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Although multiple studies have shown that loss of heterozygosity (LOH) at the

human leukocyte antigen (HLA) locus is one of the mechanisms of immune

escape, the effect of HLA LOH on the immunotherapy response of patients is

still unclear. Based on the data of 425 Chinese lung cancer patients, the

genomic characteristics with different HLA LOH statuses were analyzed. The

driver genes mutation frequency, oncogenic signaling pathways mutation

frequency, tumor mutational burden (TMB) and chromosomal instability

(CIN) score in the HLA LOH high group was significantly higher than in the

HLA LOH negative group. Transcriptome analyses revealed that pre-existing

immunologically active tumor microenvironment (TME) was associated with

HLA LOH negative patients. Non-small cell lung cancer (NSCLC) patients,

especially for lung squamous cell carcinomas (LUSC), with HLA LOH

negative have a longer survival period than those with HLA LOH. In addition,

the combination of HLA LOH with TMB or programmed cell death-Ligand 1

(PD-L1) expression can further distinguish responders from non-responders.

Furthermore, a comprehensive predictive model including HLA LOH status,

TMB, PD-L1 expression and CD8+ T cells was constructed and exhibited a

higher predictive value, which may improve clinical decision-making.
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Introduction

Treatment landscapes for patients with advanced cancer have

been revolutionized with immune checkpoint inhibitors (ICIs) by

reinvigorating one’s own T cell-mediated immune response (Le

et al., 2015; Hellmann et al., 2018a). Several ICIs have been

approved as the first-line or second-line or back-line treatment

formultiple cancers (Herbst et al., 2016; Reck et al., 2016; Gettinger

et al., 2018; Mok et al., 2019; Andre et al., 2020). However, only a

small subset of patients benefits from the treatment of ICIs.

Although several biomarkers such as tumor mutational burden

(TMB) and programmed cell death-Ligand 1 (PD-L1) have been

shown to predict the efficacy of immunotherapy, some patients

with TMB-high or PD-L1-high are still resistant to

immunotherapy (Giroux Leprieur et al., 2017; Hellmann et al.,

2018a; Hellmann et al., 2018b; Samstein et al., 2019; Herbst et al.,

2020; Montesion et al., 2021). Therefore, the development of

superior predictive biomarkers and a deeper understanding of

the mechanisms for resistance are urgently required.

Tumor cells are recognized by CD8+ T cells via human

leukocyte antigen class I (HLA-I) which presents the tumor-

specific mutant peptides (Schumacher and Schreiber, 2015). loss

of heterozygosity (LOH) at the human HLA-I locus interrupts

tumor antigen recognition and has been described as a potential

mechanism of immune escape (McGranahan et al., 2017; Chowell

et al., 2018). The previous study has shown a high incidence of

HLA LOH in a variety of cancer, and TMB in patients with HLA

LOH was higher (Shim et al., 2020). However, the genomic and

tumormicroenvironment (TME) features with different statuses of

HLA LOH are unclear, especially for Chinese patients.

Recently, several studies have identified the significance of

HLA LOH in immunotherapy (Chowell et al., 2018; Shim et al.,

2020; Montesion et al., 2021). The response to ICIs was affected

by the genotype of HLA-I alleles (Chowell et al., 2018). The

predictive efficacy of ICIs was improved using the corrected TMB

(Shim et al., 2020). However, the clinical implication of HLA

LOH in patients treated with ICIs has not been well

characterized. In addition, due to the complexity of anti-

tumor mechanisms, a single marker cannot accurately

distinguish responders (Wang et al., 2022). Therefore, a

comprehensive predictive model is required.

In this study, targeted panel sequencing from 425 Chinese

lung cancer patients was performed to investigate the genomic

features between the different statuses of HLA LOH.

Transcriptome data from The Cancer Genome Atlas (TCGA)

were used to study the impact of HLA LOH on the TME. The

predictive efficacy of HLA LOH alone and its combination with

TMB or PD-L1 were analyzed. Furthermore, a comprehensive

predictive model based on HLA LOH, PD-L1, TMB and CD8+

T cells was constructed, and its association with clinical responses

to ICIs was characterized, which may help clinical decision-

making in non-small cell lung cancer (NSCLC) patients treated

with ICIs.

Materials and methods

Samples and datasets

Samples from 425 Chinese patients with lung cancer between

January 2019 and June 2020 were retrospectively obtained. The

inclusion criteria were as follow: 1) lung cancer, 2) performed

with targeted panel sequencing and immunohistochemistry

(IHC) assay for PD-L1. The clinical information of the

patients is shown in Supplementary Table S1. Genomic and

transcriptome data of 969 NSCLC patients from TCGA were

used to analyze the difference in gene expression, enriched

pathway and cell proportions across the different statuses of

HLA LOH. (Thorsson et al., 2018).

Genomic and clinical data from 89 NSCLC patients treated

with ICIs were obtained to analyze the predictive efficacy of HLA

LOH, TMB, PD-L1 and CD8+ T cells on immunotherapy, and the

comprehensive predictive model was constructed based on these

data (Anagnostou et al., 2020). The classification criteria in the

original article was used to define patients as TMB high and low.

For PD-L1, the proportion of PD-L1+ cells higher than 1% was

defined as PD-L1 high, and the others was defined as PD-L1 low.

The cut-off values for CD8+ T high and CD8+ T low were defined

as the median values of CD8+ T cells.

IHC assay for PD-L1

The Dako PD-L1 IHC 22C3 pharmDx assay was used to detect

PD-L1 protein expression in formalin-fixed paraffin-embedded

(FFPE) tumor tissue slides according to the manufacturer’s

recommendations (Kulangara et al., 2019; Lantuejoul et al., 2020).

Briefly, the FFPE slides were heated at 65°C for 30min, and then

dewaxed, rehydrated, and fixed. Next, the slides were incubated with

anti-PD-L1 antibody (clone 22C3). After three thorough washes, the

slides were incubated with horseradish peroxidase (HRP)-conjugated

secondary antibody.After incubation, the tyramide signal amplification

(TSA)was added to the slides at the dilution of 1:100. Finally, the slides

were stained with 4′-6′-diamidino-2-phenylindole (DAPI) at the

dilution of 1:10. Images were captured with a Vectra 3.0 pathology

imaging systemmicroscope (PerkinElmer Inc.). A three-tiered grading

system was applied to evaluate the proportion of PD-L1 expression in

tumor cells: “negative” (Tumor Proportion Score (TPS) < 1%),

“intermediate” (1% ≤ TPS <50%), and “high” (TPS ≥50%).

Targeted panel sequencing and data
analysis

Genomic DNA was isolated from tumor biopsies and matched

peripheral-blood samples using the GeneRead DNA FFPE Kit

(Qiagen, 180,134). All sample capture libraries were prepared

using the YuceOne Plus v2.2 (YuceBio, Shenzhen, China). The
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target capture specific probe is hybridized with genomic DNA to

enrich the DNA fragments of the target genomic region and then

sequenced using high-throughput sequencing technology.

SOAPnuke (v1.5.6) was used to filter the original reads to remove

low-quality reads with the unknown base “N” greater than 10%

(Chen et al., 2018). BWA (v0.7.12) was used to align the clean reads

with the human reference genome (UCSC GRCh37/hg19) (Li and

Durbin, 2009). Somatic mutations were detected with the VarScan

(Version 2.4) (Koboldt et al., 2012). Possible false-positive mutations

were filtered using Bcftools (1.14) with the parameter set as follow:

“basicfilter = """’ (STRLEN (REF) > 50 || STRLEN (ALT) > 50) ||

INFO/STATUS!~"Somatic"’""" hotspotfilter = """’INFO/

HOTSPOT! = "." && ((INFO/SOR! = 0 && INFO/SOR<3) ||

INFO/VD < 5 || INFO/AF<0.007 || INFO/SSF>0.05)’"""
fpdbfilter = """’INFO/HOTSPOT = "." && ((INFO/FPDB! = "0"

&& INFO/FPDB! = ".") || (INFO/GERMLINE! = "0" && INFO/

GERMLINE! = "."))’""" normalfilter = """’INFO/HOTSPOT = "." &&

((INFO/GERMLINE)! = "." || (FORMAT/PMEAN [0]<20)||((INFO/
SOR! = 0 && INFO/SOR<5) || INFO/AF<0.02 || INFO/

SSF>0.01)||(INFO/AF<0.05 && FORMAT/MQ [0]

<50)||(FORMAT/MQ [0]<30)||(INFO/AF<0.05 && FORMAT/

QUAL [0]<30) || ((INFO/MSI>10||(INFO/MSILEN>1 && INFO/

MSI>4)) && INFO/AF<0.3)||(type! = "snp” && INFO/MSI>3 &&

((INFO/MSILEN=(strlen (REF)-1))||(INFO/MSILEN=(strlen (ALT

[0])-1)))&& INFO/AF<0.1) || (FORMAT/NM[0]>2&&FORMAT/

MQ [0]<60 && INFO/AF<0.2) || (FORMAT/NM [0]>3 &&

(FORMAT/MQ [0]<55||FORMAT/NM (Hellmann et al., 2018a)

>3)) || (FORMAT/DP [0]<30 || FORMAT/DP (Hellmann et al.,

2018a)<30)|| INFO/VD < 10 || (FORMAT/BIAS [0:0] = "2" &&

FORMAT/BIAS [0:1] = "1") || (FORMAT/SBF [0] < 0.05 &&

FORMAT/VD [0]<50) || ((INFO/SOR! = 0 && INFO/SOR<10)
&& FORMAT/MQ [0]<60))’ """“. Identified somatic mutations were

annotated with SnpEff (Version 4.3) (Cingolani et al., 2012). Somatic

copy number alterations (SCNAs) were analyzed using Allele-

Specific Copy number Analysis of Tumors (ASCAT) (v3.1.0) with

default parameters (Van Loo et al., 2010).

HLA typing and LOH analysis

HLA-I typing of tumors and matched normal samples was

performed as previously described (Yi et al., 2021). In short, the

patched opitype software was used for HLA typing (Szolek et al.,

2014). Then loss of heterozygosity in human leukocyte antigen

(LOHHLA) algorithm was performed to identify HLA LOH in

tumor samples (McGranahan et al., 2017). It is classified as LOH if

the following two conditions are met: 1) A copy number <0.5 and
2) allelic imbalance is determined with p < 0.01 using the paired

Student’s t-Test between the two distributions. According to the

proportion of LOH in HLA alleles, LOH status was further divided

into three grades: negative (all HLA alleles had no LOH), low

(LOH/HLA alleles are 1/6, 2/6, or 1/5), high (LOH/HLA alleles are

1/3, 1/4, ≥3/6 or ≥2/5).

Genomic biomarker calculation and gene
mutation pathway analysis

TMB was determined as the number of non-synonymous

mutations per megabase of the genome examined. All

nonsynonymous mutations and their upstream and downstream

nucleotide sequences of 10 amino acids were selected and translated

into 21-mer peptides. The translated peptide was used to produce 8-

to 11-mer peptides with a sliding window approach. The binding

affinity of peptide and major histocompatibility complex (MHC)

class I was predicted by NetMHCpan (version 3.0) (Hoof et al.,

2009). If the predicted half-maximum inhibitory concentration

(IC50) binding affinity was not greater than 500 nM, the peptide

was selected. Multiple selected peptides generated by the same

mutation were counted as a neoantigen. Tumor neoantigen burden

(TNB) was measured as the number of such peptides per megabase

of the genome examined. The chromosomal instability (CIN) score

was used to estimate copy number burden, which was calculated as

follows: the ploidy of the sample was generated by the ASCAT

algorithm (v3.1.0). For each of the 22 autosomal chromosomes, the

percentage of gained and lost genomic material was calculated

relative to the ploidy of the sample. The CIN score of a sample was

defined as the average of this percentage value over the

22 autosomal chromosomes (Braun et al., 2020). Gene mutation

in pathways analysis was compared with the previously reported

gene list (Sanchez-Vega et al., 2018).

Gene expression and infiltration
abundance of immune cells analysis

The normalized counts matrix was used to identify

differentially expressed genes (DEGs) with edgeR package

(Chen et al., 2016). DEGs with |log2FoldChange| > 1 and a

p-value < 0.05 were considered as significant DEGs. The

Matplotlib (v3.4.3) package was used to generate volcano

plots. Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway, Canonical Pathways, WikiPathways, GO Biological

Processes and Reactome Gene Sets enrichment were

performed with Metascape web tool with a p-value < 0.05

(Zhou et al., 2019). The gene expression matrix was used to

estimate the level of 64 cells with xCell (Aran et al., 2017).

Construction the comprehensive
predictive model

The decision-tree was evaluated to construct the

comprehensive predictive model with biomarkers of CD8+

T cells, TMB, PD-L1 and HLA LOH to predict the efficacy of

ICIs in NSCLC patients. The predictive efficacy of the model was

analyzed with the leave-one-out method. Different depth of the

tree, from 3 to 20, were tested to calculate the F1 score of the
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comprehensive predictive model. The most optimal depth of

decision tree was determined based on the highest calculated

F1 score.

Statistical analysis

Correlations between HLA LOH and clinical characteristics

were analyzed using the Fisher’s exact test for categorical

variables. Kruskal–Wallis rank-sum tests were used for

comparisons of continuous variables across multiple groups.

The t-test was used to compare differences between groups.

Receiver operating characteristic (ROC) curve analysis was

performed to measure the discriminatory ability of HLA

LOH, TMB, PD-L1 and CD8+ T cells. Kaplan-Meier curve,

Log-rank test, and cox-regression were used to assess the

association of HLA LOH, TMB, PD-L1 and CD8+ T cells with

patient survival. p < 0.05 was considered significant. Statistical

analyses were performed in the R (v3.6.1) and Python (v3.8.8).

The packages in Python were used in the study including lifelines

(v0.27.0) and scipy (v1.7.3).

Results

Genomics characteristics of Chinese lung
patients with different HLA LOH statuses

To examine tumor genomic characteristics and their

potential association with different HLA LOH statuses,

samples from 425 Chinese lung cancer patients were

retrospectively collected and subjected to targeted panel

sequencing and PD-L1 expression detection. According to the

different statuses of HLA class I alleles, which are encoded by

three genes (HLA-A, HLA-B, and HLA-C), 425 patients were

divided into three groups: HLA LOH negative group, HLA LOH

low group and HLA LOH high group. Compared with the HLA

LOH negative and HLA LOH low groups, there was a significant

gender discrepancy in the HLA LOH high group [68% (Male)

versus 32% (Female)] (Supplementary Table S2).

The genomic landscapes with different statuses of HLA

LOH were shown in Figure 1A. The top 10 genes were listed

in order of mutated frequency: EGFR, TP53, KRAS, PIK3CA,

KEAP1, ZFHX4, RBM10, FAT1, CDKN2A, and CTNNB1

(Figure 1A), which had a slight difference with the TCGA

database (Cancer Genome Atlas Research, 2014). In the

TCGA dataset, the top five genes with the highest

mutation frequency were TP53 (46%), KRAS (33%),

KEAP1 (17%), SKT11 (17%) and EGFR (14%).

Interestingly, a high frequency of BCL6 amplification was

found in the HLA LOH subgroup (the proportion in the HLA

LOH negative, HLA LOH low and HLA LOH high groups

were 4%, 17%, and 15%, respectively). BCL6 is related to the

stress response in breast cancer, lung cancer, glioma, and

other solid tumors. Overexpression of BCL6 is associated

with tumor immune surveillance and drug resistance during

the process of chemotherapy and radiotherapy (Fernando

et al., 2019).

Among 425 lung cancer patients, the proportions of HLA

LOH negative, HLA LOH low and HLA LOH high were

76.24% (324/425), 9.88% (42/425) and 13.88% (59/425),

respectively. (Figures 1B,C and Supplementary Table S1).

The frequency of HLA LOH in lung adenocarcinomas

(LUAD) was lower than in lung squamous cell carcinomas

(LUSC) (Figure 1D), which was consistent with previous

studies (Zhao et al., 2021).

Furthermore, the association of genomic features and PD-

L1 expression with the different statuses of HLA LOH were

analyzed. It was found that TMB was significantly higher in the

HLA LOH high group than in the other groups (p < 0.0001)

(Figure 1E, Supplementary Table S2). However, there was no

significant difference in TNB among these groups (Figure 1F,

Supplementary Table S2). In addition, the CIN score was

significantly different between the HLA LOH high and HLA

LOH negative groups (p = 0.0033; Figure 1G). Consistent with

the previous reports, the HLA LOH was related to PD-L1

expression among the three groups (p = 0.07642)

(McGranahan et al., 2017; Montesion et al., 2021)

(Figure 1H, Supplementary Table S2).

Association of HLA LOH status with
individual genes and pathways alterations

To further investigate the association of gene alteration

with different statuses of HLA LOH in Chinese lung cancer

patients, a comparison analysis between HLA LOH high and

HLA LOH negative groups was conducted. It was found that

the mutation frequency of 25 genes was significantly higher in

the HLA LOH high group than in the HLA LOH negative

group (Figure 2A), such as the TP53 mutations (85.7% versus

50.9%; p < 0.0001)), FAT1 mutations (16.1% versus 6.5%; p =

0.032), RB1 mutations (16.1% versus 5.2%; p = 0.0098),

TRRAP mutations (14.3% versus 4%; p = 0.0026), ERBB2

mutations (12.5% versus 4.9%; p = 0.019) and BCL6

amplification (12.5% versus 4%; p = 0.0026) (Figure 2B).

Conversely, EGFR mutation was associated with HLA LOH

negative group when compared with HLA LOH high group

(50.3% versus 37.5%, p = 0.0677). Other lung cancer-related

genes, such as APC, KRAS, and BRAF, did not show significant

differences among the groups (Figure 2B). Furthermore, the

mutation in oncogenic signaling pathways were analyzed. It

was found that several pathways were significantly different

among the groups, such as the TP53 pathway, cell cycle

pathway, Hippo pathway, WNT pathway and the RTK-RAS

pathway (Figure 2C).
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FIGURE 1
Genomics characteristics of Chinese lung patients with different HLA LOH statuses. (A) Genomics landscape of tumor with HLA LOH
negative, HLA LOH low and HLA LOH high. The top histogram was the value of TMB. The Center heatmap is the distribution of the top
30 non-synonymous driver mutation events from patients. (B) The number of patients with HLA LOH negative, HLA LOH low and HLA LOH
high in 425 lung cancer patients (C) The percentage of HLA LOH negative, HLA LOH low and HLA LOH high in 425 lung cancer patients.
(D) The occurrence of HLA LOH in the NSCLC patients. (E–H) Associations between HLA LOH and TMB (E), TNB (F), CIN (G) and PD-L1
expression (H).
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Pre-existing immune programs in HLA
LOH negative patients

To explore the TME characteristics of patients with differentHLA

LOH statuses, genomic and transcriptional data of 969 NSCLC

patients were obtained from TCGA. The HLA LOH was defined

as the copy number of HLA class I or II-related genes less than 2. The

differentially expressed genes (DEGs) between HLA LOH and HLA

LOH negative groups were analyzed. There were 1081 genes

significantly upregulated and 497 genes significantly downregulated

in the HLA LOH groups when compared with HLA LOH negative

groups (Figure 3A). Downregulated genes are associated with

immunity, which suggests the pre-existing immune recognition of

the tumor in HLA LOH negative patients (Figure 3B). To further

verify this phenomenon, abundance of immune cells was evaluated by

xCell. It was found that the proportion of B cells, CD8+T cells, DC and

M1macrophages as well as the immune score andmicroenvironment

score were significantly higher in HLA LOH negative patients when

compared with HLA LOH patients. (Figure 3C). These results

suggested that a pre-existing immunologically active TME may be

related to HLA LOH negative patients.

The predictive value of HLA LOH for the
treatment of immunotherapy

To investigate the predictive efficacy of HLA LOH on the

treatment of ICIs, genomic and clinical data of 89 NSCLC patients

treated with ICIs were obtained (Supplementary Table S3). As shown

in Figures 4A,B, the median overall survival (mOS) and median

progression-free survival (mPFS) of patients with HLA LOH were

17 and 3months, respectively. For patients with HLA LOH negative,

the mOS was not yet reached, and the mPFS was 11 months. Patients

with HLA LOH negative had a longer survival period than those with

HLALOH,which indicated thatHLALOHhas a negative effect on the

prognosis and may represent a mechanism of tolerance to

FIGURE 2
Different HLA LOH statuses based on alterations in individual genes and pathways. (A)Percentages of altered individual geneswithinHLA LOHhigh versus
HLA LOHnegative subgroups. Green dots denote genes associatedwith significantly differential HLA LOH statuses (p-value <0.05) (B)Distribution ofHLA LOH
status by commonly altered genes in lung cancer. (C) Percentage of tumors harboring an alteration of individual pathways within HLA LOH subgroups.
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immunotherapy. Compared with HLA LOH, it was found that TMB,

PD-L1 and CD8+ T cell were insufficient to identify responders

(Supplementary Figures S1A–F). Furthermore, multivariate cox

regression was analyzed. And the result showed that only HLA

LOH was significantly associated with the prognosis (Figure 4C).

TMB and PD-L1 expression were higher in HLA LOH high

group (Figures 1E–H). To further investigate the prognostic

association of HLA LOH with TMB and PD-L1 expression,

additional stratification of HLA LOH for TMB or PD-L1 was

analyzed. As shown in Figures 4D–G, the combination of HLA

LOH with TMB or PD-L1 could further distinguish responders.

Compared with LUAD, the frequency of HLA LOH in LUSC

was higher, which suggested that HLA LOH may have different

effects on the efficacy of ICIs in LUAD and LUSC (Zhao et al., 2021).

Therefore, the predictive effect of HLA LOH on immunotherapy in

NSCLC with different pathological classifications was further

analyzed. As shown in Figures 4H–K, HLA LOH was

significantly correlated with the survival period in LUSC patients.

The predictive efficacy of the constructed
comprehensive predictive model was
better than a single biomarker

To further evaluate the predictive ability of HLA LOH for ICIs

response, the ROC was plotted. As shown in Figure 5A, the area

under the curve (AUC) value of HLA LOH was 0.42, indicating that

HLA LOH was insufficient to distinguish responders from non-

FIGURE 3
Pre-existing immune programs in HLA LOH negative patients. (A) Volcano plot showing DEGs between the statuses of HLA LOH and HLA LOH
negative. (B) Function enrichment analysis for genes significantly upregulated and downregulated in HLA LOH vs. HLA LOHnegative. (C)Comparison
of the estimated proportion of lymphocytes between the statuses of HLA LOH and HLA LOH negative.
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FIGURE 4
The predictive value of HLA LOH for ICIs treatment. (A,B) Kaplan–Meier curves of OS (A) and PFS (B) comparing HLA LOH negative with HLA
LOH (C) The multivariate cox regression analyses of the HLA LOH, TMB, PD-L1and CD8+ T cells. (D,E) Kaplan–Meier curves of OS (D) and PFS (E)
comparing groups of HLA LOH negative/TMB-high, HLA LOH negative/TMB-low, HLA LOH/TMB-high and HLA LOH/TMB-low (F,G) Kaplan–Meier
curves of OS (F) and PFS (G) comparing groups of HLA LOH negative/PD-L1-high, HLA LOH negative/PD-L1-low, HLA LOH/PD-L1-high and
HLA LOH/PD-L1-low (H,I) Kaplan–Meier curves of OS (H) and PFS (I) comparing HLA LOH negative with HLA LOH in LUAD patients (J,K)
Kaplan–Meier curves of OS (J) and PFS (K) comparing HLA LOH negative with HLA LOH in LUSC patients.
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responders who were subjected to immunotherapy. Then other

reported biomarkers, such as TMB, PD-L1 expression and CD8+

T cells were analyzed; however, none of the AUC values for these

biomarkers exceeded 0.7, which suggested that a single biomarker was

not effective enough to precisely distinguish patients who would

benefit from the treatment of immunotherapy. In order to further

improve the predictive efficacy, a comprehensive predictive model

containing multiple factors related to anti-tumor immunity (HLA

LOH, TMB, PD-L1 and CD8+ T cells) was constructed. As shown in

Supplementary Figures S2A,B, the model had the highest F1 score

when the decision tree depth was three. Therefore, the parameter was

used to construct the comprehensive predictive model. Furthermore,

the responders predicted by the comprehensive predictive model

(pDCB) had a significantly longer survival period than non-

responders predicted by the comprehensive predictive model

(pNDB) (Figures 5B,C), and the predictive ability was better than

the single biomarker (Figures 4A,B, Supplementary Figures S1A–F).

Discussion

HLA LOH has been considered as one of the mechanisms by

which tumors escape the recognition of the immune system,

ultimately affecting the efficacy of immunotherapy (McGranahan

et al., 2017; Chowell et al., 2018). However, the predictive efficacy of

HLA LOH for immunotherapy needs to be further investigated. In

this study, we found that TMB, CIN and mutation frequency of

oncogene TP53, ZFHX4, TRRAP, RB1, ERBB2 and FAT1 were

associated with the HLA LOH high group. In addition, the TME

wasmore active in patients withHLA LOHnegative than those with

HLA LOH. After the treatment of ICIs, the survival period was

longer in NSCLC patients with HLA LOH negative than in those

with HLA LOH, especially for LUSC patients. For patients with

TMB-High or PD-L1-High, the status of HLA LOH can further

distinguish responders. Moreover, a comprehensive predictive

model including multiple features was constructed and showed a

better performance than a single biomarker.

WhenHLA LOH occurs, tumor cells cannot be recognized by T

lymphocytes, resulting in the accumulation of TMB (Shim et al.,

2020). This phenomenon has been observed in our and other

research and may be the reason why some patients with TMB

high remain resistant to immunotherapy. Therefore, in clinical

practice, the level of TMB should be calculated along with the

occurrence of HLA LOH when predicting the response to ICIs.

Compared with other oncogenes, such as TP53, FAT1, RB1, TRRAP,

ERBB1 and BCL6, the mutation percentage of EGFR was lower in

the HLA LOH-High group, which was similar to the previous study

(Montesion et al., 2021). This result seems to suggest that HLA LOH

may be a possible mechanism of resistance to immunotherapy in

patients without EGFR mutation.

Wu et al. has revealed that the TMEpatternswere different in two

tumors from the same patient. The tumor with HLA LOH negative

FIGURE 5
The predictive efficacy of the constructed comprehensive predictivemodel was better than a single biomarker. (A) ROC curves for PD-L1, CD8+

T cells, TMB and HLA LOH. (B,C) Kaplan–Meier survival curves of OS (B) and PFS (C) comparing pDCB with pNDB in NSCLC patients.
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showedmore infiltrating CD8+ T cells (Wu et al., 2020). In our study,

the immune-related pathways were associated with HLA LOH

negative patients. In addition, antitumor lymphocytic infiltrating

cells, such as CD8+ T cells (p = 0.00014), M1 macrophages (p =

0.00038) and DC (p < 0.0001) were significantly higher in patients

with HLA LOH negative, indicating a more active TME.

Shim et al. and Anagnostou et al. have indicated HLA LOH

cannot predict the efficacy of ICIs (Anagnostou et al., 2020; Shim

et al., 2020), while Montesion et al. found there was association

betweenHLALOHand response to the treatment of ICIs (Montesion

et al., 2021). Therefore, the predictive efficacy of HLA LOH in

immunotherapy needs to be further investigated. In our study,

patients with HLA LOH negative have a longer survival period

than those with HLA LOH. Furthermore, the association of HLA

LOH with response to ICIs in LUAD and LUSC were examined. It

was found there were significant differences in survival between

different HLA LOH statuses in LUSC, but not in LUAD.

There were several limitations in our study. First, there was no

prognostic information in 425 Chinese lung cancer patients.

Therefore, the impact of HLA LOH on prognosis cannot be

assessed. Second, since there were no other cohorts simultaneously

containing data of HLA LOH, CD8+ T cells, TMB and PD-L1, more

research is needed to further verify our comprehensive predictive

model. Third, therapies of ICIs combined with chemotherapy have

been approved as first-line treatment schemes forNSCLCpatients, we

regret that there was no access to obtain clinical andmulti-omics data

of patients treated with ICIs combined with chemotherapy from the

public dataset. Therefore, the predictive efficacy of the constructed

comprehensive predictive model in patients treated with ICIs

combined with chemotherapy could not be validated. Further

studies are needed to investigate this comprehensive predictivemodel.
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SUPPLEMENTARY FIGURE S1
Prognostic role of TMB, PD-L1 expression and CD8+ T cells in NSCLC
patients treated with ICIs. (A,B) Kaplan–Meier curves of OS (A) and PFS (B)
comparing TMB-high with TMB-low. (C,D) Kaplan–Meier curves of OS (C)
and PFS (D) comparing PD-L1-high with PD-L1-low. (E,F) Kaplan–Meier
curves of OS (E) and PFS (F) comparing CD8+ T-high with CD8+ T-low.

SUPPLEMENTARY FIGURE S2
Decision tree of the constructed comprehensive predictive model. (A)
The decision tree trained with features of HLA LOH, TMB, PD-L1 and
CD8+ T cells. (B) A heatmap of accuracy, precision, recall and f1 score
for depth of decision tree from 3 to 20.
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