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Awidely used procedure for selecting significantmiRNA-mRNAor isomiR-mRNA

pairs out of predicted interactions involves calculating the correlation between

expression levels of miRNAs/isomiRs and mRNAs in a series of samples. In this

manuscript, we aimed to assess the validity of this procedure by comparing

isomiR-mRNA correlation profiles in sets of sequence-based predicted target

mRNAs and non-target mRNAs (negative controls). Target prediction was carried

out using RNA22 and TargetScan algorithms. Spearman’s correlation analysis was

conducted using miRNA and mRNA sequencing data of The Cancer Genome

Atlas Breast Invasive Carcinoma (TCGA-BRCA) project. Luminal A, luminal B,

basal-like breast cancer subtypes, and adjacent normal tissue samples were

analyzed separately. Using the sets of putative targets and non-targets, we

introduced adjusted isomiR targeting activity (ITA)—the number of negatively

correlated potential isomiR targets adjusted by the background (estimated using

non-target mRNAs). We found that for most isomiRs a significant negative

correlation between isomiR-mRNA expression levels appeared more often in

a set of predicted targets compared to the non-targets. This trend was detected

for both classical seed region binding types (8mer, 7mer-m8, 7mer-A1, 6mer)

predicted by TargetScan and the non-classical ones (G:U wobbles and up to one

mismatch or unpaired nucleotide within seed sequence) predicted by RNA22.

Adjusted ITA distributions were similar for target sites located in 3′-UTRs and

coding mRNA sequences, while 5′-UTRs had much lower scores. Finally, we

observed strong cancer subtype-specific patterns of isomiR activity, highlighting

the differences between breast cancer molecular subtypes and normal tissues.

Surprisingly, our target prediction- and correlation-based estimates of isomiR

activities were practically non-correlated with the average isomiR expression

levels neither in cancerous nor in normal samples.
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Introduction

MiRNAs are short non-coding RNAs that post-

transcriptionally regulate gene expression. A mature miRNA

binds a target mRNA, which results in mRNA degradation or

translational repression (Bartel, 2009). Target recognition by a

miRNA heavily depends on nucleotides 2–7 at the 5′-end of the

miRNA called seed region. Specifically, high complementarity of

seed region with target sequence is required for successful

miRNA-mRNA binding (Bartel, 2009). Gene expression

regulation by miRNA molecules plays a vital role in cancer

development, progression, and metastasis (Di Leva et al.,

2014; Reddy, 2015).

The application of small RNA sequencing technology led

researchers to identify miRNA isoforms (isomiRs): variants of a

mature miRNA differing from each other by a few nucleotides

at 5′, 3′, or both ends (Tomasello et al., 2021). While the

complete pathway of isomiR biogenesis has not yet been

discovered, several mechanisms have been shown to

contribute to the generation of isomiRs. These mechanisms

include but are not limited to heterogeneous cleavage of pri-

and pre-miRNA hairpins by Drosha and Dicer enzymes,

respectively, post-transcriptional nucleotide addition to the

3′-ends of miRNAs by nucleotidyl transferases (Tomasello

et al., 2021). Importantly, length variation at a 5′-end of an

isomiR alters the isomiR’s targetome since the seed sequence is

modified. Experimental validation of non-canonical 5′-isomiR

targets was previously conducted for miR-9 (Tan et al., 2014),

miR-34/449 (Mercey et al., 2017), miR-101 (Llorens et al.,

2013), miR-183 (Telonis et al., 2015), and miR-411 (van der

Kwast et al., 2020).

A common strategy for the bioinformatics analysis of the

miRNA/isomiR targeting involves a two-step procedure.

First, target mRNAs for a given isomiR are predicted based

on nucleotide sequences. Several broadly used tools are

available for making such predictions, including RNA22

(Miranda et al., 2006), TargetScan (McGeary et al., 2019),

miRDB (Chen and Wang, 2020), DIANA-microT (Reczko

et al., 2012) and others (Riolo et al., 2020). Then, isomiR and

target (mRNA- or protein-level) expression profiles in a set of

samples are used to select putative interactions supported by

a significant negative correlation. Such a strategy was

previously used, e.g., to discover critical miRNA-mRNA

interactions in breast cancer (Telonis and Rigoutsos, 2018;

Shkurnikov et al., 2019; Nersisyan et al., 2021b), colorectal

cancer (Nersisyan et al., 2021a), prostate cancer (Magee et al.,

2018) and chronic lymphocytic leukemia (Cimmino et al.,

2005).

However, to the best of our knowledge, there were no

attempts at unbiased evaluation of this strategy’s validity.

Muniategui with coauthors compared different expression

correlation-based miRNA target prediction methods using

databases of experimentally validated miRNA targets

(Muniategui et al., 2013). While this approach allowed the

authors to estimate the sensitivity of the target prediction,

the validated miRNA target databases are significantly biased

towards well-studied miRNAs and highly complementary

interactions in the case of low-throughput experiments (e.g.,

luciferase reporter assays). While CLIP-seq datasets could serve

as an unbiased source of validated interactions, there is a

problem related to the absence of gene expression repression

for a considerable portion of identified interactions (Chu et al.,

2020).

The main objective of the present study was to assess the

validity of performing isomiR-mRNA or miRNA-mRNA

correlation analysis on the results of sequence-based target

prediction. For that, we comprehensively compared miRNA-

mRNA expression level correlations between predicted targets

and negative controls (briefly, mRNAs that do not contain

miRNA seed region binding sites). The analysis was

conducted using miRNA and mRNA sequencing data of

primary breast cancer (BC) samples and adjacent normal

tissues available in The Cancer Genome Atlas Breast

Invasive Carcinoma (TCGA-BRCA) project

(PAM50 molecular subtypes of BC were analyzed

separately). We aimed to perform unbiased and data-driven

analysis, so we predicted isomiR targets with two

bioinformatics tools based on different ideas, with both

classical and non-classical seed region binding types. We

also considered targeting within mRNA coding sequences

(CDS) and 5′-UTRs.

Materials and methods

TCGA data acquisition and processing

Count-level TCGA isomiR expression data (n � 11089

samples) were downloaded from the IsoMiRmap tool (Loher

et al., 2021) official website (https://cm.jefferson.edu/isomirmap/).

Reads exclusively mapped to the miRNA space were selected for

further processing. Transcript-level mRNA-seq data for n � 10530

TCGA samples were downloaded from the UCSC Xena portal

(Goldman et al., 2020) (https://xenabrowser.net/), TOIL RSEM

expected_count dataset built on GENCODE 23 human reference

genome was used.

Normalization of both miRNA-seq and mRNA-seq TCGA

count-level data was performed using the median of ratios

algorithm implemented as the “estimateSizeFactors” function

in the DESeq2 R package (Love et al., 2014); “fpm” and “fpkm”

functions were used to generate the final normalized

expression tables for miRNA-seq and mRNA-seq data,

respectively (i.e., mRNA-seq data was additionally

normalized by the transcript lengths). Finally, we applied

log2(x + 1) transformation for both miRNA-seq and

mRNA-seq data.
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PAM50 molecular subtyping results of primary breast

cancer samples and normal tissues annotation were

extracted from the UCSC Xena portal. We set a minimum

of 100 sample thresholds for all subtypes to eliminate possible

sample size-related biases in the downstream analysis. As a

result, four sample groups were considered: luminal A

primary tumors (n � 561 samples), luminal B primary

tumors (n � 210), basal-like primary tumors (n � 183), and

adjacent normal tissues (n � 104). Sample identifiers and

corresponding group labels are available in Supplementary

Table S1.

Since 3′-end isomiR variations do not alter the isomiR

targetome much (seed region not affected), we summed up

the expression of isomiRs originating from the same miRNA,

which have identical 5′-end sequences (5′-isomiRs). We used

our previous notation for 5′-isomiRs (Nersisyan et al.,

2022b): a number after the “|” symbol stands for a shift

from the canonical 5′-end in the 5′–3′ direction. For

example, hsa-miR-192-5p|+1 differs from the canonical

hsa-miR-192-5p miRNA by the absence of the first

nucleotide on its 5′-end.
For further processing, we selected 139 5′-isomiRs with the

highest median expression—this was a minimum number of

isomiRs that covered 99% of the total median isomiR expression.

The used threshold corresponded to approximately 100 DESeq2-

normalized FPM. A less strict thresholding was used for the

mRNA-seq data: transcripts with zero reads in more than half of

the analyzed samples were discarded. The final list of analyzed 5′-
isomiRs and their median expression levels is available in

Supplementary Table S2.

IsomiR target prediction

Two tools were used to predict 5′-isomiR targets: RNA22

(Miranda et al., 2006; Loher and Rigoutsos, 2012) and TargetScan

7.2 (Agarwal et al., 2015). Precomputed RNA22 predictions for

the canonical miRNAs were downloaded from the official tool’s

website (https://cm.jefferson.edu/rna22-full-sets-of-predictions/;

ENSEMBL 96 and miRBase 22 version). For the remaining

30 non-canonical isomiRs, a program that allows one to

submit target prediction batch requests was used (https://cm.

jefferson.edu/rna22/Interactive/remoteRNA22v2.zip, ENSEMBL

96 transcript sequences). The default target predictions settings

were used. Since human reference transcriptome versions

differed for mRNA-seq reads mapping and isomiR target

prediction, we selected transcripts with identical sequences in

both versions for further analysis.

The set of predicted isomiR-mRNA interactions was

classified into five types based on seed region binding motifs:

8mer, 7mer-m8, 7mer-A1, 6mer (classical seed binding types),

and other (including unlimited G:U wobbles and up to one

mismatch or unpaired nucleotide in a seed region). Custom

TargetScan predictions were done as previously described

(Nersisyan et al., 2022a): publicly available Perl scripts and 3′-
UTR sequences were downloaded from the official website

(https://www.targetscan.org/cgi-bin/targetscan/data_download.

vert72.cgi). Assessment of binding with imperfect seed

complementarity (3′-compensatory sites) was not possible

with TargetScan custom prediction mode. The results of

RNA22 and TargetScan predictions are available in figshare

repository (https://doi.org/10.6084/m9.figshare.21579729.v1).

MiRTarBase 9 database (Huang et al., 2022) was used to

retrieve experimentally verified miRNA-mRNA interactions

(luciferase reporter assays).

Composition of isomiR non-target mRNA
sets

For a given 5′-isomiR, we composed a set of all mRNAs which

do not contain the 6mer seed region binding site in mRNA

sequences (including an unlimited number of G:U wobbles).

The computational approach for solving this problem was

based on the composition of the hash table, which mapped all

possible 6mers to their positions in all mRNA sequences. The set of

negative control interactions is available in Supplementary Data 1.

Calculating isomiR targeting activity (ITA)
and adjusted ITA

We calculated Spearman’s correlation coefficients and

corresponding p-values between all 5′-isomiR and mRNA

expression levels (separately for the four groups of BC

samples). Benjamini–Hochberg procedure was used to adjust

p-values.

For a given 5′-isomiR, we denote the number of predicted

targets as ntar and the number of predicted targets supported by a

significant negative correlation of expression levels

(r< − 0.3, FDR< 0.05) as mtar (mtar ≤ ntar). The analogous

terms were used for the isomiR non-targets: nnontar (number

of non-targets predicted) and mnontar (number of anti-correlated

non-targets: r< − 0.3, FDR< 0.05). For the downstream text, we

denote mtar as isomiR targeting activity (ITA) and mtar −
ntar

mnontar
nnontar

as adjusted ITA. The statistical significance of an

isomiR activity was assessed with the one-sided Fisher’s exact

test applied to the following contingency

table:
mtar ntar −mtar

mnontar nnontar −mnontar
( )
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Benjamini–Hochberg procedure was used to adjust p-values.

Differential expression analysis

We used DESeq2 1.36 (Love et al., 2014) to identify

differentially expressed isomiRs for each pair of the

considered sample groups (luminal A, luminal B, and basal-

like BCs, normal samples). An isomiR was considered as

differentially expressed if the fold change was lower than

0.5 or higher than two and the adjusted p-value was lower

than 0.05.

Statistical analysis and programming

We used SciPy stats 1.9 (Virtanen et al., 2020) for conducting

statistical analysis (Spearman’s correlation, Fisher’s exact test).

Pandas 1.3 (McKinney, 2010) and NumPy 1.23 (Harris et al.,

2020) were used for miscellaneous computations. Plots were

constructed with Seaborn 0.11 (Waskom, 2021) and

ggVennDiagram (Gao et al., 2021).

Results

Bioinformatics analysis workflow

The study workflow is outlined in Figure 1.We used miRNA-

seq and mRNA-seq data of TCGA-BRCA primary tumor

samples corresponding to three molecular subtypes (luminal

A, luminal B, basal-like) and adjacent normal tissue samples.

We identified 139 highly expressed 5′-isomiRs and predicted

their target mRNAs using two sequence-based target prediction

tools: RNA22 and TargetScan. The tools are based on different

ideas. Namely, TargetScan favors evolutionary conserved

binding sites, relies on the classical seed region binding types

(8mer, 7mer-m8, 7mer-A1, 6mer), and predicts targets only

within 3′-UTR. In contrast, RNA22 is a pattern-based

method, which does not consider target site conservation,

predicts targets within 5′-UTR, CDS, and 3′-UTR, and is

significantly more tolerant to mismatches in a seed region.

Aside from target predictions, we also composed sets of non-

targets (i.e., negative controls) for each 5′-isomiR. Non-targets

were defined as mRNAs that do not contain regions

complementary to an isomiR’s seed region (including possible

G:U wobbles). Finally, we calculated Spearman’s correlation

coefficient between expression levels of all 5′-isomiRs and

their targets and non-targets.

Differences between the sets of RNA22-
and TargetScan-predicted targets

Before analyzing the joint expression profiles of isomiRs and

their putative targets, we compared the sets of predicted isomiR-

target interactions between RNA22 and TargetScan tools. Only

9.9% of RNA22-predicted target sites corresponded to the

classical seed region binding (4.0% for 6mer, 3.2% for 7mer-

m8, 1.6% for 7mer-A1, and 1.2% for 8mer), while the vast

FIGURE 1
Workflow of the conducted analysis. Blue-colored nucleotides stand for the classical miRNA seed region. Green-colored nucleotides stand for
seed-type-specific features (complementarity of nucleotide 8 for 8mer and 7mer-m8, adenine in position one for 8mer and 7mer-A1, G:U wobble
and C:U mismatch for other). B stands for any nucleotide except adenine, D—any nucleotide except cytosine.
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majority of putative targets had non-classical seed binding

(90.1%, Figure 2A). High numbers of target sites were found

in 3′-UTR and CDS (57.3% and 34.3%, respectively), while 5′-
UTR binding was reported less frequently (8.3%, Figure 2B).

TargetScan predictions included only classical seed region

binding types within 3′-UTRs, with a prevalence of 6mer sites

(53%, Figure 2C). RNA22 predicted 1.2 times more isomiR-

mRNA interactions than TargetScan, and the tools shared 26.7%

of the putative interactions (Figure 2D). At the same time,

RNA22 missed the majority of classical seed region binding

sites in 3′-UTRs compared to TargetScan (Figures 2E–H). For

the downstream analysis, we used the union of RNA22-and

TargetScan-predicted isomiR-mRNA interactions. With such a

target prediction strategy, we were able to cover 89.1% out of

1,608 experimentally validated interactions between canonical

miRNAs and their target mRNAs. In particular, 49.6% of

validated interactions were predicted by both RNA22 and

TargetScan, 6.5%—only by RNA22, and 33.0%—only by

TargetScan.

isomiRs tend to stronger anti-correlate with the putative

targets rather than with the non-targets.

To systematically compare correlation profiles of 5′-isomiRs

with their targets and non-targets, we introduced two measures

of isomiR activity. The first one, denoted as isomiR targeting

activity (ITA), was calculated as a number of predicted targets,

which were additionally supported by the significant negative

correlation. However, a negative correlation between expression

levels of a 5′-isomiR and its target gene could be explained by

non-random side effects, such as opposite-sided regulation of

both molecules by a transcription factor. Therefore, to estimate

the number of such false positive interactions (i.e., negatively

correlated 5′-isomiRs and their target genes with no direct effect),

we used the non-target mRNA sets. Specifically, background ITA

was calculated as the fraction of non-targets that were

significantly anti-correlated with the 5′-isomiR, multiplied by

the number of predicted isomiR targets. Finally, adjusted ITAwas

calculated by subtracting background ITA from unadjusted ITA.

In other words, adjusted ITA reflects the difference between the

number of negatively correlated potential isomiR targets and the

expected number of negatively correlated non-targets.

Note that near-zero or negative adjusted ITA does not imply

the absence of targeting. For example, consider the synthetic case

where the only target of a 5′-isomiR is a hub TF with multiple

downstream target genes, which are not direct targets of the

isomiR. In this case, unadjusted ITA equals one, while

background activity is much greater since the isomiR is anti-

correlated with TF targets by transitivity. Thus, the adjusted ITA

of the isomiR is negative despite having one functional target.

A comparison of adjusted ITA values calculated using 5′-
isomiR and mRNA expression levels for the union of RNA22 and

TargetScan predictions (including all seed binding types and

mRNA regions) is shown in Figure 3. As can be seen, the

distributions were essentially skewed toward the positive

direction for each seed region binding type and each sample

group. Thus, for the majority of 5′-isomiRs, ITA was higher than

the background correlations level. Notably, adjusted ITA values

were dramatically higher in the normal tissues compared to the

cancerous ones. Thus, we observed global downregulation of

FIGURE 2
Comparison of RNA22-and TargetScan-predicted isomiR-mRNA interactions. (A) percentages of different seed region binding types in RNA22-
predicted interaction sites. (B) percentages of different mRNA regions in RNA22-predicted interaction sites. (C) percentages of different seed region
binding types in TargetScan-predicted interaction sites. (D) the mutual arrangement between the sets of predicted isomiR-mRNA interactions (not
individual interacting sites) by RNA22 and TargetScan. (E–H): the mutual arrangement between the sets of RNA-22 and TargetScan-predicted
isomiR-mRNA interactions containing specific seed region binding sites (6mer, 7mer-A1, 7mer-m8, 8mer). For constructing plots (D–H), we
considered only these transcripts which were included in the input of both RNA22 and TargetScan.
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isomiR targeting in breast cancer. The tables with adjusted ITA

scores (union of RNA22 and TargetScan) for three BC

subtypes and normal samples are available in Supplementary

Table S3-S6.

In consistence with the previous section, RNA22 and

TargetScan had different contributions to the correlation

analysis. Namely, in the case of RNA22 predictions, non-

classical seed binding types (referred to as “Other” in Figure 3)

had significantly higher adjusted ITA scores compared to the four

classical seed types (Supplementary Figure S1). Moreover, in the

case of luminal A and luminal B BC subtypes, the whole

distribution of adjusted ITA values (except outliers) was

concentrated near zero, which was not the case for the “Other”

binding type. Near-equal adjusted ITA scores were found for the

3′-UTR and CDS binding, while adjusted ITA in 5′-UTRs was
systematically lower. In contrast to the RNA22 case, an essential

mass of the TargetScan-based adjusted ITA distribution was in the

positive zone for each classical seed binding type (Supplementary

Figure S2). Thus, combining two target prediction algorithms

ultimately allowed us to make valid target predictions both for

classical and non-classical seed binding sites. It is also worth noting

that adjusted ITA scores calculated separately using RNA22 and

TargetScan were highly correlated: Spearman’s r � 0.70, p �
5.25 × 10−22 for Luminal A, r � 0.51, p � 1.73 × 10−10 for

Luminal B, r � 0.88, p � 3.54 × 10−47 for Basal-like, and

r � 0.85, p � 1.31 × 10−39 for Normal samples.

We were not able to identify any further subgroups within

the predicted targets, which would have significantly different

adjusted ITA scores. The tested groupings included partitioning

of RNA22-predicted interactions by ten quantiles of binding

energy, separating RNA22-predicted non-classical target sites by

a number of G:U wobbles and mismatches, and partitioning of

TargetScan-predicted interactions by ten quantiles of weighted

context++ score.

FIGURE 3
The distribution of adjusted ITA values in four groups of samples. The union of RNA22 and TargetScan predictions was used, including RNA22-
predicted target sites with non-classical seed binding (labeled as “Other” on x-axis) and sites in CDS and 5′-UTR. Adjusted ITA values (y-axis) were
calculated for each 5′-isomiR and reflect the number of anti-correlated predicted targets adjusted for the background anti-correlations (background
was estimated using non-target transcript sequences). To embed positive and negative adjusted ITA values in the logarithmic scale, we applied
the following signed log transformation: sgn(y)*log2(|y| + 1).
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IsomiR activities markedly vary across BC
subtypes and normal tissues

Comparison of the numbers of anti-correlated isomiR-

mRNA pairs between the sets of predicted targets and non-

targets with Fisher’s exact test allowed us to identify 5′-isomiRs

with a statistically significant activity over the background. The

mutual arrangement of the significant isomiR sets for four

sample groups (luminal A, luminal B, basal-like, normal) is

presented in Figure 4A. As can be seen, isomiR activity

showed clear subtype-specific patterns. Consistently with the

previous section, the maximum number of significantly active

isomiRs was detected in normal breast tissue samples: 103 out of

139 considered isomiRs. Normal tissues were followed by the

basal-like (56 isomiRs), luminal A (34 isomiRs), and luminal B

(12 isomiRs) BCs. Only eight isomiRs were significantly active in

all BC subtypes: hsa-miR-17-3p|0, hsa-miR-30b-5p|0, hsa-miR-

93-5p|0, hsa-miR-101-3p|-1, hsa-miR-106b-5p|0, hsa-miR-182-

5p|0, hsa-miR-200b-3p|0, and hsa-miR-210-3p|0.

We then wondered whether the results of differential isomiR

activity are in line with expression levels of these isomiRs in four

considered sample groups. First, we noticed that the

unsupervised clustering of samples based on the isomiR

expression profiles was similar enough to the four considered

sample groups (importantly, normal samples clustered separately

from the cancerous ones, Supplementary Figure S3). Then, we

conducted differential isomiR expression analysis for each pair of

sample groups (Figure 4B). In contrast to the higher number of

active isomiRs in normal tissues, we saw a higher number of

isomiR upregulation events in cancer than downregulation

events (this held for each BC subtype). The other interesting

observation could be made while comparing luminal A and

luminal B subtypes: only four isomiRs passed the differential

expression significance thresholds (fold change and adjusted

p-value), while the Jaccard index for the sets of the active

isomiRs (9 isomiRs in the intersection divided by 37 isomiRs

in the union) was equal to just 0.24. The detailed analysis of

intersections between the sets of active/not active and

upregulated/downregulated isomiRs for each pair of sample

groups also did not allow us to find any strong associations

between an isomiR’s expression level and significance of adjusted

ITA score (Supplementary Figure S4). Finally, it is worth noting

that we did not find a correlation between adjusted ITA scores

and isomiR median expression levels neither in cancerous nor in

normal samples (Spearman’s r< 0.18). Thus, the analyzed data

told us that the variation of isomiR expression levels and

correlations between isomiRs and putative targets constitute

two independent dimensions.

Discussion

Correlation analysis applied to expression data of miRNAs

and mRNAs in a set of samples is widely used to select important

miRNA-mRNA interactions. In this manuscript, we assessed the

validity of this approach by performing a comprehensive

comparison of correlations between the sets of predicted

isomiR targets and non-targets. Ultimately, we found that for

most isomiRs, the number of anti-correlating mRNAs was higher

among predicted targets rather than non-targets. These

observations support the validity of the commonly used

bioinformatics approach, consisting in searching for negative

correlations among sequence-based predicted isomiR-mRNA

interactions.

FIGURE 4
Differential 5′-isomiRs activity and expression in four analyzed sample groups. (A) the mutual arrangement of the sets of significantly active 5′-
isomiRs (adjusted ITA FDR <0.05) in four sample groups. (B) the results of pairwise differential 5′-isomiR expression analysis. Each cell contains a
quantitty of differentially expressed isomiRs in a corresponding comparison (fold change >2, FDR <0.05).
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We used two commonly applied sequence-based miRNA

target prediction tools to conduct bioinformatics analysis:

RNA22 and TargetScan. TargetScan focuses on four classical

seed region binding types (8mer, 7mer-m8, 7mer-A1, 6mer) and

3′-UTR targeting. In contrast, RNA22mainly predicted sites with

non-classical seed binding and many sites within mRNA CDS

and 5′-UTR. Indeed, four classical sequence types show striking

enrichment in large-scale studies involving miRNA

overexpression and transcriptome/proteome profiling.

Specifically, Lim with co-authors overexpressed miR-1 and

miR-124 in HeLa cells and found the most enriched

nucleotide motifs in downregulated transcripts detected by

microarray analysis—the answer was 6mer seed region for

both miRNAs (Lim et al., 2005). Similar results were further

derived for five miRNAs using a proteomic approach (Selbach

et al., 2008), and for 25 miRNAs using RNA sequencing (Liu and

Wang, 2019). Indeed, such experimental setups do not provide

evidence of direct miRNA-mRNA interactions. Several Ago-

CLIP methods were developed to close this gap, including

HITS-CLIP (Chi et al., 2009) and PAR-CLIP (Hafner et al.,

2010). Concordantly, motif search in the datasets generated by

both methods led researchers to the miRNA seed sequences.

However, all the mentioned experiments provided sufficient

evidence of efficient targeting despite unpaired nucleotides/

bulges in a seed region, and successful targeting in mRNA

coding sequences. Specifically, G-bulged sites were present in

more than 15% of identified interactions by HITS-CLIP in a

mouse brain and were shown to be conserved (Chi et al., 2012);

Hafner et al. reported about 7% of non-classical seed sites in

PAR-CLIP data (Hafner et al., 2010). Both HITS-CLIP and PAR-

CLIP datasets supported extensive miRNA binding within

coding sequences of mRNAs. Ribosome profiling data upon

miRNA transfection suggested functional differences in CDS

and 3′-UTR miRNA binding: CDS sites were more associated

with inhibiting translation, while 3′-UTR sites were better at

initiating mRNA degradation (Hausser et al., 2013). In a recent

study, McGeary et al. used their novel Kd-based mathematical

model to conclude that CDS-located sites have 5.5-folds lower

affinity compared to the 3′-UTR sites (McGeary et al., 2019).

Target repression through 5′-UTR binding was also reported

(Lytle et al., 2007).

Importantly, our analysis was in agreement with both

models: the adjusted ITA scores were skewed towards the

positive direction in cases of both RNA22-and TargetScan-

predicted targets (though 5′-UTR targeting was predicted to

be much less efficient compared to 3′-UTR and CDS).

However, one limitation of the conducted analysis should be

noted. Namely, a single mRNA could contain more than one

binding site for a given isomiR, and these sites could be localized

in different parts of mRNA or have different seed region binding

types. In this case, the same isomiR-mRNA pair was considered

in all corresponding designs.

With the use of the developed ITA scores, we were able to

select isomiRs that were anti-correlated with a statistically

significant number of predicted targets over the background.

It turned out that the sets of the most active isomiRs poorly

overlapped between the three subtypes of BC and the normal

tissue samples. Only eight common 5′-isomiRs for three

cancer subtypes were found. Based on these results, we

emphasize the importance of considering sample

heterogeneity while performing isomiR-mRNA correlation

analysis for cancer data. Another striking observation was

the absence of correlation between the adjusted ITA scores

and the median isomiR expression levels in all considered

sample groups. These results could mean that the expression

level of a 5′-isomiR is not the main determinant of its

functional activity (at least when the set of highly

expressed isomiRs is considered). Alternative mechanisms

controlling the miRNA targeting were reported. For

example, Kim with co-authors recently reported that

RNA-binding proteins could significantly enhance miRNA

targeting efficiency by making a secondary structure of a

target site accessible to the miRNA-Argonaute complex (Kim

et al., 2021). Further experiments are warranted to

understand the nature of correlation-based isomiR activity

in BC samples.
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