mutant AIFM1 plasmids expressing GFP-

tagged (pCMV3-C-GFPSpark) were synthesized by BioSune

Biotech (Jinan, China). Sequences of WT and mutant AIFM1

plasmids were verified by Sanger sequencing. The HEK293 cells

were planted onto the 24-well plates and grown to 60%

confluence. The expression plasmids of WT and mutant

AIFM1 were transfected into cells by using Lipofectamine

3000 transfection reagent (Invitrogen, Waltham, MA,

United States). In 48 h, the cells were fixed in 4%

paraformaldehyde for 15 min, washed thrice with PBS, and

then incubated with DAPI (D9542, Sigma-Aldrich, St. Louis,

MO, United States) for 10 min in dark. Finally, the samples were

washed three times with PBS. After sealing, the samples were

observed and imaged through a Leica TCS SP8 confocal

fluorescence microscope (Leica Microsystems, Biberach,

Germany). The relative fluorescence intensity was quantified

with ImageJ software.

Western blot

Total protein was extracted from the HEK293 cells

transfected with the WT and mutant AIFM1 plasmids. The

proteins were denatured and separated by 10% SDS-PAGE

electrophoresis and then transferred to polyvinylidene fluoride

(PVDF) membranes (ISEQ00010, MerckMillipore, China). After

blocking, the membranes were incubated with mouse

monoclonal anti-GFP antibody (Proteintech, Wuhan, China)

and mouse monoclonal anti-β-actin antibody (ZSGB-Bio,

Beijing, China), and followed by anti-mouse IgG conjugated

horseradish peroxidase (ZSGB-Bio, Beijing, China). Finally,

the immunoblots were detected with an Immobilon Western

HRP Substrate kit (WBKLS0100, Millipore, Schaffhausen,

Switzerland) using the enhanced chemiluminescence system
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(Tanon5200, Shanghai, China). The gray scale of each band was

quantified with ImageJ software and normalized by β-actin.

Tunel assay

The human HEK293 cells seeded in 24-well culture plates

were transfected with plasmids of WT and mutant AIFM1 by

using Lipofectamine 3000 transfection reagent (Invitrogen,

Waltham, MA, United States). In 48 h, the cells were fixed in

4% paraformaldehyde for 30 min and permeabilized with

proteinase K (20 μg/ml) at room temperature for 5 min. Each

sample was stained with 50 μl TUNEL TdT Enzyme working

solution (Meilunbio, Dalian, China) for 60 min at 37°C. The

fluorescence intensity of the sample was detected with EX at

546 nm and EM at 570 nm.

Statistical analysis

Data presented as mean ± standard deviation (SD) of three

biological replicates for each experiment were analyzed using

one-way ANOVA (nonparametric or mixed) with Dunnett’s

multiple comparison test and two-tailed unpaired t-test by

Graphpad Prism (V8.3.0). The significant difference was set at

the two tailed p value less than 0.05.

Results

Participants and clinical evaluations

A total of nine members of a Chinese family were included

in this study, including one affected (Ⅲ-2) and eight

unaffected (Figure 1A). The proband Ⅲ-2 was a 21-year-

old male and complained of hearing loss in both ears for

6 years, capable of hearing sounds but not clearly, with

occasional tinnitus, which was more pronounced in noisy

environments. The results of ABR showed that there was no

significant waveform change observed in both ears of the

proband with the stimulated of 96 db (Figure 1B). The PTA

test results showed that the proband had low-frequency mild

hearing loss in both ears (Figure 1C) with the SDS in the left

and right ears of 45% and 43%, respectively, showing a

disproportionate decline in pure tone hearing. The ASSR

test showed that its threshold was significantly higher than

FIGURE 1
Pedigree and clinical characteristics of the Chinese family diagnosed with auditory neuropathy (AN). (A) Pedigree of the Chinese family with AN.
Individuals harboring hemizygous (–/o) or heterozygous (+/–) AIFM1 (c.1367A > G) mutation and WT (+/+) are indicated. The red arrow denotes the
proband. The square indicates a male and the circle indicates a female. The hearing-impaired individual is indicated by a blackened square. (B) ABR
thresholds of the proband. Red and blue lines represent the right and left ears, respectively. (C) PTA test of the proband. Red and blue lines
represent the right and left ears, respectively. (D) ASSR thresholds of the proband. Red and blue lines represent the right and left ears, respectively. (E)
DPOAE test results of the proband. Gray area indicates level of noise and the black line indicates the level of response.
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that of PTA (Figure 1D). Notably, the DPOAE response was

completely preserved (Figure 1E). These results of

audiological tests indicated that the proband was presented

with typical symptoms of AN.

Identification of a novel AIFM1 variant

The NGS analysis was performed based on the proband. The

result showed that there was a base substitution (A to G) at

position 1367 in the coding region of AIFM1 gene. Then, the

candidate variant was confirmed by Sanger sequencing

(Figure 2), showing that the proband carried the c.1367A > G

hemizygous variant, the proband’s sister and mother had the

c.1367A > G heterozygous variant, and the proband’s father did

not have the variant, indicating that the variant of c.1367A > G

came from the mother, and the WT allele came from the father.

We then performed Sanger sequencing on other members of the

family and found that the variant was co-segregated with the

phenotypes of AN in this family (Figure 1A) with the X-linked

recessive inheritance pattern in this family. The results of Sanger

sequencing also showed that this variant was absent in the

200 controls. Furthermore, this variant was not detected in

neither ExAC nor 1000G databases and was not reported in

the literature and publicly available databases, i.e., the DVD and

the ClinVar databases (Table 1). These results indicated that the

novel variant of AIFM1, i.e., the missense mutation c.1367A > G,

was identified in the proband of this Chinese family in this study.

Bioinformatics analysis of the
pathogenicity of the AIFM1 variant

The results of bioinformatics analysis showed that the variant

c.1367A > G was predicted to be deleterious by REVEL, SIFT,

Polyphen-2, and Mutation Taster (Table 1).

As showed in Figure 3A, the variant c.1367A > G was located

in exon 13 of the FAD region ofAIFM1, altering the triplet codon

to substitute an aspartic (Asp, D, GAT) with the glycine (Gly, G,

GGT) at position 456 (p. D456G). The results of the multiple

sequence alignment showed that the AIFM1 p. D456G occurred

at the evolutionarily highly conserved amino acids among eight

species of vertebrates (Figure 3B). The 3D structures of WT and

p. D456G AIFM1 were modeled based on the crystal structure of

AIFM1 to reveal that compared with the WT, the structure of

p. D456GAIFM1 protein was evidently changed (Figure 3C) with

the polar, acidic amino acid Asp replaced by the non-polar amino

acid Gly at position 456 and the secondary structure of the

protein changed significantly posterior to the amino acid at

position 456.

Functional analysis of the AIFM1 variant

After the transfection of WT and mutant AIFM1 plasmids

into HEK293 cells, the subcellular localization of AIFM1 was

detected by GFP fluorescence based on the fusion between the

GFPSpark-tag and the C-terminal of AIFM1 protein. The results

showed that green fluorescence was present in the entire cell

transfected with vector plasmids and in the cytoplasm of the cells

transfected with mutant and WT plasmids, indicating that both

the WT and mutant AIFM1 proteins were localized in the

cytoplasm (Figure 4A). Furthermore, immunofluorescence and

quantitative results showed that the fluorescence intensity of the

p. D456G AIFM1 was significantly lower than that of the WT

TABLE1 Characteristics of AIFM1 variant, analysis of predicted protein structure and disease-causing effects based on various databases.

Gene Variant REVEL SIFT Polyphen-2 Mutation
taster

ExAC 1000 G DVD ClinVar

AIFM1 c.1367A > G (p. D456G) Probably damaging Damaging Damaging Disease causing Novel Novel Novel Novel

Abbreviations: AIFM1, Apoptosis inducing factor mitochondrion associated 1; c, variation at cDNA level; p, variation at protein level; ExAC, Exome Aggregation Consortium; 1000 G,

1000 Genomes; DVD, Deafness Variation Database.

FIGURE 2
Sanger sequencing chromatograms of the Chinese family
diagnosed with auditory neuropathy. The red arrow indicates the
location of the AIFM1 C.1367A > G variant.
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AIFM1 (Figures 4A,B). Western Blot analysis was conducted to

further investigate the effects of AIFM1 variant on the protein

expression. The results showed that the AIFM1 protein

expression was not detected in the vector group transfected

with vector plasmids, while the WT AIFM1 protein was

detected with the expected molecular weight, suggesting that

the staining reaction observed in the immunocytochemical

analysis was specifically derived from the GFPSpark-tagged

AIFM1 proteins. The molecular weight of p. D456G

AIFM1 protein was the same as that of the WT

AIFM1 protein but with weaker band than that of the WT

AIFM1 protein (Figure 4C). The quantitative results showed

that the expression level of p. D456G AIFM1 protein was

significantly decreased compared with the WT AIFM1 protein

(Figure 4D). In order to investigate the effect of p. D456G on cell

survival, we performed the Tunel staining assay (Figure 5). The

results showed that compared with the vector group,

HEK293 cells transfected with WT AIFM1 plasmid and

c.1367A > G AIFM1 plasmid showed enhanced apoptosis,

showing no significant difference between these two treatments.

Discussion

As a specific type of hearing loss, AN is characterized by

impaired language comprehension. In most cases, AIFM1 gene is

responsible for the cases of late-onset AN (Li et al., 2021), which

contributes to the maintenance of normal mitochondrial

morphology and physiology as well as caspase-independent

apoptosis (Rance and Starr, 2015). In the present study, the

possible genetic cause and molecular mechanisms underlying the

development of AN were explored in a Chinese family with AN.

The onset ages of patients with late-onset AN are mostly in

the range of 5–20 years old with diverse clinical manifestations

(Wang et al., 2020). Studies have shown that about 92.5% (360/

389) of AN patients are presented with bilateral hearing loss

FIGURE 3
Molecular characteristics of AIFM1 variant. (A) Genomic and protein structures showing the locations of AIFM1 variant in exon 13 and the FAD
domain indicated by the red arrows. The mutation c.1367A > G causes the replacement of individual amino acids (p. D456G) indicated by the red
arrow. MLS: Mitochondrial Localization Signal; TM: Transmembrane domain; FAD: Flavin Adenine Dinucleotide; NADH: Nicotinamide Adenine
Dinucleotide. (B) AIFM1 protein alignment of eight species of vertebrates showing that the Aspartic (Asp, D) located in 456 highlighted in red box
is evolutionarily highly conserved. (C) 3D molecular models of the WT and p. D456G AIFM1 proteins.
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(Bing et al., 2019) with audiogram mainly of low-frequency

ascending type and diverse pure tone hearing manifestations

which are identified as normal or mild to severe hearing loss

(Wang et al., 2003;Wang et al., 2006; Zong et al., 2015;Wang and

Starr, 2018), accompanied by significant decline in speech

recognition ability (Starr et al., 1996). The results of our study

were consistent with the above characteristics reported in the

literature, showing that the proband of the family in this study

was presented with typical symptoms of late-onset AN, i.e., the

onset age of the proband was 15 years old, the audiogram showed

low-frequency ascending type (Figure 1C), the PTA showed low-

frequency mild hearing loss in both left and right ears with a

disproportionate decrease in SDS (Figure 1C), the ABR

waveform was illegible (Figure 1B), and the DPOAE was

normal (Figure 1E). It was worth noting that although low-

frequency ascending type was the most common type of hearing

pattern of AN patients, including the patients involved in this

study, there are still great differences in hearing patterns among

AN patients. For example, a follow-up study found that some AN

patients initially showed a low-frequency ascending hearing

pattern, but with the progress of the disease, their high-

frequency hearing was decreased rapidly to show a descending

hearing pattern (Wang et al., 2020). Furthermore, some AN

patients present with a descending hearing pattern involving the

full frequency were accompanied by severe motor development

impairment and mental retardation (Wang et al., 2019).

FIGURE 4
Subcellular localization and protein expression of wild type (WT) and p. D456G AIFM1 proteins in HEK293 cells. (A) Subcellular localization ofWT
and p. D456G AIFM1 proteins in HEK293 cells shown in DAPI, GFP-tagged, and merged images. GFP fluorescence is detected after the transient
transfection in HEK293 cells. Scale bar = 40 μm. (B) Quantitative analysis of fluorescence intensity based on images shown in (A). The data are
presented as mean ± standard deviation (SD) of three biological replicates. The significant difference is set at p < 0.01 (**) based on the two-
tailed unpaired t-test. (C) Expressions of WT and p. D456G AIFM1 in transfected HEK293 cells based onWestern blot using anti-GFP and anti-β-actin
(i.e., internal control) antibodies. (D)Quantitative analysis of proteins shown in (C). The data are presented asmean ± standard deviation (SD) of three
biological replicates. The significant difference is set at p < 0.0001 (****) based on the one-way ANOVA with Dunnett’s multiple comparison tests.
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Furthermore, consistent with previous studies (Wang and Starr,

2018), the threshold of ASSR results in our study was also

significantly higher than that of PTA (Figure 1D). Moreover,

another important clinical manifestation revealed in our study

was that the proband complained that his speech recognition

ability was worsened in the noisy environment, which was in

accordance with the results of a controlled study of AN patients

(Lan et al., 2019), suggesting that the speech recognition ability of

AN patients with sound speech recognition rate in quiet

environment was significantly decreased in the noisy

environment. Meanwhile, the proband also showed tinnitus

and aggravation under noise environment, which was

consistent with the previous study (Xie et al., 2019).

Since the genetic factors account for 42% of the etiology of

AN (Moser and Starr, 2016), the genomic DNA of the proband

was extracted for NGS analysis. Combined with Sanger

sequencing technology, the results showed that the c.1367A >
G variant of AIFM1 carried by the proband came from the

mother, and this variant was co-segregated with the phenotype of

the family and was not identified in a total of 200 healthy

controls. Base on the literature and publicly available

databases, the variant c. 1367A > G has not been reported,

indicating that this variant of AIFM1 gene identified in this

study was a novel one, expanding the pool of the mutations of

AIFM1 gene. Meanwhile, this variant was predicted as

deleterious by REVEL, SIFT, Polyphen-2, and Mutation Taster

(Table 1), suggesting the potentially pathogenic property of this

variant. To date, a total of 19 pathogenic variants of AIFM1

related to AN have been reported in literature (Elrharchi et al.,

2020; Wang et al., 2020) and databases (Figure 6). The missense

mutation (c.1367A > G) revealed in our study provided

additional powerful support for molecular diagnosis of AN in

clinical settings. These results evidently showed that a novel

pathogenic AIFM1 variant, i.e., a missense mutation (c.1367A >
G) in our study was first identified.

The variant of c.1367A > G was located in exon 13 of AIFM1

gene, causing the amino acid change of p. D456G in the second

FAD domain of AIFM1 protein. Asp is an acidic polar aliphatic

amino acid (Agius et al., 2018), which could be used as one of

excitation-related neurotransmitter receptors in mammals

(Kondoh et al., 2010), while Gly is a kind of non-polar

aliphatic amino acid and an inhibitory neurotransmitter in the

FIGURE 5
Tunel assay of wild type (WT) and p. D456G AIFM1 proteins in HEK293 cells shown in Tunel, DAPI, GFP-tagged, andmerged images. PC: positive
control. The white arrows indicate the apoptotic cells.
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central nervous system (Roepke et al., 2008). As reported in the

previous study (Xu et al., 2017), substitutions of amino acids of

different polarities could largely affect the protein structures and

functions of target protein. The change from polar Asp to non-

polar Gly in this study could largely affect the structure, stability,

and activity of the target protein. The 3D protein structure

models (Figure 3C) further supported these findings, showing

that the secondary and tertiary structures of the protein were

largely changed. Studies showed that a total of 19 pathogenic

variants previously identified mainly located in the NADH and

second FAD domains of AIFM1 (Elrharchi et al., 2020; Wang

et al., 2020), indicating that the NADH and FAD domains play an

essential role for the normal function of AIFM1 protein. The

novel variant identified in this study was also located in the

second FAD domain (Figure 6), which is required for FAD-

dependent NADH oxidoreductase (Zong et al., 2015), suggesting

that the novel variant could probably change the redox activity of

AIFM1 to cause abnormal functions of the target protein.

Previous studies showed that changes in key amino acids

could affect the conformation of the skeleton and thus disturb the

local structure of the protein, even interfere with the inter- and

intra-molecular interactions of proteins (Sapra et al., 2008), while

AIFM1 usually interacts with a variety of proteins such as coiled-

coil-helix-coiled-coil-helix domain containing 4 (CHCHD4) and

Poly (ADP-ribose) polymerase 1 (PARP1). Previous

coevolutionary analysis and structural modeling (Hangen

et al., 2015; Salscheider et al., 2022) indicated that the

N-terminal region of CHCHD4 may form a β-hairpin to bind

the C-terminal motif of AIFM1. Furthermore, studies showed

that AIFM1 knockdown affected the interaction between

CHCHD4 and its substrate and then the biogenesis of

electron transport chain, suggesting the essential nature of the

interaction between AIFM1 and CDCDH4 in this process

(Salscheider et al., 2022). As shown in Figure 3C, the

c.1367A > G variant altered the secondary structure of the

C-terminus of AIFM1, which may affect its binding to the

N-terminus of CDCDH4. PARP1 is a nuclear protein involved

in DNA damage, while PAR polymers synthesized by

PARP1 bind to AIFM1 on the mitochondrial membrane with

damaged DNA, then AIFM1 is released to cytoplasm and

translocated to the nucleus, resulting in large-scale DNA

fragmentation (Wang et al., 2011; Mashimo et al., 2021).

Therefore, changes in AIFM1 protein structure could affect its

binding to PAR polymer and thus its ability to induce apoptosis.

Furthermore, Asp at position 456 was evolutionarily highly

conserved in eight vertebrate species, indicating that amino

acid changes may affect protein structure and ultimately

protein function. These results indicated that the c.1367A > G

variant appeared to be critical for the structures and functions of

AIFM1.

As an apoptosis-inducing factor, the AIFM1 is a flavin

protein localized in the inner membrane space of

mitochondria and is transported from mitochondria to the

nucleus to induce cell apoptosis upon the occurrence of the

apoptotic injury (Joza et al., 2009). The immunofluorescence

analysis showed that the subcellular localization of p. D456G

AIFM1 was consistent with that of the wild-type AIFM1,

probably due to the MLS (Yuste et al., 2011) and nuclear

localization signal (NLS) (Wang et al., 2016) of its N terminus.

In a study of AIFM1 mutation causing Cowchock Syndrome,

the mutant AIFM1 showed more AIFM1-positive inclusions

detected by immunofluorescence, indicating a higher

propensity to translocate to the nucleus (Rinaldi et al.,

2012). However, our study showed that there was no

significant difference between the mutant group and the

wild type group, and the subsequent TUNEL assay showed

that p. D456G AIFM1 and WT AIFM1 revealed the same

TUNEL-positive apoptotic bodies. This difference was

probably due to the fact that AIFM1 could cause a variety

of diseases, such as childhood cerebellar ataxia (Heimer et al.,

2018), mitochondrial encephalomyopathy (Ghezzi et al.,

2010), motor neuropathy (Diodato et al., 2016; Hu et al.,

2017; Sancho et al., 2017), Cowchock syndrome (Rinaldi

et al., 2012) and auditory neuropathy (Zong et al., 2015;

Wang et al., 2020), with different severity and potential

pathogenesis.

FIGURE 6
AIFM1 mutations associated with auditory neuropathy. The novel variant identified in this study is highlighted in red. The structural domains in
AIFM1 shown include mitochondrial localization signal (MLS), transmembrane domain (TM), flavin adenine dinucleotide (FAD), nicotinamide adenine
dinucleotide (NADH), and C-terminal domain (C-terminal).
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Furthermore, the immunofluorescence analysis also showed

that the fluorescence intensity of p. D456G AIFM1 was weaker

than that of WT AIFM1, indicating that the variant of p. D456G

changed the expression level of AIFM1. To further investigate the

effect of p. D456G mutation on AIFM1 protein expression,

western blot analysis was performed. The results were

consistent with those of the immunofluorescence analysis,

showing that the protein expression of p. D456G AIFM1 was

significantly lower than that of wild-type AIFM1. As predicted by

our 3D protein model, the p. D456G mutation affected the

secondary/tertiary structure of the protein, resulting in

degradation or low expression of the protein, which was

further supported by the results of western blot. Previously,

many scholars have studied the effect of AIFM1 mutation on

protein expression with varied results. For example, patients with

p. G338E (Diodato et al., 2016) and p. F210S (Sancho et al., 2017)

variants all showed motor nerve lesions, and the expression level

of AIFM1 was decreased. These results were consistent with the

findings revealed in our study. Interestingly, in a study on axonal

polyneuropathy caused by AIFM1 p. F210L variant (Hu et al.,

2017), no significant change was detected in the AIFM1 protein

expression, independent of the changes of different amino acids

at the same site. Furthermore, in a study of mitochondrial

encephalomyopathy caused by R201 del variant in AIFM1, the

protein expression was not significantly altered (Ghezzi et al.,

2010).

Under normal circumstances, AIFM1 is first transcribed and

translated into a 67-kD precursor molecule (Liu et al., 2018),

which is then transported to mitochondria through the

N-terminal domain MLS sequence. The mitochondrial

processing peptidase (MPP) cleaves AIFM1 in mitochondria

into 62-kD mature AIFM1, which acts as the FAD-dependent

NADH oxidoreductase to contribute to the stabilization and

maturation of mitochondrial oxidation of respiratory chain

complex I as well as the removal of peroxide from the

mitochondria (Susin et al., 1999). When cells are damaged by

apoptosis, mature AIFM1 is cleaved into soluble apoptotic

precursor protein, i.e., the truncated AIF (tAIF) of about

57 kD (Susin et al., 1999; Joza et al., 2001). The tAIF is

released from mitochondria into cytosol and nucleus to

induce two typical caspase-independent apoptosis phenomena:

chromatin condensation and fragmentation of large DNA

fragments of approximately 50 kD (Yuste et al., 2011).

A study ofAIFM1 p. P488L variants in auditory neuropathy and

peripheral neuropathy showed thatAIFM1 p. P488L variants caused

a mild increase in the rate of caspase-independent apoptosis in cells

(Wang et al., 2019). Because the immunofluorescence and WB

assays showed that the p. D456G variant reduced AIFM1 protein

expression, the Tunel assay was performed to evaluate its adverse

effect on cell survival. The results showed that the ability of

AIFM1 to induce apoptosis was not significantly affected by the

p. D456G mutation, showing the same effect on cell survival as that

ofWTAIFM, indicating that the p. D456G variant did not affect cell

survival. This may also be the reason for the generation of mild

symptoms of AN patients. Previous studies showed that the

AIFM1 R201del variant caused severe mitochondrial

encephalomyopathy and significantly increased parthanatos-

linked cell death (Ghezzi et al., 2010). In the study of Cowchock

Syndrome caused by AIFM1 p. E493V variant, Tunel assay of

muscle biopsy showed a large number of apoptotic cells in the

samples of the mutated individuals, while little or no staining was

detected in the muscles of healthy controls (Rinaldi et al., 2012).

However, in patients with distal motor neuropathy carrying the

p. F210S mutation, the mutation did not enhance the apoptosis

(Sancho et al., 2017), which was consistent with our study. Similarly,

as mentioned above, the p. F210S mutation also reduced the protein

expression level with mitochondrial fragmentation also observed in

fibroblasts of this patient, suggesting that the development of distal

motor neuropathy in this patient may be related to the defective

mitochondrial respiration (Sancho et al., 2017). Therefore, we

hypothesized that this mutation might affect the role of

AIFM1 in oxidative phosphorylation, redox control, and

respiratory chain activity. Study showed that knockdown of

AIFM1 could attenuate mitochondrial respiration and ATP

production, ultimately affecting cell functions (Zong et al., 2020).

Furthermore, some studies showed that in the auditory pathway,

including inner hair cells, glial cells in neural pathways, and spiral

ganglion cell (SGC), the normal energy metabolism was the key to

maintain its physiological activity (Yang et al., 2015). Therefore, as

suggested in the previous studies (Zong et al., 2015), the variant

revealed in our study may cause AN by affecting the function of

AIFM1 protein in mitochondria, ultimately affecting the

mitochondrial respiration and ATP synthesis in inner ear.

Moreover, as mentioned above, the 3D prediction results showed

that the p. D456Gmutation affected both the secondary and tertiary

structures of the C-terminal, while the binding of the N-terminal of

CHCHD4 and the C-terminal ofAIFM1 played an important role in

the biogenesis of mitochondrial respiratory chain complex Ⅰ. The
decreased expression level of AIFM1 could affect this interaction,

and then affect the function of the mitochondrial respiratory chain.

These functional experiments further demonstrated that the novel

mutation identified in this study could cause damage to

AIFM1 protein, which could be the underlying genetic etiology

of this family with AN, and further experiments of mitochondrial

respiratory chain activity and oxidative phosphorylation

are necessary to explore the pathological mechanism of this

mutation.

In summary, we identified a novel c.1367A > G AIFM1

variant in a Chinese family with AN by targeted capture

sequencing, expanding the AN-related mutation spectrum of

AIFM1. Bioinformatics prediction and functional analysis

showed that AIFM1 c.1367A > G was a pathogenic mutation

and may be the genetic cause of AN in this Chinese family,

providing additional molecular and clinical evidence to support

the establishment of a strong genotype-phenotype correlation

for AN.
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