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Purpose: Radiation therapy (RT) is one of the main treatments for cancer. The

response to radiotherapy varies widely between individuals and some patients

have poor response to RT treatment due to tumor radioresistance. Stratifying

patients according to molecular signatures of individual tumor characteristics

can improve clinical treatment. In here, we aimed to use clinical and genomic

databases to develop miRNA signatures that can predict response to

radiotherapy in various cancer types.

Methods: We analyzed the miRNAs profiles using tumor samples treated with

RT across eight types of human cancers from TCGA database. These samples

were divided into response group (S, n = 224) and progressive disease group (R,

n = 134) based on RT response of tumors. To enhance the discrimination for S

and R samples, the predictive models based on binary logistic regression were

developed to identify the best combinations of multiple miRNAs.

Results: The miRNAs differentially expressed between the groups S and R in

each caner type were identified. Total 47miRNAs were identified in eight cancer

types (p values <0.05, t-test), including several miRNAs previously reported to

be associated with radiotherapy sensitivity. Functional enrichment analysis

revealed that epithelial-to-mesenchymal transition (EMT), stem cell, NF-κB
signal, immune response, cell death, cell cycle, and DNA damage response

and DNA damage repair processes were significantly enriched. The cancer-

type-specific miRNA signatures were identified, which consist of 2-13 of

miRNAs in each caner type. Receiver operating characteristic (ROC) analyses

showed that the most of individual miRNAs were effective in distinguishing

responsive and non-responsive patients (the area under the curve (AUC)

ranging from 0.606 to 0.889). The patient stratification was further improved

by applying the combinatorial model of miRNA expression (AUC ranging from

0.711 to 0.992). Also, five miRNAs that were significantly associated with overall

survival were identified as prognostic miRNAs.
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Conclusion: These mRNA signatures could be used as potential biomarkers

selecting patients who will benefit from radiotherapy. Our study identified a

series of miRNA that were differentially expressed between RT good responders

and poor responders, providing useful clues for further functional assays to

demonstrate a possible regulatory role in radioresistance.

KEYWORDS

radiotherapy, radioresistance, miRNA expression, combinatorial model, TCGA
databases, overall survival

1 Introduction

Radiotherapy (RT) plays a crucial role in cancer treatment

and more than half of all cancer patients receive RT during the

course of disease (Baskar et al., 2012). In last 20 years, the

outcomes of RT have been improved dramatically due to the

developments of highly conformal RT techniques, such as

intensity-modulated RT (IMRT), intensity-modulated arc

therapy (IMAT) and stereotactic RT (SRT) (Minniti et al.,

2021). However, unfortunately the outcomes of therapy are

not fully satisfactory. The response to radiotherapy varies

widely between individuals and some patients are resistant to

RT treatment. Radioresistance is considered as a main factor

impeding efficacy of radiotherapy. Although radioresistance has

been implicated to be associated with several biological

alterations of the tumor cells, such as tumor metabolism

(Tang et al., 2018), cell cycle arrest (Chen et al., 2017),

oncogene and tumor suppressor alterations (Pitroda et al.,

2009), microenvironment (TME) change (Suwa et al., 2021),

autophagic regulation (Chang et al., 2014), cancer stem cells

(CSCs) generation (Ning et al., 2013), and DNA damage

response (DDR) and repair (Huang and Zhou, 2020; Sun

et al., 2020), the mechanisms underlying resistance to

radiation are still largely obscure. Therefore, uncovering the

processes and charactering the molecules associated with

regulation of radioresistance may lead to improved, efficient

treatment for cancer patients.

Previous studies revealed that the difference in the status of

mutation and expression profile of gene including microRNAs

(miRNAs), is associated with radioresistance (Mercatelli et al.,

2008; Huang et al., 2013; Mueller et al., 2013; Hatano et al., 2015;

Mao et al., 2016; Xu et al., 2016; Tao et al., 2018; Xu et al., 2018).

MicroRNAs are small non-coding single-stranded RNAs of

19–23 nucleotides in length, which play a critical role in post-

transcriptional regulation by degrading or preventing the

translation of their target messenger RNA (mRNA). They play

important roles in tumor development and metastasis. Emerging

evidences demonstrated that miRNAs may be involved in

regulation processes associated with response to radiation. For

examples, previous studies revealed that some microRNAs, such

as miR-95 (Huang et al., 2013), miR-221, miR-222 (Mercatelli

et al., 2008), and miR-106b (Hatano et al., 2015) enhanced

radioresistance in cancer cells, while miR-30a (Xu et al.,

2016), miR-16 (Tao et al., 2018), miR-449 (Mao et al., 2016),

miR-17 (Xu et al., 2018), and miR-100 (Mueller et al., 2013)

enhanced the radiosensitivity. Several miRNAs regulate DNA

damage response (DDR) pathway. For example, miR-101 can

regulate the expression of ataxia-telangiectasia mutated (ATM)

gene and DNA-PK. ATM is a central regulator of DNA damage

response (Maréchal and Zou, 2013). Mutation and inactivation of

ATM can lead to increased instability of genome and impaired

repair ability for DNA double-strand breaks. It has been

experimentally demonstrated that up-regulation of miR-101

reduced the protein levels of DNA-PK and ATM, rendering

tumor cells more sensitive to radiation (Yan et al., 2010). MiR-

223 is a regulator of maturation and differentiation of

hematopoietic stem cells. Up-regulation of miR-223 will

reduce the expression of ATM and make U87 cells sensitive

to radiation in vitro (Liang et al., 2014). MiR-375 is a negative

regulator of p53 which is a key tumor suppressor gene that

inhibits cell growth by activating cell cycle arrest or apoptosis

(Vousden and Prives, 2009). Increase of miR-375 was detected in

recurrent gastric cancer (Zhang et al., 2011), and the increased

miR-375 interacts with the 3′UTR of p53 gene that negatively

regulates p53 and its downstream pathway genes, resulting in

radioresistance of cells to radiation (Liu et al., 2013).

In the era of precision medicine, a biomarker of intrinsic

radiosensitivity would be extremely valuable for selecting

patients in whom will benefit from RT, adjusting individual

dosing, and aiding decision making. Previous studies have

demonstrated that several miRNAs were associated with

radioresistance or radiosensitivity, implying they could serve

as promising biomarkers for prediction of RT response.

Besides, miRNAs serving as biomarkers have several

advantages. Firstly, unlike mRNAs, miRNAs remain largely

intact in routinely collected, formalin-fixed, paraffin-

embedded (FFPE) clinical tissues. Therefore, the detection for

miRNA levels could be conveniently performed in clinical

practice. Secondly, miRNAs have been called ‘the master

regulators’ of gene expression since a single miRNA can

regulate several hundreds of mRNA targets. Researches have

indicated that many cell phenotype or subtype is likely governed

by amiRNA regulatory network (Yang D. et al., 2013), suggesting

some miRNAs may sever as the possible major determinants of

cellular phenotype (including radioresistant phenotype)

(McDermott et al., 2017). In additional, cell lines are usually
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used as models for radioresistance research in previous reports.

However, tumors from patients are heterogeneous. Thus, the

factors related to RT response are more complex than in cell

lines. On the other hand, the results from cellular experiments

also need to be confirmed with clinical samples. Therefore, we

proposed that miRNA profile analysis based on clinical samples

could provide a direct assessment for their performances as

biomarkers for prediction of RT response. In this study, we

performed a large-scale analysis of miRNA expression data

collected from The Cancer Genome Atlas (TCGA) from those

who treated with RT across eight cancer types. By analyzing the

expressional difference between RT response and progressive

disease samples, the miRNA signatures for predicting RT

response were obtained and their performance for prediction

of RT response were estimated.

2 Materials and methods

2.1 Data collection

MiRNA expression data of cancer patients undergoing RT were

downloaded from the website UCSC XENA - GDC TCGA (https://

xenabrowser.net/hub/). The expression profiles were presented as

RPM (reads of exon model per million mapped reads). Clinical

information including patient’s response to RT and overall survival

was downloaded from GDC TCGA website (https://portal.gdc.

cancer.gov/). The tumor samples were categorized into complete

response (S) and progressive disease (R) groups depending on their

clinical response to RT treatment. Complete response and

progressive disease was defined according to RECIST. Finally, we

analyzed 358 clinical samples across eight different cancer types,

including S group (n = 224) and R group (n = 134).

2.2 Differential expression analysis

The differential expression analysis of miRNAs was

performed in each cancer type. The miRNA would not be

analyzed further if the reads of these miRNAs were empty in

more than 10% of the samples. Deseq2 package was used to

normalize miRNA data and identify the difference of miRNA

expression levels between S and R group (Love et al., 2014). Wald

test and t-test was used to calculate the p-value. In this study, p <
0.05 and | logfc | > 1 were used as threshold criteria for screening

DEMs between S and R group.

2.3 Identification of DEMs

The identification of differentially expressed miRNA (DEMs)

was conducted using R language. The expression levels of DEMs

were visualized using the ggpubr, ggplot2 and complexheatmap

packages. The receiver operating characteristic (ROC) curve was

drawn and the area under the curve (AUC) was calculated using

the pROC package. Heatmap of miRNA expression levels for

individual cancer types was drawn using pheatmap. Kaplan

Meier curve of single gene was drawn by Survminer package.

The samples were divided into high expression group and low

expression group according to the median expression level of

miRNA and p-value was calculated by log-rank test. Enrichment

analysis of the 47 DEMs was performed by the online tool TAM

2.0 (http://www.lirmed.com/tam2/).

2.4 Combinatorial models of multiple
miRNAs

A logistic regression model was developed by combining

expressions of multiple miRNAs in each cancer type. In our

study, the dependent variable of this model was the normalized

expression level of miRNA; the independent variable was the RT

response of samples (response or progressive disease). The

method of combinatorial modelling was described in detail

(Xu et al., 2022). The samples were randomly divided into a

training set and a test set. The training set contained 80% of the

total samples, and the test set contained 20% of the total samples.

The K-fold cross-validation (K = 5) was used to fit the

combinatorial model. We used different combinations of the

data groups that were partitioned to train and test K different

models, and then the performance was evaluated. In running the

final model, we found that the independent variable were the

most accurate predictors of the dependent variable. The formula

of logistic regression is as follows:

Y � W1 *miRNA1 +W2*miRNA2 +W3*miRNA3 + . . . . . .

+Wn*miRNAn + intercept.

Y is the predictive index of RT response. The optimal

threshold for dividing S and R groups in the training set was

calculated, and then the test set was tested using the threshold. If

the predictive index is more than the threshold, it indicates that

the sample is more likely to be radiosensitive; otherwise, the

sample is more likely to be radioresistant. Finally, the area under

the receiver operating characteristic curve was calculated to

evaluate the predictive ability.

3 Results

3.1 Clinical information of cancer patients

To investigate the association between RT response and

miRNA profiles, we analyzed miRNA expression data of

patients undergoing RT from TCGA database. A total of

358 clinical samples across eight different types of human
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cancers were analyzed in this study, including bladder urothelial

carcinoma (BLCA, n = 23), esophageal carcinoma (ESCA, n =

47), lung adenocarcinoma (LUAD, n = 61), lung squamous cell

carcinoma (LUSC, n = 38), pancreatic cancer (PAAD, n = 35),

sarcoma (SARC, n = 56), skin cutaneous melanoma (SKCM, n =

34) and stomach adenocarcinoma (STAD, n = 64). The samples

of cancer patients were categorized into complete response (S)

group and progressive disease (R) group depending on their

clinical response to RT treatment. Finally, 358 clinical samples

were analyzed, including S group (n = 224) and R group (n =

134). The cancer types and groups of samples were shown in

Figure 1A.

3.2 Identification of DEMs in group S and R

To identify potential miRNA biomarkers, it is essential to

compare miRNAs differentially expressed from RT response

samples (S) and disease progression samples (R). According to

the screening criteria of p-value <0.05 and | logfc | > 1, the

miRNAs differentially expressed (DEMs) between the groups S

and R in each caner type were identified. Each cancer type

consisted of 2–13 of these miRNAs, and total 47 miRNAs

were identified in eight cancer types (Table 1). Hierarchical

unsupervised clustering analysis were performed to visualize

the expression patterns of these 47 miRNAs. The results

showed that these DEMs were cancer type-specific. For

example, 13 miRNAs were identified in BLCA, five of them

tended to be highly expressed in R group, including miR-196a-1

(p = 0.0048), miR-196a-2 (p = 0.005), miR-130a (p = 0.0163),

miR-376b (p = 0.0078) and miR-30d (p = 0.0016), and eight

miRNAs including miR-10a (p = 0.021), miR-151a (p = 0.013),

miR-101-1 (p = 0.0007), miR-101-2 ((p = 0.0007), miR-944 (p =

0.049), miR-378c (p = 0.0153), miR-378a (p = 0.0158), and miR-

214 (p = 0.0162) tended to be highly expressed in S (Figure 1B).

Likewise, 4-miRNA signature was identified in LUSC. The high

FIGURE 1
(A) Statistical histogram of cancer types of samples and grouping. The samples of cancer patients were categorized into complete response (S)
group and progressive disease (R) group depending on their clinical response to RT treatment. A total of 358 tumor samples across eight different
types of human cancers from TCGA database are analyzed. (B)Heatmap of 13 miRNAs that were differentially expressed from S and R samples in the
bladder urothelial carcinoma (BLCA). (C) Functional enrichment analysis of 47 differentially expressed miRNAs.
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TABLE 1 The differentially expressed miRNAs (DEMs) between RT responsive group (S) and the progressive disease group (R).

MiRNA Log2FoldChange p-Value Cancer type Expression in RT
responsive group

miR-101-1 −1.0576 0.0007 BLCA Up-regulation

miR-101-2 −1.0539 0.0007 BLCA Up-regulation

miR-30d −1.5346 0.0016 BLCA Up-regulation

miR-196a-1 4.3973 0.0048 BLCA Down-regulation

miR-196a-2 4.5201 0.0050 BLCA Down-regulation

miR-376b 1.0590 0.0078 BLCA Down-regulation

miR-151a −1.2003 0.0130 BLCA Up-regulation

miR-378c −1.1853 0.0153 BLCA Up-regulation

miR-214 1.0717 0.0162 BLCA Down-regulation

miR-130a 1.3459 0.0163 BLCA Down-regulation

miR-378a −1.1258 0.0185 BLCA Up-regulation

miR-10a −1.7526 0.0210 BLCA Up-regulation

miR-944 −1.0781 0.0490 BLCA Up-regulation

miR-1245a −1.5099 0.0028 ESCA Up-regulation

miR-143 −1.4273 0.0045 ESCA Up-regulation

let-7e −1.0942 0.0109 ESCA Up-regulation

miR-142 1.6184 0.0348 ESCA Down-regulation

miR-194-1 1.6854 0.0022 LUAD Down-regulation

miR-194-2 1.6576 0.0024 LUAD Down-regulation

miR-192 1.7344 0.0027 LUAD Down-regulation

miR-215 1.8478 0.0282 LUAD Down-regulation

miR-592 −1.5403 0.0026 LUSC Up-regulation

miR-937 1.2398 0.0154 LUSC Down-regulation

miR-3653 −1.0457 0.0214 LUSC Up-regulation

miR-628 −1.4820 0.0222 LUSC Up-regulation

miR-106a −1.2683 0.0256 LUSC Up-regulation

miR-129-2 −1.9278 0.0060 PAAD Up-regulation

miR-129-1 −1.8086 0.0096 PAAD Up-regulation

miR-1224 −1.9754 0.0190 PAAD Up-regulation

miR-29a −1.1421 0.0057 SARC Up-regulation

miR-29b-1 −1.3782 0.0097 SARC Up-regulation

miR-29b-2 −1.3267 0.0112 SARC Up-regulation

miR-222 −1.2618 0.0200 SARC Up-regulation

miR-34a −1.0199 0.0241 SARC Up-regulation

miR-9-3 1.2433 0.0257 SARC Down-regulation

miR-9-1 1.2524 0.0258 SARC Down-regulation

miR-9-2 1.2598 0.0267 SARC Down-regulation

miR-582 2.1287 0.0276 SARC Down-regulation

miR-146a −1.4991 0.0366 SARC Up-regulation

miR-221 −1.1561 0.0386 SARC Up-regulation

miR-150 −2.2734 0.0438 SARC Up-regulation

miR-3917 1.4861 0.0037 SKCM Down-regulation

miR-33a 1.0720 0.0081 SKCM Down-regulation

miR-3130-1 1.1210 0.0204 SKCM Down-regulation

miR-3614 1.2602 0.0360 SKCM Down-regulation

miR-99a 1.3048 0.0014 STAD Down-regulation

miR-655 1.0519 0.0085 STAD Down-regulation
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expression of miR-937 (p = 0.0154) was significantly enriched in

R group, while the high expression of miR-592 (p = 0.0026), miR-

3653 (p = 0.0214), miR-628 (p = 0.0222) and miR-106a (p =

0.0256) was significantly enriched in S group. The details were

shown in Table 1.

Mapping the differentially expressed miRNAs to signal

transduction pathways is important toward understanding their

significance in radioresistance. Therefore, we performed enrichment

analysis to identify significantly enriched terms. As shown in

Figure 1C, the identified pathways were primarily involved in

regulation of epithelial-to-mesenchymal transition and stem cell,

NF-κB pathway, immune response, cell death and cell cycle. EMT

plays a critical role not only in tumor metastasis but also in tumor

radioresistance. Epithelial–mesenchymal transition could increase

radioresistance (Zhang et al., 2014). We found that EMT signalling

pathway to be among the top enriched pathways, implying that the

radioresistant phenotype of tumour could be largely explained by

the enhancement of EMT pathway. Activation of DNA damage

response and DNA damage repair pathway has been demonstrated

to be involved in radioresistance (Vousden and Prives, 2009; Yan

et al., 2010; Liu et al., 2013; Liang et al., 2014). Enrichment analysis

revealed that several DEMs including miR-34a, miR-146a, miR-

FIGURE 2
The levels of miRNAs expression that were differentially expressed between the responding (complete response) versus non-responding
(progressive disease) tumors. p values were calculated by t-test.
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130a, miR-196a, miR-143, and miR-101 were involved in DNA

damage response and DNA damage repair. We also found that

several miRNAs (miR-1224, miR-33a, and miR-142) were involved

in inflammatory process which was implicated to be a critical radio-

response in radioresistant lung cancer cells (Yang H. J. et al., 2013).

3.3 Distinguishing S and R group with a
single miRNA

To evaluate the performance for distinguishing between S

and R samples, we analyzed the specificity of each miRNA

identified in DEMs list with the area under the curve (AUC).

The expressed difference of individual miRNA for two groups

was exhibited by boxplots. As shown in Figure 2, the expressed

difference of individual miRNA was significant between RT

responsive and non-responsive patients (p values <0.05,
t-test). Particularly, miR-101-1 had the highest discrimination

for the two groups in BLCA (p = 0.0007). Receiver operating

characteristics (ROC) analyses were conducted to further assess

the prediction performance of individual miRNA. As shown in

Figure 3 several miRNAs had relatively high specificity for

distinguish S and R samples, e.g., miR-101-1 (BLCA AUC =

0.889), miR-101-2 (BLCA, AUC = 0.889), miR-30d (BLCA,

AUC = 0.889), miR-196a-1 (BLCA, AUC = 0.865), miR-196a-

2 (BLCA, AUC = 0.865), and miR-592 (LUSC, AUC = 0.832).

MiR-101 was known to be involved in the regulation of DNA

damage repair and radiosensitivity. In our study, expression of

FIGURE 3
Receiver operating characteristics (ROC) analyses of the performance for the predictions for RT response using one single miRNA in different
cancer types. The representative results were presented.
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miR-101 was up-regulated in RT responsive samples, hinting the

high expression of miR-101 may be associated with

radiosensitive phenotype. This is consistent with previous

studies showing that up-regulation of miR-101 will enhance

radiosensitivity (Yan et al., 2010). Our results implied that

these miRNAs could be used as potential biomarkers for

stratify patients treated with RT.

3.4 Using combinatorial model to predict
RT response

Despite the most of differentially expressed miRNAs could be

used to distinguish patients according to RT response (e.g., AUC

ranging from 0.667 to 0.786 in ESCA), further improvement on

discriminatory ability is still needed. Therefore, we developed the

combinatorial models based on a binary linear regression model.

The combinatorial models for each cancer type consisted of 2-

13 miRNAs (Supplementary Table S1). By applying this model, the

best combination of multiple miRNAs for RT response prediction in

each cancer type was identified (Supplementary Table S1). As

showed in Figure 4, the optimal cut-off value for distinguishing S

and R samples was indicated by a dotted line, and the predictive

index of each sample was calculated for classification. The results

showed that the most of S samples were above the threshold line,

while the R samples were below the threshold line, implying that the

most samples could be correctly classified in both training set and

test set. Receiver operating characteristic (ROC) analysis revealed

that the predictive reliability was significantly increased in all caner

types by using these combinatorial models (Figure 5). For example,

the AUC of single miRNA in LUSC was between 0.664 and 0.832.

The AUC value was improved to 0.879 in of LUSC by applying the

combinatorial models. Likewise, the combinatorial model improved

the AUC to 0.900 in ESCA. These results indicated that the

combinatorial model could significantly improv the AUC relative

to the single miRNA.

3.5 Evaluation of survival rate with single
miRNA signature

We also explored the potential link between these differentially

expressed miRNAs and the overall survival of cancer patients. We

found that the expression level of five miRNAs, including miR-378a

FIGURE 4
Assessing the performance for distinguishing RT responsive samples in eight different cancer types using combinatorial models. Predictive
indexes were calculated to classify samples. Patients are shown in columns, and predictive index was showed in rows. The optimal cut-off value for
distinguishing S and R samples was indicated by a dotted line. Samples of training set were indicated by circles, and samples of test set were indicated
by diamonds.
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(p = 0.017, in BLCA), miR-142 (p = 0.018, ESCA), miR-655 (p =

0.03, in STAD), miR-29a (p = 0.025, in SARC), and miR-150 (p =

0.019, SARC), were significantly associated with the overall survival

time (Figure 6). Among them, miR-378a, miR-29a, and miR-150

tended to highly expressed in S group. The patients with high

expression of these miRNAs showed a trend of better survival. In

contrast, miR-142 (p = 0.018, ESCA) andmiR-655 (p = 0.03, STAD)

tended to be highly expressed in R group, and the worse survival was

observed in these high expression samples. The results showed that

only fivemiRNAs of 47miRNAswere predictive for patient survival.

It is not surprised since the differentially expressed miRNAs were

identified based on the response to RT treatment rather than the

overall survival of cancer patients.

4 Discussion

Currently, only few biomarkers have been evaluated for their

radiotherapy-specific predictive value. Several research groups have

reported that miRNAs were involved in regulation of

radioresistance, hinting they have the potential serving as

biomarkers for prediction of RT response. However, most of

them was identified based on cellular experiments in previous

studies. The evaluation based on clinical samples should be

performed. In this study, we evaluated the predictive value of

miRNA signatures for predicting RT response by using data of

clinical samples. Comparison ofmiRNA expression of radioresistant

and radiosensitive tumors led to the identification of 47 miRNAs.

Most of them showed to be predictive for RT response (AUC

ranging from 0.606 to 0.889). Some of them showed the high

specificity for the prediction. For instance, miR-101, miR-30d,

and miR-196s has AUC of 0.889, 0.889, and 0.865, respectively.

To further improve the prediction performance, we developed a

combinatorial model in each cancer type. In these models, the best

combinations ofmultiplemiRNAs could be obtained, which leads to

an improved discriminatory power. The results showed that the

most of AUC in each cancer type was greater than 0.8 when the

combinatorial models were applied. Particular, the AUC value reach

to 0.992 by applying the combinatorial model in BLCA. The

prediction models and miRNAs identified here have the potential

clinical application. As these combinatorial models contained 2-

13 miRNAs, it is convenient to develop digital PCR and real-time

qPCR based clinical test in routine practice (Hindson et al., 2013).

Identifying genetic clues to themolecular basis of radioresistance

is a major challenge. Our study identified a series of miRNA that

were differentially expressed between RT good responders and poor

responders, providing useful clues for further functional assays to

demonstrate a possible regulatory role in radioresistance. Among

DEMs, several miRNAswere known to be involved in the regulation

of DNA damage repair or radiosensitivity. For example, our results

showed that miR-34a was upregulated in S group and was

downregulated in R group in SARC. MiR-34a is one of the

FIGURE 5
Receiver operating characteristics (ROC) analyses of the performance for the predictions for RT response using combinatorial models in eight
different cancer types.
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familymembers ofmiR-34 (Misso et al., 2014), and is a key regulator

of tumor suppression. The overexpression of miR-34a makes cells

sensitive to radiation by inhibiting several targets of DNA damage

repair pathway (Lacombe and Zenhausern, 2017), such as Bcl-2 (Liu

et al., 2011), LyGDI (Duan et al., 2013), Notch-1 (Kang et al., 2013),

Rad51 (Cortez et al., 2015). MiR-29a is a member of the miR-29

family (Patel and Noureddine, 2012), and miR-29 is a tumor

suppressor that can promote cell senescence and differentiation

(Martinez et al., 2011; Chuang et al., 2022). The studies found that

overexpression ofmiR-29a enhanced radiosensitivity, and promoted

apoptosis in radiation resistant CaSki and c33a cells (Martinez et al.,

2011). Overexpression of miR-29a induces a significant decrease in

cell migration speed through K-ras/c-raf/p38 signal pathway, and

may reduce metastasis of lung cancer (Chuang et al., 2022). In this

study, we found that miR-29a in SARC tended to be highly

expressed in S group. MiR-214 involved in radioresistance have

been demonstrated in multiple cancer types (Zhang and Zhang,

2017; Hu et al., 2018; Li et al., 2019). In ovarian cancer, the

expression level of miR-214 rises after ionizing radiation, which

activates P13K/Akt pathway by targeting PTEN, resulting in the

increased radioresistance of cell lines (Zhang and Zhang, 2017). In

colorectal cancer, miR-214 is significantly down-regulated in cells

after ionizing radiation, which resulting in the increased sensitivity

of cells to radiation (Hu et al., 2018). MiR-214 is overexpressed in

osteosarcoma tissues and is a negative regulator of phlda2,

maintaining radioresistance of osteosarcoma cells to apoptosis (Li

et al., 2019). We found that miR-214 tended to be highly expressed

in the R group, implying it may play a role in radioresistance in

BLCA. Besides, miR-101, miR-146a, miR-196a, miR-143, miR-222

(Shi et al., 2019), and mir-130a (Ha Thi et al., 2019), has been

reported to be involved in the regulation of DNA damage repair or

radiosensitivity in previous studies.

As several miRNAs previously reported to be associated with

radiotherapy sensitivity (e.g., miR-34, miR-101, miR-29a, miR-

214, miR-146a, miR-196a, miR-143, miR-222, and mir-130a), we

hypothesized that the signatures identified in here would identify

additional radiotherapy sensitivity-related miRNAs. Our gene

function enrichment analysis showed the many miRNAs were

involved in EMT pathway. EMT is associated with characteristics

of cancer stem cells, including radioresistance and

chemoresistance. Several miRNAs were reported to directly

target multiple key components of EMT pathway. For

FIGURE 6
KaplanMeier overall survival curves for patients with one singlemiRNA stratified by high versus lowmiRNA expression. Results from fivemiRNAs
with low p values (p values <0.05) were shown. The high and low expressionwas indicatedwith red and blue color, respectively. p values were derived
from log-rank test.
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example, the miR-200 family inhibits EMT and tumormetastasis,

inhibits self-renewal of cancer stem cells, and enhances

radiosensitivity of several types of cancer (Baumann et al.,

2008). Overexpression of miR-200c regulates oxidative stress

response genes and increases radiosensitivity of lung cancer

cells (Magenta et al., 2011). Zheng et al. found that the down-

regulation of miR-200c was related to radiation tolerance in

esophageal squamous cell carcinoma (Zheng et al., 2017). Zhang

et al. found miR-205 can suppress EMT by targeting the EMT-

inducing transcription factor ZEB1 (Zhang et al., 2014). Function

enrichment analysis indicated that 14 miRNAs, including miR-

34a, miR-215, miR-221, miR-30d, miR-194-2, miR-let-7, miR-

194-1, miR-129-1, miR-29b-2, miR-29b-1, miR-29a, miR-192,

miR-150, and miR-143, were associated with EMT pathway in

our study. This enrichment implied that these miRNAs might be

involved in radioresistant phenotype through EMT pathway.

Previous studies reported that miR192 regulated the EMT

pathway (Khella et al., 2013). Song et al. confirmed that miR-

192 promoted EMT of gastric cancer, migration and invasion by

targeting RB1 (Song et al., 2022). In additional, the previous

study has demonstrated that miR-192 was significantly

upregulated in cisplatin-resistant lung cancer cells, and miR-

192 induced cisplatin resistance through activating the NF-κB
pathway (Li et al., 2022). Moreover, miR-192 could influence 5-

fluorouracil resistance (Boni et al., 2010). Cisplatin and 5-

fluorouracil were genotoxic and their cytotoxic mode of action

prominently involves the generation of DNA lesions followed by

the activation of the DNA damage response and the induction of

mitochondrial apoptosis. Zhai et al. found miR-143 suppressed

epithelial–mesenchymal transition and inhibited tumor growth

of breast cancer through down-regulation of ERK5 (Zhai et al.,

2016). Up-regulating miR-143 enhances E-cadherin-mediated

cell-cell adhesion ability, reduces mesenchymal markers, and

decreases cell proliferation, migration, and invasion in vitro (Zhai

et al., 2016). Yang et al. found that up-regulated miR-143

represses EMT in esophageal cancer cells (Yang et al., 2019).

Our results showed that miR-143 was upregulated in S group and

was downregulated in R group in esophageal cancer samples. We

suggested that miR-143 might play a regulatory role in

radiosensitivity through influencing EMT pathway in

esophageal cancer. The further experiments will be required

for function assay. We also noticed that miR-150 tended to be

highly expressed in the RT response samples, implying it may

play a role in radiosensitivity. Previous report showed that the

expression of miR-150 decreased significantly in serum after

irradiation in animal studies (Jia and Wang, 2022). Recently,

miR-150-5p were confirmed to target ZEB1 and caused mRNA

degradation, thus blocking EMT (Lu et al., 2017). Together, these

multiple clues suggested that these miRNAs (miR-192, miR-143,

and miR150) might serve as putative regulators of

radiosensitivity through EMT pathway.

In conclusion, this work showed the miRNA signatures could

serves as biomarkers to classify the RT response patients, and

further investigations with larger numbers of patient samples are

currently underway to validate the utility of using these biomarkers.

Finally, additional work will be required to determine the role of

these miRNAs in radioresistance of tumor.
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