
Analysis of single-nucleotide
polymorphisms in genes
associated with triple-negative
breast cancer

Vigneshwaran G.1, Qurratulain Annie Hasan2, Rahul Kumar3 and
Avinash Eranki1*
1Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad,
Telangana, India, 2Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad,
Telangana, India, 3Department of Biotechnology, Indian Institute of Technology Hyderabad,
Hyderabad, Telangana, India

Triple-negative breast cancer (TNBC) is a rare variant of breast cancer (BC)

known to be aggressive and refractory. TNBC lacks effective early diagnostic

and therapeutic options leading to poorer outcomes. The genomic landscape

and alterations leading to BC and TNBC are vast and unclear. Single nucleotide

polymorphisms (SNPs) are a widespread form of genetic alterations with a

multi-faceted impact on multiple diseases, including BC and TNBC. In this

study, we attempted to construct a framework that could identify genes

associated with TNBC and screen the SNPs reported in these genes using a

set of computational predictors. This framework helped identify BRCA1, BRCA2,

EGFR, PIK3CA, PTEN, and TP53 as recurrent genes associated with TNBC. We

found 2%–29% of reported SNPs across genes to be typed pathogenic by all the

predictors in the framework. We demonstrate that our framework prediction on

BC samples identifies 99% of alterations as pathogenic by at least one predictor

and 32% as pathogenic by all the predictors. Our framework could be an initial

step in developing an early diagnosis of TNBC and potentially help improve the

understanding of therapeutic resistance and sensitivity.
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Introduction

TNBC is an aggressive and refractory form of BC and accounts for about 15% of total

BC cases (Cleator et al., 2007). The absence of three primary receptors characterises

TNBC: estrogen receptor (ER), progesterone receptor (PR), and the human epidermal

growth factor 2 receptor (HER2) (Sorlie et al., 2001). Most TNBC tumors are also basal-

like subtypes due to their unique genomic profiling and their striking resemblance to basal

cells that line the breast ducts in contrast to other subtypes of BC (Thike et al., 2010).

TNBC often presents with higher metastases, recurrence, and poor survival rates (Dent

et al., 2009). Most conventional therapies used to treat different BC types by targeting ER,
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PR, or HER2 receptors are ineffective, making TNBC one of the

most resistant forms of BC with a poor prognosis (Anders and

Carey, 2008).

Personalised cancer diagnosis and therapy could be

critical to effective treatment outcomes. TNBC’s incidence,

tumorigenesis, progression, and therapeutic response may

not be confined to any single causative factor but a

consequence of multiple causes, including genetic, ethnic,

and lifestyle factors (Jeronimo and Weller, 2017). The degree

of oncogenesis and therapeutic sensitivity may vary even

FIGURE 1
Schematic representation of overall framework in this work to understand the role of various SNPs in disease causing.
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between individuals, possibly due to genomic diversity

(Voon and Kong, 2011). Understanding the overall tumor

genomic landscape can aid in designing and implementing

customised and potentially effective therapies (Weitzel et al.,

2011).

Tumor-associated alterations can be either germline

(hereditary) or somatic (acquired); thus, understanding the

underlying characteristics of any tumor is vital in managing

the disease (Wu et al., 2019). SNPs are cosmopolitan

alterations and are known to have more impact on the

underlying condition than other types (Nelson et al., 2004).

SNPs that impact the respective amino acid (AA) sequence are

known as non-synonymous (nsSNP) or missense variants.

The role of these SNPs in a particular disease can be defined by

the nature, location, and genotype-phenotype association

(Shastry, 2009). Each gene can harbor a humongous

number of SNPs, increasing the burden of identifying a

candidate SNP. This emphasises the need to converge on a

subset of all the possible SNPs, in addition to clinical

correlation, which could help us devise a highly confident

subset of SNPs on any gene towards any phenotype. Yet

analysing all SNPs on a clinical level is a laborious and

overarching step. Thus, a way to filter the SNPs is needed

to curate potentially pathogenic SNPs.

Current computational predictors have evolved to analyse

and possibly predict the impact of an SNP on a disease

(Hasnain et al., 2020). However, there is a lack of a

framework of computational predictors to systematically

assess SNPs that could have a pathogenic effect. Herein, we

utilise a set of selected in silico predictors to identify and

characterise SNPs associated with recurrent genes in TNBC,

having more than ten independent publications supporting

their association. The primary objective of the work is to build

a framework (Figure 1) to identify SNPs that may be

pathogenic and possibly disease-causing. Secondly, to

understand the number of predictors required to predict

the effect of an SNP in causing TNBC. Finally, we compare

the SNPs predicted using the proposed framework against

SNPs present in tumors obtained from patients suffering from

BC and TNBC.

Materials and methods

The workflow of the framework used is illustrated in Figure 1.

SNPs reported in the selected genes were subjected to

computational screening with the help of a framework of

predictors curated to cover different aspects of computational

functional prediction for an SNP. The predictors used in the

framework could provide a systematic route to identify the

pathogenicity of an SNP, which is detailed in the subsequent

subsections.

Identifying recurrent genes

Identifying genes associated with TNBC was done with the

help of articles indexed on PubMed. A search was performed

with keywords of interest, including “TNBC” and “genes”,

resulting in about 2540 articles. A preliminary screening of

these articles resulted in 800 + genes associated in one or more

studies with TNBC in terms of expression or alterations

favouring the disease progression. Amongst these, genes

associated with TNBC in more than ten independent

articles were identified as recurrent genes and were

subjected to computational analysis to identify

pathogenic SNPs.

Collection of datasets

Protein and Nucleotide sequences were obtained in FASTA

format from the NCBI database. The sequence transcripts were

selected with the help of the Ensembl genome browser by

identifying canonical transcripts with Ensembl and MANE

select flags. NCBI dbSNP database was used to obtain datasets

for SNPs reported for a given gene.

Functional impact prediction

SNPnexus (Oscanoa et al., 2020) and SNAP2 (Hecht et al.,

2015) were utilised to predict the pathogenicity of an SNP.

SNPnexus is a consortium of multiple predictors to predict a

particular SNP’s nature and functional impact. Some of the

predictors embedded in SNPnexus include, but not limited to,

are SIFT and PolyPhen-2, which predict the effect of a given SNP

and their resultant AA alteration based on their respective

confidence scores. Few of the SNPs were unannotated by the

platforms pertaining to the nature and position of SNPs on the

transcript.

SIFT (Vaser et al., 2016) (sorting intolerant from

tolerant) uses PSI-BLAST-based multiple sequence

alignment (MSA) followed by calculation of diversity with

the help of Dirichlet estimation and predicts a tolerance

index score to designate an SNP to be “deleterious” or

“tolerated”. A tolerance score of ≤0.05 on a scale of 0–1 is

termed “deleterious”, while the others are “tolerated”.

Confidence in SIFT prediction is based on the number of

sequences available for alignment performed by the program.

Predictions are labelled “low confidence” when sequences

aligned are highly identical, thus increasing false positive

rates. To eliminate this, we considered “deleterious—low

confidence” SNPs as “tolerated”. All SNPs predicted as

“deleterious” were considered pathogenic under the

framework.
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PolyPhen-2 (Adzhubei et al., 2010) (polymorphism

phenotyping) exploits an ML-based probabilistic classifier

along with its own pipeline of MSA to predict the functional

significance of an SNP with the help of various sequence and

structure-based features of the substitution site. Based on the

prediction and rate of false positives (Naïve Bayes posterior

probability), it types the SNPs as “benign”, “possibly

damaging”, or “probably damaging” (decreasing order of false-

positive rates). All SNPs predicted as not “benign” were

considered pathogenic under the framework.

SNAP2 (Hecht et al., 2015) (screening for non-acceptable

polymorphisms) works on an ML-based neural network

trained to account for multiple input sequence features,

including MSA, secondary structure prediction, and solvent

accessibility. It predicts the effect of every possible

substitution in a given protein sequence and generates a

heatmap along with a numerical scoring on the scale of

100 to -100, with 100 to 1 predicted to have an “effect” on

the protein while those between 0 and -100 are “neutral”. All

SNPs predicted to have an “effect” were considered

pathogenic under the framework.

Structural impact prediction

SNPs are known to alter the stability of a protein based on

their position and the type of alterations they bring in the AA

sequence. We utilised I-Mutant2.0 (Capriotti et al., 2005) to

predict whether our SNPs “increase” or “decrease” the

protein’s stability and strength. I-Mutant2.0 is a support

vector machine (SVM) based predictor for the effect of

single-site mutations by calculating the Gibbs free energy

(DDG) value of the mutated against the native protein.

Based on the DDG value, I-Mutant2.0 designates the SNP

to “decrease” or “increase” the stability of the native protein

with an accuracy of 77% (Capriotti et al., 2005). All SNPs

predicted to “decrease” the stability were considered

pathogenic under the framework.

Disease association prediction

PhD-SNP (Capriotti et al., 2006) (predictor of human

deleterious single nucleotide polymorphisms) was utilised to

predict whether the SNP could have an association with a

disease phenotype. It is an SVM-based predictor that utilises

sequence information to estimate the disease association of an

SNP by a 20-element vector-based conservation index with

more than 78% accuracy (Capriotti et al., 2006). It predicts the

SNP as “disease” associated when the score is ≤0.5, while the
remaining are typed “neutral”. All SNPs predicted to have

“disease” association were considered pathogenic under the

framework.

Sequence conservation prediction

ConSurf (Armon et al., 2001) was utilised to predict the

evolutionary conservativeness for each position of a given

protein sequence. It is a web-based predictor that takes an AA

sequence as input and performs MSA as the initial step.

Further, it performs phylogenetic tree construction, 2D and

3D structure predictions, and the calculation of position-

specific conservation scores with the help of Bayesian and

ML algorithms. Each AA in a protein sequence is graded on a

scale of 1–9, with 1 - 3 considered variable, 4—6 as moderately

conserved, and 7—9 as highly conserved regions. All SNPs

predicted to have a score of more than 5 were considered

pathogenic under the framework.

Oncogenicity prediction

CGI (cancer genome interpreter) (Tamborero et al., 2018)

was utilised to predict the role of the given SNP as a “driver” or

“passenger” in tumorigenesis and determine the SNPs’ specific

responsiveness to a given therapy. CGI is built based on

established cancer genomic databases and ML-based

BoostDM and OncodriveMut algorithms that perform in

silico saturation mutagenesis to identify driver mutations.

All SNPs predicted to be “driver” were considered

pathogenic under the framework.

Scoring of SNPs by the framework

The collected SNPs for any gene in our list were processed

through all seven predictors parallelly and were scored based

on their pathogenicity prediction. The score can define the

level of pathogenicity of an SNP under the framework. A score

of one is given to any SNP if it is predicted to be pathogenic by

any predictor. This number increases with every predictor

predicting this SNP to be pathogenic up to seven. Likewise,

when an SNP is not predicted to be pathogenic by any of the

predictor a score of zero is given to the SNP. In summary,

every SNP analysed in this study could be scored in a range of

0–7. A score of 0 represents the least pathogenic SNP, while a

score of 7 represents the most pathogenic SNP based on our

prediction framework.

Correlation with breast cancer database

cBioPortal (Cerami et al., 2012), an online repository of

cancer genomics data, was utilised to obtain breast cancer-

specific SNPs. A total of 11,632 breast tumor samples from

24 studies were selected (Supplementary Figure S1), and

missense SNPs related to the genes of our study were
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obtained. The data was compared against SNPs identified in

this study to understand the correlation between the

framework prediction and SNPs found in breast tumors

from cBioPortal.

Results

Utilising our framework, BRCA1, BRCA2, EGFR,

PIK3CA, PTEN, and TP53 were identified as recurrent

genes from a total of over 800 genes associated with

TNBC (Supplementary Table S1). The data relating to

these genes were obtained from the Ensembl and NCBI

database, which includes nucleotide and AA sequences,

details of the transcript, and the SNPs reported on those

genes (Table 1).

Functional impact

SNPs of all the genes, as mentioned in Table 1, were

processed through SNPnexus and were assigned scores

based on SIFT and PolyPhen-2. SIFT indexing identified

1080 (50.92%) SNPs as “deleterious”, while PolyPhen-2

indexing identified 752 (35.45%) SNPs as “damaging” in

BRCA1. Similarly, 1631 (43.96%) and 1853 (49.95%) SNPs

in BRCA2, 416 (56.14%) and 412 (55.60%) SNPs in EGFR, 129

(37.72%) and 162 (47.37%) SNPs in PIK3CA, 186 (59.24%)

and 199 (63.38%) SNPs in PTEN, 402 (66.01%) and 418

(68.64%) SNPs in TP53 were identified to be “deleterious”

by SIFT and “damaging” by Polyphen-2, respectively

(Supplementary Table S2a).

Simultaneously, SNAP2 predicted the impact of all the

possible substitutions on the native AA sequences for every

gene in our list. The given SNPs were screened against the

data obtained from SNAP2. SNAP2 prediction identified 1130

(53.28%) SNPs in BRCA1, 1156 (31.16%) SNPs in BRCA2, 374

(50.47%) SNPs in EGFR, 121 (35.38%) SNPs in PIK3CA, 186

(59.24%) SNPs in PTEN and 417 (68.47%) SNPs in TP53 to have

a possible “effect” on the function of the protein (Supplementary

Table S2a).

Impact on stability

I-Mutant 2.0 predicts the effect of a given SNP to either

“increase” or “decrease” the structural stability of the protein.

I-Mutant predicted that 1754 (82.70%) SNPs in BRCA1, 3094

(83.40%) SNPs in BRCA2, 668 (90.15%) SNPs in EGFR, 294

(85.96%) SNPs in PIK3CA, 281 (89.49%) SNPs in PTEN and 523

(85.88%) SNPs in TP53 were disrupting the protein as they

“decrease” the stability (Supplementary Table S2a).

Disease association

PhD-SNP predicts an SNP to be “neutral” or “disease”

associated. PhD-SNP predicted 538 (25.37%) SNPs in BRCA1,

968 (26.09%) SNPs in BRCA2, 301 (40.62%) SNPs in EGFR, 128

(37.43%) SNPs in PIK3CA, 165 (52.55%) SNPs in PTEN and 301

(49.43%) SNPs in TP53 to have a possible “disease” association

(Supplementary Table S2a).

Sequence conservation

ConSurf annotates each position of AA sequence based on

their conservation across species and defines them accordingly

from variable (1) to conserved (9). A total of 1025 (48.33%) SNPs

in BRCA1, 1706 (45.98%) SNPs in BRCA2, 442 (59.65%) SNPs in

EGFR, 178 (52.05%) SNPs in PIK3CA, 196 (62.42%) SNPs in

PTEN and 421 (69.13%) SNPs in TP53 occurred in conserved

sites of their respective protein sequences with a score of more

than 5 (Supplementary Table S2a).

Oncogenicity

CGI is a predictor of the nature of a given SNP to be a

“driver” or “passenger”mutation if present in a tumor. A total of

208 (9.81%) SNPs in BRCA1, 735 (19.81%) SNPs in BRCA2, 414

(55.87%) SNPs in EGFR, 210 (61.40%) SNPs in PIK3CA, 176

(56.05%) SNPs in PTEN and 401 (65.85%) SNPs in TP53 were

predicted to be “driver” mutations (Supplementary Table S2a).

TABLE 1 Details of transcripts and SNPs of the recurrent genes identified by our framework.

Genes No of AA BPs Transcript ID Total SNPs AA alterations

BRCA1 1863 7088 ENST00000357654 35717 2121

BRCA2 3418 11954 ENST00000380152 37637 3710

EGFR 1210 9905 ENST00000275493 71845 741

PIK3CA 1068 9259 ENST00000263967 32291 342

PTEN 403 8515 ENST00000371953 41364 314

TP53 393 2512 ENST00000269305 9478 609
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Framework-based scoring of SNPs

Different predictors estimate an SNP to be pathogenic or

not based on its own algorithm and methodology. All the

predictions have been performed and collated to identify

SNPs that can be pathogenic with high confidence. We

classified the confidence as a proportion to the number of

times a particular SNP was typed pathogenic across the

prediction. The greater the frequency of a specific SNP to be

typed pathogenic, the more confidence the prediction gets. We

found 41 (1.93%) SNPs in BRCA1, 150 (4.04%) SNPs in BRCA2,

101 (13.63%) SNPs in EGFR, 30 (8.77%) SNPs in PIK3CA, 76

(24.20%) SNPs in PTEN and 177 (29.06%) SNPs in TP53 to

have scored 7. In other words, these SNPs were typed

pathogenic by all the seven predictors and can be treated as

pathogenic SNPs with high confidence. Detailed scoring of all

the SNPs screened in the framework is shown in Supplementary

Table S2b. Figure 2 explains the distribution of SNPs typed

pathogenic by the respective number of predictors.

Comparing prediction framework over
patient-derived SNPs

We obtained SNPs from the data of breast cancer studies

in cBioPortal’s database. Comparing SNPs obtained using the

dbSNP dataset scored by our prediction framework with SNPs

from patient tumor data (Table 2 and Supplementary Table

S2c), we found that 2 (8.0%) SNPs in BRCA1, 6 (9.5%) SNPs in

BRCA2, 7 (14.5%) SNPs in EGFR, 4 (6.45%) SNPs in PIK3CA,

18 (48.6%) SNPs in PTEN and 120 (47.24%) SNPs in TP53,

have scored 7 in our prediction and were found in breast

tumors (Figure 3).

Discussion

The role of SNPs in the initiation and progression of

TNBC has not been well established. Herein, we explore

the effect of pathogenic SNPs on genes that have a

recurrent clinical association with TNBC. Extensive

screening of published data identified more than 800 genes

associated with TNBC pathogenesis. We curated six

recurrently reported genes in TNBC tumors, namely

BRCA1, BRCA2, EGFR, PIK3CA, PTEN and TP53,

identified by our framework. COSMIC cancer gene census

has documented all six genes involved as “Tier 1” genes with

oncogenic outcomes (Sondka et al., 2018). While each gene

may have its own functional capability, they all have some

common roles, including cell growth, development, and

maintenance (Davis et al., 2014). In TNBC, the functions of

the genes are exploited to nurture tumor microenvironment

and heterogeneity. BRCAness, or the trait of harbouring

BRCA1/2 mutation, is deemed to be a hallmark for

screening of BC or TNBC (Kosaka et al., 2020). Some

studies have shown that in TNBCs without BRCA1/

2 mutations, TP53 seems commonly mutated, while the

joint loss of p53 and BRCA1/2 activity could lead to poorer

overall survival outcomes (Kim et al., 2016). Analysis of co-

expression of EGFR with p53 showed that patients with

FIGURE 2
Heat map representing the percentage of SNPs which scored
anywhere between a possible score of zero through seven based
on our framework.

TABLE 2 Number of SNPs that were scored in the prediction framework and matched with SNPs reported from breast cancer patients in the
cBioPortal.

Genes No of amino acid alterations Scores based on prediction framework

Patient-derived Overlapping 0 ≤1 ≤2 ≤3 ≤4 ≤5 ≤6 ≤7

BRCA1 89 25 0 0 8 13 15 17 23 25

BRCA2 151 63 3 11 25 31 42 51 57 63

EGFR 102 48 0 6 9 17 23 30 41 48

PIK3CA 167 62 0 0 7 14 29 43 58 62

PTEN 105 37 0 1 2 3 4 11 19 37

TP53 341 254 0 4 7 9 18 50 134 254
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inverse relationship (EGFR-/p53 + or vice versa) had a

significantly higher risk of relapse than those with bi-

positives or negatives (EGFR-/p53-and EGFR+/p53+)

(Levva et al., 2017). Incidence of alterations in PIK3CA and

its associated pathways (PI3K/PTEN-axis) is also frequent in

TNBC, which serves as a prominent biomarker and renders

poor overall outcomes in the clinic (Cossu-Rocca et al., 2015;

Philipovskiy et al., 2020). Likewise, PTEN has been reported as

a significant negative regulator of pathways related to TNBC

and control tumorigenesis (Dey et al., 2013). Genes identified

by the framework have interlinked functionality and a crucial

role in TNBC tumorigenesis, suggesting the importance of any

SNP in these genes in disease progression and refractory

behaviour.

SNPs tend to have a significant share among all the

alterations found in humans, of which nsSNPs are known to

impact the structural stability and functioning of proteins (Yates

and Sternberg, 2013). Pertaining to our interest in understanding

the impact of alteration on protein functioning, we excluded the

synonymous, non-coding and intronic alterations. Further

indels, when compared against nsSNPs, seem to have lesser

significance in being causatives of complex disorders

(Gagliano et al., 2019). Thus, the current study focused on

understanding the impact of nsSNPs alone. While each gene

can harbour a substantial number of SNPs, analysing all those

SNPs functionally and clinically could be an exhaustive approach

in understanding the consequences of these SNPs. Further, this

task is laborious and likely expensive. In addition, not all SNPs

are disease-causing but tend to have a spectrum of consequences

based on the position and nature of the substitution. These

include the type of AA substitution, domain of the protein,

and conservation of the position across species, amongst

others (Shastry, 2009). Using computational methodology to

filter out pathogenic SNPs could help us identify a subset of

pathogenic and potentially disease-causing SNPs with high

confidence. We tried identifying nsSNPs reported in these six

genes and utilised the framework of predictors with

complementary functionalities. The analysis of more than

300 SNPs per gene identified 4%–28% of the SNPs to be

predicted pathogenic by all the predictors. We also observed

from a lollipop plot (Jay and Brouwer, 2016) of all the SNPs that

scored 7 (predicted pathogenic by all predictors) that most of

them were found in the functional domains of the respective

proteins (Figure 4), suggesting that an SNP in the functional

domain of a protein could have a higher impact than other

regions in the protein.

The predictors used in our framework were explicitly curated

to predict the structural and functional impact of an SNP by

determining its conservativeness, impact on structural stability,

and role in tumorigenesis, amongst others. SIFT, PolyPhen and

FIGURE 3
Pie charts representing the percentage of SNPs scored by the framework which overlapped with the alterations derived from patient suffering
from breast cancer and TNBC.
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SNAP2 were used to predict the functional effect of an SNP by

analysing its sequence homology, secondary structures andMSA.

The effect and consequence of the structural impact of an SNP

were predicted using I-Mutant and PhD-SNP. Phylogenetic

conservation prediction and scoring were performed with

ConSurf. While CGI was used to predict an SNP’s nature as a

driver or passenger mutation in tumorigenesis. The predictors

were selected to perform the key predictions necessary for the

framework and the ability to handle large data sets. All the

predictors involved have been used widely in several literatures

on bioinformatics and are considered benchmarks (Hussain

et al., 2012; Mustafa et al., 2020; Arshad et al., 2021; Falahi

et al., 2021; Poon, 2021). In a simplistic approach, we utilized web

servers and package tools to optimise the computational needs;

the same framework can be replicated with the help of command

line operators of the respective tools.

Among the predictors used in this study, some predict lesser

SNPs to be pathogenic for certain genes when compared to other

predictors. This difference is also observed across all six genes

(Figure 5). We noticed that I-Mutant predicted most SNPs

(more than 80% of SNPs per gene) to decrease the stability of

the protein. This indicates that most missense SNPs tend to

influence the protein’s structural stability. Amongst all the genes,

TP53 was found consistently high in the percentage of SNPs

predicted to be pathogenic by any predictor, suggesting that an

SNP in TP53 tends to influence many diseases, including BC and

TNBC. The trend may also pertain to the varying number of SNPs

per gene considered in this study, which might favour disease-

causing SNPs being reported while the benign (neutral) SNPs left

under-reported might lead to some bias. It can be stressed that the

prediction rate can be significantly affected if all the SNPs of a

particular gene are considered. For instance, in this study, we

obtained results from SNAP2, which grades all possible

alterations in an AA sequence. The percentage of alterations that

had an “effect” were found to substantially vary from the values

FIGURE 4
Lollipop plot for the alterations that were typed pathogenic by all the predictors.

FIGURE 5
Graph representing the percentage of SNPs typed
pathogenic by the each of the seven predictors present in our
framework.
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obtained when screening for reported SNPs. BRCA2 observed a 12%

increase of SNPs to have an “effect” by SNAP2, while TP53 reported

a 12% decrease. The decrease in the percentage of SNPs typed to

have an “effect” suggests an increased focus of research on

TP53 when compared to the other genes involved, or the

presence of TP53 SNPs in multiple tumor types (Guimaraes and

Hainaut, 2002), leading to the increase in the number of pathogenic

SNPs being reported on the gene. This further suggests that the

number of predictors required to analyse a gene can vary, suggesting

a potential weighted analysis-based approach to normalise the

framework to work irrespective of the gene under consideration.

The comparison between results from the prediction

framework and SNPs found in breast tumors obtained from

the online repository further validates the prediction. We could

observe 6%–47% of our predicted pathogenic SNPs (score 7)

present in patients diagnosed with breast cancer. Overall, we

identified 99.37% (486) of the overlapping SNPs (489) to be

scored at least 1 or above in our prediction, suggesting solid

confidence in our framework. Similarly, we identified 73.2%

(358) of the overlapping SNPs to have scored more than 4,

while 32.1% (157) scored exactly 7 by the prediction framework.

In addition, we also identified 9 breast tumor samples diagnosed

as TNBC from the cBioPortal dataset (BC specific). Out of the

9 samples, 6 (5 patients) harboured SNPs in the genes involved in

this study. Two SNPs, R273C and Y163D in TP53, scored 7 and

6 by our prediction, respectively. An SNP in PIK3CA, H1047R,

which was found in two patients, was scored 5 by our prediction.

A BRCA2 SNP K3267R was scored 1 (by ConSurf), stating its

conservation. This study did not analyse other SNPs, including

BRCA1—R1085I, PTEN—F206L and TP53—R175H. These

results support the in-silico prediction framework’s clinical

correlation, thus proposing a possible route to identify

pathogenic SNPs leading to BC or TNBC. In addition, we

analysed the occurrence of the SNPs in all the patient-derived

breast tumor samples (Supplementary Table S2d). Since a

significant fraction of the SNPs were reported only once or

twice on the entire cohort, we defined a 90-percentile cut-off

to highlight SNPs reported in multiple samples with their

respective scores from our framework (Table 3).

The identified SNPs can be associated with a wide spectrum

of disorders caused by the impaired functioning of these genes

(Shastry, 2007). Yet the association we found between these genes

with TNBC deems critical in correlating these SNPs with TNBC

or BC tumorigenesis. Although computational analysis can be

rapid and economical, the clinical outcome cannot be established

without further functional validation through in vivo and in vitro

studies. The predictors in our framework are a subset of all the in-

silico predictors available. Expanding the number of predictors

involved could assist in better characterisation of the

pathogenicity of an SNP. Future work would be directed

towards identifying SNPs at sensitive locations such as post-

translational modification sites or ligand binding sites and

predicting the 3D structural impact of the protein through

modelling and molecular dynamic simulations.

The increase in oncological SNPs demands a rapid and cost-

effective way of estimating the effect of these SNPs. The framework

utilised in this study suggests a possible toolset that can help evaluate

the impact of SNPs. The methodology and results obtained can be

the initial step in understanding the interplay of SNPs in TNBC,

which can further be stepped up to analyse any disease with a genetic

background. In addition, this framework could guide the

administration of personalised therapies (Supplementary Table

TABLE 3 SNPs that were scored by the framework and reported in ≥90th percentile of breast cancer samples.

Genes Scores received by the SNPs in our prediction framework

0 1 2 3 4 5 6 7

BRCA1 - - R496C,
D366N

E761K,
S915C

Y1127H, R979C - C61G -

BRCA2 N319S - E1493Q,
E2175Q

A3029V,
S3389F,
R118C

R2268K, P2381S,
S1817C

E1581Q, S2963L,
P2798R

Y3049C, E3342K, D1033H Y3049S, D3095G, G2793V

EGFR - - - E282K,
V592I

R1068Q S511Y, E114K E257K, R999H, R671C, R222H R836C, R669Q

PIK3CA - - E726K H1047L G1049R, Q546K,
M1043I, E453K,
C420R

E545A, G118D,
Q546R, E542K,
H1047R

Q546P, K111E, N345K, E545K E81K

PTEN - - - - - K128N D24N, H93R H61R, R130G, A126V, I135K, C136R,
R130P, R130Q

TP53 - - - - - R337C, H193Y,
M237I, V272M

S241C, E286K, V173M, V216M,
S241F, R280K, K132N, Y236C,
Y163C, H179R, H193R, R273H

L111P, N239D, C176Y, Y234C, R273L,
C238Y, G266E, R280T, G245D, C176F,
C141Y, G245S, L194R, R282W, I195T,
E285K, Y220C, R273C, R248W, R248Q

Amino acid changes.
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S3) that can be used to better treat patients suffering from TNBC

tumors housing specific SNPs. TNBC tumors tend to resist

conventional generalised treatments and use personalised

therapies, including checkpoint blockade (Kwa and Adams,

2018), targeted gene therapies (Kuo et al., 2017) or even others

such as radiation (Moran, 2015), radiofrequency ablation

(McArthur et al., 2018), cryoablation (Chandra et al., 2016) or

high intensity focused ultrasound (Deckers et al., 2015; Eranki et al.,

2017; Eranki et al., 2020; Sheybani et al., 2020) fetch better results

and improved patient outcomes alone or in combination. When

combined with therapeutic options, a framework such as the one

proposed in this work on TNBC could lead to enhanced

personalised therapies and potentially improved survival outcomes.

Conclusion

Our study analysed 2121, 3710, 741, 342, 314, and 609 SNPs

of BRCA1, BRCA2, EGFR, PIK3CA, PTEN, and TP53,

respectively. In silico predictors used to analyse these SNPs

identified 2%–29% of the SNPs across genes to be identified

as pathogenic by all the predictors involved in our framework.

The in-silico predictors suggest that all these SNPs potentially

impact protein function and stability. The SNPs and their

resultant AA alterations are suggested to affect tumorigenesis

through different pathophysiological pathways significantly. The

framework proposed and evaluated herein could help predict

SNP’s that may lead to BC or TNBC and complement other

currently available predictive markers and therapies.
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