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Immunogenic cell death (ICD) is a form of regulated cell death that elicits

immune response. Common inducers of ICD include cancer chemotherapy

and radiation therapy. A better understanding of ICDmight contribute tomodify

the current regimens of anti-cancer therapy, especially immunotherapy. This

study aimed to identify ICD-related prognostic gene signatures in breast cancer

(BC). An ICD-based gene prognostic signature was developed using Lasso-cox

regression and Kaplan-Meier survival analysis based on datasets acquired from

the Cancer Genome Atlas and Gene Expression Omnibus. A nomogram model

was developed to predict the prognosis of BC patients. Gene Set Enrichment

Analysis (GESA) andGene Set Variation Analysis (GSVA) were used to explore the

differentially expressed signaling pathways in high and low-risk groups.

CIBERSORT and ESTIMATE algorithms were performed to investigate the

difference of immune status in tumor microenvironment of different risk

groups. Six genes (CALR, CLEC9A, BAX, TLR4, CXCR3, and PIK3CA) were

selected for construction and validation of the prognosis model of BC based

on public data. GSEA and GSVA analysis found that immune-related gene sets

were enriched in low-risk group. Moreover, immune cell infiltration analysis

showed that the immune features of the high-risk group were characterized by

higher infiltration of tumor-associated macrophages and a lower proportion of

CD8+ T cells, suggesting an immune evasive tumor microenvironment. We

constructed and validated an ICD-based gene signature for predicting

prognosis of breast cancer patients. Our model provides a tool with good

discrimination and calibration abilities to predict the prognosis of BC, especially

triple-negative breast cancer (TNBC).

KEYWORDS

immunogenic cell death, immunotherapy, breast cancer, prognosis model, RNA-seq

OPEN ACCESS

EDITED BY

Yi Yao,
Renmin Hospital of Wuhan University,
China

REVIEWED BY

Dahmane Oukrif,
University College London,
United Kingdom
Yanmei Zou,
Huazhong University of Science and
Technology, China

*CORRESPONDENCE

Fei Ma,
wafsfd@sina.com
Baoliang Guo,
baoliangguo2013@163.com

†These authors have contributed equally
to this work

SPECIALTY SECTION

This article was submitted to Cancer
Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

RECEIVED 14 October 2022
ACCEPTED 28 November 2022
PUBLISHED 13 December 2022

CITATION

Li Y, Feng J, Wang T, Li M, Zhang H,
Rong Z, ChengW, Duan Y, Chen Z, Hu A,
Yu T, Zhang J, Shang Y, Zou Y, Ma F and
Guo B (2022), Construction of an
immunogenic cell death-based risk
score prognosis model in breast cancer.
Front. Genet. 13:1069921.
doi: 10.3389/fgene.2022.1069921

COPYRIGHT

© 2022 Li, Feng, Wang, Li, Zhang, Rong,
Cheng, Duan, Chen, Hu, Yu, Zhang,
Shang, Zou, Ma and Guo. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 13 December 2022
DOI 10.3389/fgene.2022.1069921

https://www.frontiersin.org/articles/10.3389/fgene.2022.1069921/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1069921/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1069921/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1069921&domain=pdf&date_stamp=2022-12-13
mailto:wafsfd@sina.com
mailto:baoliangguo2013@163.com
https://doi.org/10.3389/fgene.2022.1069921
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1069921


Introduction

Breast cancer (BC) is the most prevalent cancer worldwide,

causing 685,000 deaths in 2020, approximately 17% of cancer

deaths in females (Sung et al., 2021). BC is a heterogeneous

disease characterized by molecular and histological evidence.

Treatment approaches and outcomes differ between subtypes.

Hormone receptor [estrogen receptor (ER), progesterone

receptor (PR)] and human epidermal receptor 2 (HER2)

categorize BC into molecular subtypes, and also serve as

prominent prognostic biomarkers (Pashayan et al., 2020).

Other frequently utilized prognosis predictors in clinical

practice include tumor size, tumor grade, the presence and

number of axillary node metastases and ki-67 index

(Donegan, 1997). In recent years, high-throughput sequencing

technologies have made identifying novel biomarkers more

achievable. The PAM50 assay, developed on the expression

levels of selected gene signatures, aids to risk stratification

strategies and treatment decisions (Ellis et al., 2011).

Oncotype DX, another validated multigene test, contributes to

screening patients with high risk of recurrence and can

potentially benefit from adjuvant chemotherapy (Mariotto

et al., 2020).

Cancer cells constantly interact with their microenvironment,

especially immune cells. Immune cell-associated parameters, such

as Immunoscore, have shown promising value for predicting

clinical outcomes (Pagès et al., 2018; Galon and Bruni, 2020).

Immunogenic cell death (ICD) refers to a cell death process that

elicits immune response, which has been widely explored in vivo

and in vitro, and is reviewed in detail by Kroemer et al. (2022).

Cancer cells that undergo ICD generate tumor-specific immunity

and long-term immunological memory (Krysko et al., 2012). Anti-

cancer treatments, mainly conventional chemotherapeutics and

radiation therapy can act as cellular stressors, inducing the

emission of damage-associated molecular patterns (DAMPs) by

cancer cells and activating downstream danger signaling (Galluzzi

et al., 2017). ICD-related DAMPs, including surface-exposed

calreticulin (CRT), secreted ATP and high mobility group

protein B1 (HMGB1) can be recognized by pattern recognition

receptors (PRRs) that are expressed by immune cells, resulting the

activation of tumor suppressing immune response [recruitment of

antigen presenting cells (APCs) and T cells, etc.] (Galluzzi et al.,

2020b).HMGB1 is positively correlated with overall survival in BC

patients received neo-adjuvant chemotherapy (Exner et al., 2016).

Reciprocally, tumor cells can subvert ICD through loss or

downregulation of essential components in danger signaling

(Galluzzi et al., 2017). Harnessing ICD or targeting ICD

subversion strategies may provide new solutions to cancer

treatment.

In this study, we screened ICD-associated biomarkers and

developed a risk model that predicts the immune

microenvironment, and prognosis in BC patients.

Materials and methods

Datasets

The gene expression profiles and clinicopathological data of

TCGA-BRCA (n = 1,218) were accessed through UNSC Xena

(https://xena.ucsc.edu/). For external validation, raw gene

expression and clinical data (n = 123) were directly accessed

through the Gene Expression Omnibus (GEO; accession

number: GSE37181; https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE37181). The immunotherapy dataset were

downloaded from GEO (accession number: GSE194040; https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194040).

Identification of differentially expressed
genes

Differential expression analysis of cancer (n = 1,097) and

normal (n = 121) samples was performed using the

DESeq2 R package (1.35.0). The screening criteria for mRNAs

differential expression were determined as p value < 0.05 and

absolute fold-change >1.5.

Consensus clustering

The R package ConcensusClusterPlus (1.59.0) was utilized to

conduct consensus clustering to identify molecular subtypes

according to a selected list of ICD-related genes based on

previous research. We performed the clustering using

K-means algorithm, and assessed the ideal cluster numbers

between k = 2–10. This process was repeated 1,000 times to

ensure the results were stable.

Construction of the immunogenic cell
death-related risk score

Among 1,218 breast cancer samples, 399 samples without overall

survival (OS) information and 60 samples with an observation time

of 0monthwere excluded. The remaining 759 samples were included

for subsequent analyses. Kaplan-Meier analysis was performed to

identify ICD-related DEGs with an impact on OS, using R packages

survival (3.3-1) and survminer (0.4.9). The ICD-related DEGs with

statistical significance were exposed to a LASSO cox regression

analysis, as implemented in the R package glmnet (4.1-4). The

risk score was constructed by using the regression coefficients

derived from Cox regression analysis:

RS � ∑
6

i�1
CoefiDEGi
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Statistical analysis

Patients (n = 759) were classified into high-risk group (n =

390) or low-risk group (n = 369) according to the risk score with

the cutoff value (risk score = 7.319) generated by the

surv_cutpoint function in the R package survminer (0.4.9).

The Kaplan–Meier survival curves were constructed by the

function “gsurvplot,” and the log-rank test was performed

between the two groups. Multivariable Cox regression analysis

was used to assess whether the risk score was an independent

prognostic indicator, and the features to be included in the

prognostic model were selected using two-way stepwise

regression. A nomogram was plotted based on the clinical

features and the risk score. The nomogram’s discrimination

performances were quantitatively assessed by the area under

curve (AUC) of the receiver operating characteristic (ROC) curve

and calibration curve. The Wilcoxon rank sum test was

conducted to examine whether the risk score distribution

differs among BC molecular subtypes.

Functional enrichment

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses were carried out between high-risk

and low-risk groups. The R package clusterProfiler (4.3.4) (Yu

et al., 2012) was employed to evaluate GO and KEGG pathways,

and the threshold of p-value was set as <0.05.

Gene set variation analysis

Gene Set Variation Analysis (GSVA) were conducted to

determine the gene-set activity score for each sample, utilizing

the R package GSVA (1.43.1). The gene sets were the c2 curated

signatures downloaded from the Molecular Signature Database

(MSigDB) of Broad Institute. The differential analysis of gene-set

activity scores between the high-risk and low-risk groups was

carried out by the R package limma (3.51.8). GSVA performed on

the I-SPY2 dataset used the five gene signature (CALR, TLR4,

CXCR3, PIK3CA, and BAX), because CLEC9A expression was

not profiled in the dataset.

Immunophenoscore score and tumor
immune exclusion score

The IPS score is calculated based on representative cell-type

gene expression z-scores, with higher scores indicating increased

immunogenicity. The IPS scores of high-risk and low-risk

patients were obtained from the Cancer Immunome Atlas

(TCIA) (https://tcia.at/home).

The tumor immune exclusion score was generated using

expression signatures from immunosuppressive cells, which

correlated negatively with T cell infiltration level. The tumor

immune exclusion scores were calculated by TIDE (http://tide.

dfci.harvard.edu/) (Jiang et al., 2018).

Immune infiltration analysis

CIBERSORT was applied to estimate the proportions of

tumor-infiltrating immune with a deconvolution algorithm by

the R package CIBERSORT (0.1.0). Besides, the ESTIMATE R

package (1.0.13) was used to calculate ESTIMATE immune score

of each sample.

Somatic mutation analysis

Somatic mutation data of the high-risk group (n = 373) and

the low-risk group (n = 334) were retrieved from TCGA GDC

Data Portal (https://portal.gdc.cancer.gov/) in maf format. The

waterfall plots were illustrated by the Maftools R package (2.

12.0).

Results

Consensus clustering identified two
immunogenic cell death-associated
subtypes

We conducted extensive literature research and collected

56 ICD-associated genes from previous studies

(Supplementary Table S1). Next, consensus clustering was

performed according to the patients’ expression levels of the

ICD-associated genes. Unsupervised consensus clustering

identified two major sample clusters that were clearly

molecularly distinguishable among patients with BC (Figures

1A–C). To investigate the ICD status in different clusters, we

illustrated a heatmap, and found that in contrast with cluster 2,

cluster 1 had higher expression levels of ICD-related genes

(Figure 1E). To screen out the potentially significant genes in

BC, differential analysis was performed between all cancer

samples and normal samples, and in 3 molecular subtypes,

respectively (Supplementary Figure S3). In total, 18 ICD-

related genes (AIM2, ANXA1, BAX, CALR, CCL2, CLEC9A,

CXCR2, CXCR3, DDX58, IL1B, IL1R1, LRP1, P2RY2, PIK3CA,

TLR3, TLR4, YKT6, and ZBP1) were differently expressed in

cancer samples in comparison to normal samples

(Supplementary Table S2). Among the 18 DEGs, AIM2, and

ANXA1 were the most upregulated and downregulated,

respectively (Figure 1D).
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FIGURE 1
Identification of two ICD-based clusters and differential expressed genes (A)Heatmap of consensus clusteringwhen K= 2 for 56 genes in breast
cancer samples; (B,C) Delta area curve and the cumulative distribution function (CDF) curves for k = 2–10; (D) Volcano plot shows the differential
expressed genes between cancer and normal samples; (E) Heatmap of 56 ICD-related genes’ expression levels in two clusters. Red indicates high
expression and blue indicates low expression; abbreviations: ICD, immunogenic cell death.
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FIGURE 2
Construction and validation of the ICD-based risk score (A) Forest plot shows the HRs of six ICD-related DEGs; (B,C) Lasso regression of six
ICD-related DEGs; (D) Kaplan-Meier analysis of the ICD-based risk score in training cohort; (E) Kaplan-Meier analysis of the ICD-based risk score in
external validation cohort; abbreviations: HR, hazard ratio; ICD, immunogenic cell death; DEGs, differential expressed genes.
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FIGURE 3
Risk score distribution in breast cancer molecular subtypes (A) Box plot of ICD-based risk score distribution among breast cancer molecular
subtypes; (B) Kaplan-Meier analysis and ROC curves of TNBC; (C) Kaplan-Meier analysis and ROC curves of HR+ breast cancer samples; (D) Kaplan-
Meier analysis and ROC curves of HER2+ breast cancer samples; abbreviations: ICD, immunogenic cell death; TNBC, triple-negative breast cancer;
HR, hormone receptor; *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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Construction and validation of the
immunogenic cell death-based risk score

To assess the association of ICD- related DEGs with OS, we

performed Kaplan-Meier analysis, and found that six DEGs were

statistically significant (Figure 2A). All six ICD-related genes

were tested and selected for constructing the ICD-based risk

score in the LASSO regression analysis (Figures 2B,C). The risk-

score model was developed premised on the regression

coefficients derived from multivariate cox regression. The

formula for the risk score was as below: Risk score =

3.0954369*PIK3CA + 2.8466656*TLR4 + (−0.5698641)*BAX +

(−1.8812416)*CALR + (−0.4513673)*CLEC9A + (−0.6615107)

*CXCR3. The prognostic significance of this risk score in BC was

further examined by Kaplan-Meier analysis (Figure 2D). For

external validation, data from GSE37181 were utilized, and the

result was in concordant with the TCGA cohort (Figure 2E).

Risk score distribution in breast cancer
molecular subtypes

BC is a heterogeneous disease. In the training set we used for

model development, 682 patients had records of hormone

receptor and HER2 receptor data, in which hormone

receptor-positive (HR+ HER2−) patients accounted for 67%

(n = 457), triple-negative BC (TNBC) patients and HER2+

(HR+ HER2−/HR− HER2+) patients accounted for 19% (n =

127) and 14% (n = 98), respectively. Since the number of

HER2 positive patients is relatively small, we defined the

HER2+ group irrespective of the hormone receptor status.

Wilcoxon test indicated that the risk score distribution was

statistically different between TNBC and HR+ or HER2+

groups (Figure 3A). To confirm the predictive ability of the

risk score in different subtypes, we carried out Kaplan-Meier

analysis and generated ROC curves in each subtype (Figures

3B–D). The ICD-based risk score was effective in three molecular

subtypes, especially in the TNBC group, for the area under the

ROC curve (AUC) reached 0.921 for 10-year OS.

Immunogenic cell death-based risk score
is an independent prognostic factor in
breast cancer

To further validate the prediction power of the risk score, we

evaluated the prognostic effect of ICD-based risk score with age,

nodule status, ER status, HER2 status and T stage in univariate

cox regression analysis and multivariate cox regression analysis

(Figures 4A,B). The risk score and age were independent

prognostic factors according to the results, and two-way

stepwise regression used in multivariate cox regression

selected ER status, age and risk score to develop the final

prognostic model. A nomogram was constructed based on

multivariate cox regression results (Figure 4C), and the ROC

curves and calibration curves were generated for 3-, 5- and 10-

year survival (Figure 4D). The AUCs of the nomogram were

0.768, 0.737, and 0.729 for 3-, 5- and 10-year survival. We further

validated the model in an external validation cohort, and the

ROC curves and calibration curves were illustrated in

Supplementary Figures S1A–C. In general, higher OS rates

were associated with a lower risk score, younger age and ER-

positive status.

Identification of differentially expressed
signaling pathways in different risk groups

For better understanding of the pathogenic molecular

mechanism underlying the disparity of prognosis in two risk

groups, we performed GO and KEGG analyses. The DEGs in

low-risk group were enriched in gene sets associated with

immunity, including regulation of immune effector process in

GO analysis, and antigen processing and presentation, natural

killer cell-mediated cytotoxicity, Th1, Th2 and Th17 cell

differentiation, T cell receptor signaling pathways, B cell

receptor signaling pathways and PD-L1 expression pathways

in KEGG analysis (Figures 5A–C). GSVA was used to

compare the expression of immune-related signatures across

the training datasets, using REACTOME pathway gene sets

(Figure 5D). Compared with the high-risk group, most of the

pathways were enriched in the low-risk group. In contrast,

interleukin-16-associated pathways expressed higher in the

high-risk group, which are pro-tumorigenesis, according to

previous studies (Grivennikov and Karin, 2011). Furthermore,

the GSVA analysis showed that regulation of innate immune

response to cytosolic DNA was the most enriched pathway in

low-risk TNBC in comparison to its high-risk counterpart, which

is crucial for ICD danger signaling (Figure 5E).

Since high TMB is associated with more neoantigens that

could be recognized by the immune system, we analyzed somatic

mutation profiles between the two risk groups (Maleki Vareki,

2018). TP53 and PIK3CA were the most frequent mutations in

both groups, and the median TMB of the low-risk group was

slightly higher than the high-risk group (Supplementary Figures

S2A,B).

High risk score is associated with immune
suppressive tumor microenvironment

Given that the ICD-based risk score was related to tumor

immunity, we next assessed the immune status of tumor

microenvironment in different groups. We performed

CIBERSORT algorithm to calculate the immune cells in the

two risk groups. Low-risk group was associated with
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considerably more CD8+ T cells and fewer M2macrophages than

the high-risk group (Figure 6A). Immunophenoscore (IPS) was

constructed using the expression of immune-related gene

signatures, including MHC molecules, immunomodulators,

effector cells and suppressor cells. Higher immunophenoscore

represents higher tumor immunogenicity (Charoentong et al.,

2017). Both IPS and the immune score calculated by the

ESTIMATE algorithm in low-risk group were statistically

FIGURE 4
ICD-based risk score is an Independent prognostic factor (A) Univariate cox regression of ICD-based risk score and other risk factors in breast
cancer; (B)Multivariate cox regression of ICD-based risk score, age, and ER status in breast cancer; (C)Nomogram based onmultivariate cox analysis
results; (D) ROC curves and calibration curves for 3-, 5- and 10-year survival; abbreviations: ICD, immunogenic cell death; ER, estrogen receptor.
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higher than high-risk group, indicating immune hot tumors

(Figure 6B). The tumor immune exclusion score, which was

generated based on signatures of immune suppressive cells,

namely cancer-associated fibroblasts (CAFs), myeloid-derived

suppressor cells (MDSCs) and the M2 subtype of tumor-

associated macrophages (TAMs), showed a higher median

FIGURE 5
Differentially expressed signaling pathways in high and low-risk groups (A) Lymphocyte and immune check point related pathways enriched in
low-risk group in GSEA analysis. (B) Ridge plot of KEGG analysis between high-risk and low-risk groups. The color of the ridges represents adjust
p-value. (C) Circle plot of GO analysis. The color of the dots indicates log2 fold change. (D) Bar plot of GSVA analysis of immune-related pathways in
Reactome database ordered by t score. T scores between −2 and 2 are colored in grey. (E) Bar plot of GSVA analysis in triple-negative breast
cancer.
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FIGURE 6
High-risk score is associated with immune-suppressive tumor microenvironment (A) Boxplot of immune cell compositions calculated by
CIBERSORT algorithm of high-risk and low-risk groups. (B) Boxplots of IPS score (top), ESTIMATE immune score (middle), and TIDE exclusion score
(bottom). Red and blue represent the high-risk group, and low-risk group, respectively. (C) Violin plot of the gene signature scores in PCR and non-
PCR groups. (D) The expression levels of co-stimulation and HLA molecules. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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score in high-risk group, indicating an immune suppressive

microenvironment (Figure 6B). Furthermore, in the

differential analysis, most of the human leukocyte antigen

(HLA) genes and immune checkpoints had significantly

higher expression levels in the low-risk group (Figure 6D). To

further validate the clinical importance of the ICD-related gene

signature, GSVA analysis was performed on the I-SPY2 trial

dataset. For patients treated with Pembrolizumab and achieved

Pathologic Complete Response (PCR), the GSVA scores were

significantly higher than the non-PCR group, indicating the gene

signature was positively correlated with immunotherapy

responses (Figure 6C).

Discussion

One of the leading causes of ICD is anti-cancer therapy,

including chemotherapy (Galluzzi et al., 2017). Multiple

chemotherapy drugs commonly used in BC have been

demonstrated to have immune- modulatory effect, including

Anthracyclines and Taxanes (Ramakrishnan et al., 2010;

Mattarollo et al., 2011). Immune checkpoint inhibitors (ICIs),

which target PD-1 and PD-L1 improve therapeutic efficacy by

enhancing immunogenicity, and the combination of ICIs with

conventional chemotherapy drugs performs a synergetic effect

(Galluzzi et al., 2020a). A Series of clinical trials have proven the

efficacy of combination therapies in BC, and found the clinical

benefits correlated with patients’ immune status, such as the

presence and abundance of tumor-infiltrating lymphocytes

(TILs) (Nanda et al., 2020; Schmid et al., 2020). Therefore, it

could be advantageous to identify ICD-related biomarkers that

help with the risk stratification of BC patients.

In this study, we demonstrated that the ICD-related genes are

closely associated with prognosis and tumor microenvironment

of BC. We identified six differentially expressed genes that

impacted overall survivals of BC patients and developed a

prognosis model with external validation. Moreover, we found

that the ICD-based risk score was closely associated with tumor

immune microenvironment. Previous studies have confirmed

that both immunotherapy and chemotherapy induce anti-tumor

immune responses, including the expansion of CD8+ T cells, etc.

(Krysko et al., 2012; Philip and Schietinger, 2022). In our study,

high-risk score indicates the immune exclude subtype, which can

be potentially improved by immunotherapy and chemotherapy.

Interestingly, our results showed better long-term prognostic

power for HR+ HER2− subtype and TNBC instead of HER2+

subtype. This finding could suggest that immune status, which is

closely related to the efficacy of immunotherapy and

chemotherapy is more important in HER2− subtypes rather

than in HER2+ subtype, for HER2− targeted therapy brings

significant benefits to HER2+ patients.

The genes we selected for model construction have been proved

to play essential roles in tumor growth, invasion, and metastasis.

CALR andBAX, components of ICD-danger signaling pathways, are

both independent prognosis predictors in BC (Binder et al., 1996;

Lwin et al., 2010). PIK3CA and TLR4 contribute to tumorigenesis

through the phosphoinositide 3 (PI3)-kinase/Akt signaling pathway

and IPS/TLR4 pathway, respectively (Verret et al., 2019; Afroz et al.,

2022). CLEC9A and CXCR3 are associated with intratumoral

dendritic cells (DCs), which are necessary for anti-tumor

immunity. CLEC9A is a biomarker for DCs, while

chemoattractant receptor CXCR3 influences the biological

function of DCs (de Mingo Pulido et al., 2018; Hammerl et al.,

2021). Furthermore, Xu et al. (2022) classified ICD-associated

DAMPs into three subtypes in TNBC patients, among which the

inflammatory DAMPs was featured with high expression of CALR,

higher anti-tumor immune cell infiltration, and better prognosis.

This finding is in concordant with our results, for the low-risk group

had considerably higher expression of CALR (Xu et al., 2022).

Conclusion

In conclusion, our study addressed the importance of ICD in

the modulation of tumor immune microenvironment in breast

cancer. Besides, we constructed and validated an ICD-based

prognostic signature, which served significant value in

predicting OS of breast cancer patients.
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