
Identification and experimental
validation of key m6A
modification regulators as
potential biomarkers of
osteoporosis

Yanchun Qiao, Jie Li, Dandan Liu, Chenying Zhang, Yang Liu*
and Shuguo Zheng*

Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National
Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering
Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital
Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry
of Health & NMPA Key Laboratory for Dental Materials, Beijing, China

Osteoporosis (OP) is a severe systemic bone metabolic disease that occurs

worldwide. During the coronavirus pandemic, prioritization of urgent services

and delay of elective care attenuated routine screening and monitoring of OP

patients. There is an urgent need for novel and effective screening diagnostic

biomarkers that requireminimal technical and time investments. Several studies

have indicated that N6-methyladenosine (m6A) regulators play essential roles in

metabolic diseases, including OP. The aim of this study was to identify key m6A

regulators as biomarkers of OP through gene expression data analysis and

experimental verification. GSE56815 dataset was served as the training dataset

for 40 women with high bone mineral density (BMD) and 40 women with low

BMD. The expression levels of 14majorm6A regulators were analyzed to screen

for differentially expressed m6A regulators in the two groups. The impact of

m6A modification on bone metabolism microenvironment characteristics was

explored, including osteoblast-related and osteoclast-related gene sets. Most

m6A regulators and bone metabolism-related gene sets were dysregulated in

the low-BMD samples, and their relationship was also tightly linked. In addition,

consensus cluster analysis was performed, and two distinct m6A modification

patterns were identified in the low-BMD samples. Subsequently, by univariate

and multivariate logistic regression analyses, we identified four key m6A

regulators, namely, METTL16, CBLL1, FTO, and YTHDF2. We built a

diagnostic model based on the four m6A regulators. CBLL1 and YTHDF2

were protective factors, whereas METTL16 and FTO were risk factors, and

the ROC curve and test dataset validated that this model had moderate

accuracy in distinguishing high- and low-BMD samples. Furthermore, a

regulatory network was constructed of the four hub m6A regulators and

26 m6A target bone metabolism-related genes, which enhanced our

understanding of the regulatory mechanisms of m6A modification in OP.

Finally, the expression of the four key m6A regulators was validated in vivo

and in vitro, which is consistent with the bioinformatic analysis results. Our

findings identified four key m6A regulators that are essential for bone
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metabolism and have specific diagnostic value in OP. These modules could be

used as biomarkers of OP in the future.
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1 Introduction

Osteoporosis (OP) is a systemic skeletal disease characterized

by increased fracture risk and decreased bone density or bone

strength that occurs widely in postmenopausal women (Miller,

2016). The prevalence of OP increases with age, from 19.57% in

women aged 50–59 years to 56.10% in women aged 80 years and

older, and it will continue to rise with the aging of the population

in China (Chen et al., 2016). Traditionally, bone mineral density

(BMD) measured by dual X-ray absorptiometry (DXA) is used to

diagnose OP, assess fracture risk, and monitor changes in BMD

over time (Chun, 2011). However, DXA presents some

disadvantages, namely, that accessibility to DXA is limited in

many locations (Curtis et al., 2017). The rapid spread of the

COVID-19 pandemic makes it more difficult to monitor BMD

frequently during OP therapy, as medical resources are diverted

from chronic disease care to combat the pandemic. In addition,

errors in DXA scans/reports are common due to difficulties in the

maintenance of high-quality instrument calibration, data

acquisition/analysis, interpretation, and reporting of results

(Licata et al., 2018). Therefore, exploring novel and effective

screening diagnostic biomarkers that require minimal technical

investment is crucial for the early screening and timely treatment

of OP.

Maintenance of normal bone mass relies on a dynamic

balance between bone resorption and formation. Emerging

evidence has demonstrated that disruption of the balance,

especially overactive osteoclast-induced bone resorption,

predominates the progression of OP(Yao et al., 2017; Chen

et al., 2020). N6-methyladenosine (m6A) modification is the

most abundant internal modification in eukaryotic cells, affecting

mRNA metabolism and various biological processes, including

bone metabolic processes (Wei et al., 2017). m6A modification

can be catalyzed by methyltransferase complexes, including

METTL3, METTL14, WTAP, METTL16, RBM15, RBM15B,

CBLL1, and ZC3H13, which can be removed by the

demethylases ALKBH5 and FTO. Simultaneously, a variety of

proteins that specifically recognize m6A sites have been found,

including YTH family proteins (YTHDF1-3, YTHDC1-2) and

ribonucleoproteins (HNRNPC), which can recognize m6A

modification to regulate mRNA fates (Wu et al., 2018b).

Increasing evidence has demonstrated the roles of m6A

modification in diverse cancers by influencing their

proliferation, migration, and invasion (An and Duan, 2022).

Recently, the association between m6A modification and OP has

also attracted the attention of some researchers. METTL3 is the

most studied molecule and has different effects in different cell

lines. In BMSCs, METTL3 functions as an inhibitor in OP to

promote osteogenic differentiation and enhance bone formation

by activating the PI3K-Akt signaling pathway or the PTH/Pth1r

signaling axis (Wu et al., 2018a; Tian et al., 2019). However,

another study reported that METTL3 could regulate osteoclast

differentiation by increasing the bone resorption ability in RAW

264.7 cells, which may contribute to OP (Li D. et al., 2020). In

addition, several studies have reported that FTO might be a new

candidate for OP, which acts as an activator in OP, and its single

nucleotide polymorphisms (SNPs) have a close relationship with

BMD variation (DR, 1997; Guo et al., 2011; Li et al., 2019).

Furthermore, YTHDF2 disrupts bone homeostasis by regulating

osteoclast differentiation and inflammatory processes (Yu et al.,

2019). The above findings demonstrate that m6A modification

plays a vital role in OP. Nevertheless, gene signatures with

diagnostic value for m6A modification in OP remain largely

unstudied.

Various skeletal disorders have been found to be related to

abnormalities in peripheral blood monocytes (PBMCs), which

are widely accepted as the in vivo working cell model to study

mechanisms in relation to OP(Zhou et al., 2015). PBMCs can

migrate to the bone surface, differentiate into osteoclasts, and act

as precursor cells of osteoclasts. Moreover, PBMCs produce

essential cytokines for osteoclast differentiation, activation,

and apoptosis (Kylmaoja et al., 2018). Recent advances in

high-throughput technologies enable researchers to determine

the molecular mechanisms and potential biomarkers of OP by

isolating and analyzing the gene expression of PBMs. However,

no such reports have systematically investigated the molecular

mechanisms of m6A modification in OP using high-throughput

data analysis.

In this study, we systematically analyzed the expression of

m6A regulators mainly in PBMCs from different BMD samples,

and the impact of m6A modification on bone metabolism

microenvironment characteristics was also explored. Then,

we performed consensus cluster analysis and identified two

m6A modification patterns in low-BMD samples. In addition,

we built a diagnostic model based on four key m6A regulators

for distinguishing high- and low-BMD samples, and a

regulatory network was then constructed to explore the

possible regulatory mechanisms of m6A regulators in OP.

Furthermore, we validated the altered m6A pattern of the

four key regulators during RANKL- and/or MCSF induced

osteoclast formation in vitro. Finally, an ovariectomized

(OVX) mouse OP model was constructed to further validate
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the role of m6A modification in OP. Altogether, the present

findings demonstrate that m6A regulators have a crucial impact

on bone metabolism in OP, suggesting their future potential as

diagnostic biomarkers of OP.

2 Materials and methods

2.1 Data collection and processing

We searched “osteoporosis” in the GEO and Array Express

databases and retrieved datasets with a sample size greater than

or equal to 80. Finally, two datasets were obtained, GSE56815

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE568

15) and E-MEXP-1618 (https://www.ebi.ac.uk/arrayexpress/

experiments/E-MEXP-1618/?query=osteoporosis&page=3&)

The GSE56815 dataset contains the gene expression data of

PBMCs from 80 Caucasian females, including 40 patients with

high hip BMD (20 pre- and 20 postmenopausal) and

40 patients with low hip BMD (20 pre- and

20 postmenopausal), and this dataset served as the training

dataset in the present study. The sample characteristics and

RNA extraction protocol were well described in a previous

study (Zhou et al., 2018). Moreover, the E-MEXP-1618 dataset

served as the test dataset in this study, including 84 transiliac

bone biopsies of postmenopausal females (50–86 years) with

different BMDs. The detailed characteristics of the samples

were presented in an early study (Reppe et al., 2010).

After downloading the two datasets, the probes were

converted to gene symbols based on the corresponding

annotation files. We only kept the probe with the largest

numerical value when encountering probes corresponding

to the same molecule. Then, we used the

normalizeBetweenArrays function of the limma package to

standardize the data, which was visualized with a box plot.

Clustering of the samples was assessed through the principal

component analysis (PCA) chart and the uniform manifold

approximation and projection (UMAP) chart using the

ggplot2 and umap packages.

2.2 Selection and expression analysis of
m6A regulators

Sixteen widely recognized m6A regulators were selected from

published literature, but the expression of two genes,

METTL14 and ALKBH5, was not detected in the selected

datasets, so the two genes were not included in this study.

Therefore, 14 m6A regulators were involved in this study,

namely, seven m6A writers, one m6A eraser, and six m6A

readers (Table 1). The protein–protein interaction (PPI)

network of these regulators was constructed using the

STRING database (https://cn.string-db.org), and the

expression correlations among the 14 m6A regulators in all

samples were calculated by Spearman correlation analysis. To

compare the expression differences of these m6A regulators

between the high- and low-BMD samples, we used the limma

package, and the results were visualized with a heatmap and box

plot. Because the sample size was limited (although still among

the largest of such studies in this field), we used a p-value<0.05 as
the threshold for nominally significant differential expression.

2.3 Analysis of the characteristics of the
bone metabolic microenvironment

The bone metabolism-related gene sets were obtained from

the GSEA database (http://www.gsea-msigbd.org/gsea/index.jsp)

and were related to bone formation and bone resorption, such as

bone remodeling, ossification, and multiple cellular processes of

osteoclasts and osteoblasts (Supplementary Table S1). Single-

sample gene set enrichment analysis (ssGSEA) was then used to

calculate an enrichment score for each gene set in every sample,

and we finally obtained the enrichment score matrix using the R

package GSVA. The limma package was used to assess the

changes in the abundance and activity of these gene sets in

the high- and low-BMD samples, and the results are shown in a

box plot. In addition, the relationship between the m6A

regulators and these gene sets was evaluated by Spearman

correlation analysis.

TABLE 1 The description of 14 m6A RNA methylation regulators from the Ensembl database.

Gene Ensembl Type Gene Ensembl Type

METTL3 ENSG00000165819 Writers FTO ENSG00000140718 Erasers

METTL16 ENSG00000127804 Writers YTHDF1 ENSG00000149658 Readers

WTAP ENSG00000146457 Writers YTHDF2 ENSG00000198492 Readers

RBM15 ENSG00000162775 Writers YTHDF3 ENSG00000185728 Readers

RBM15B ENSG00000259956 Writers YTHDC1 ENSG00000083896 Readers

CBLL1 ENSG00000105879 Writers YTHDC2 ENSG00000047188 Readers

ZC3H13 ENSG00000123200 Writers HNRNPC ENSG00000092199 Readers
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2.4 Identification of m6A modification
patterns

To further explore the diverse m6A modification patterns

in OP, unsupervised clustering analysis was employed to

classify the low-BMD samples into different subtypes based

on the expression of the 14 m6A regulators using the

ConsensusClusterPlus package. Different modification

patterns were verified by PCA using the

ggplot2 package. Then, the distribution characteristics of

m6A regulators and bone metabolism-related gene sets

among the different subgroups were also compared using

the limma package.

2.5 Construction of a diagnostic model
based on the key m6A regulators

All 14 m6A regulators were used to perform univariate

logistic regression, and the differentially expressed m6A

regulators were included in multivariate logistic regression

to further identify the key m6A regulators in OP. Then, these

key genes serving as variables were used to construct the

diagnostic model and calculate the risk score of each

sample. Next, the median risk score was used as the cutoff,

and the samples with a risk score higher than the median score

were divided into the high-risk subgroup, whereas the samples

with a risk score lower than the median were divided into the

low-risk subgroup. The result was visualized with the risk

factor graph using the ggplot2 package. Furthermore, the

sensitivity and specificity of the model in the training and

test datasets were determined by the ROC curve using the

pROC package.

2.6 Creation of a network of m6A
regulators-m6A target genes

All the targets of these key m6A regulators were screened

from M6A2Target (http://m6a2target. canceromics.org), a

comprehensive database for target genes of m6A

modification, including validated targets reported in the

articles and potential targets based on high-throughput

sequencing data analysis. Then, a Venn diagram was

generated to reveal the common and unique target genes of

these m6A regulators. The common target genes coregulated

by these key m6A regulators were further analyzed. Their

biological functions in Gene Ontology (GO) and KEGG

pathway enrichment were annotated using the

clusterProfiler package. Finally, the regulatory network of

these key m6A regulator-m6A target genes was built using

Cytoscape software (version 3.9.1).

2.7 Cell culture and osteoclast
differentiation

RAW264.7 cells (a murine macrophage cell line) were

cultured in growth medium containing Dulbecco’s modified

Eagle’s medium (DMEM; Gibco, Paisley, United Kingdom)

and 10% fetal bovine serum (FBS; Gibco) in a humidified 5%

CO2 incubator at 37°C. For gene expression analysis and TRAP

staining, RAW264.7 cells were seeded at 1.5×104 cells/well in 24-

well plates in differentiation medium consisting of growth

medium and 10 ng/ml nuclear factor (NF)-κB (RANKL; R&D

Systems, Minnesota, United States). The osteoclast

differentiation medium was changed every 2 days to induce

differentiation, and the cells were cultured for 4 days.

Bone marrow-derived macrophages (BMMs) were isolated

from the tibiae and femurs of 6- to 8-week-old C57BL/6 mice

(Vital River Laboratory, Beijing, China) by flushing the bone

marrow cavity with α-MEM. Then, the cells were cultured in α-
MEM containing 10% FBS overnight to separate the suspended

cells. The suspended cells were then collected and cultured in α-
MEM containing 10% FBS with 10 ng/ml RANKL and 30 ng/ml

mouse macrophage colony-stimulating factor (MCSF; R&D

Systems). The medium was changed every 2 days to induce

differentiation, and the cells were incubated at 37°C with 5%

CO2 for 4 days. The experiment was approved by the Biomedical

Ethics Committee of Peking University (issue number:

LA2020199).

2.8 OVX model construction

Ten healthy female C57BL/6 mice aged 8 weeks (25–30 g)

were randomly divided into two groups (n = 5 per group): the

sham operation group and the OVX group. Ovaries were

surgically removed on both sides after anesthesia, and then

the wound was sutured. Eight weeks after surgery, blood

samples were collected by eyeball plucking, and then

PBMCs were isolated from blood samples using a mouse

peripheral blood monocyte isolation kit according to the

manufacturer’s protocols (Solarbio, Beijing, China). Briefly,

0.75–1 ml peripheral blood samples were collected from a 16-

week-old mouse and diluted with an equal volume of

phosphate buffered saline (PBS). Then, the white

mononuclear cell layer was collected after density gradient

centrifugation and washed with PBS three times followed by

centrifugation at 250 g at room temperature for 10 min to

obtain the mononuclear cell precipitate. Finally, we purified

the cells by the differential adherent method. Cell

precipitation was resuspended in 10% FBS DMEM and seed

on a 24-well plate. Two to 4 hours after incubation, the

inadherent cells were washed away, and the remaining

monocytes were used for RNA extraction.
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2.9 Tartrate-resistant acid phosphatase
staining and osteoclasts counting

All culture media were pipetted out, and samples were

washed with PBS three times and then fixed with 4%

paraformaldehyde for 15 min at room temperature. Next, the

cells were stained with a TRAP Kit (Sigma‒Aldrich Merck,

Darmstadt, Germany) according to the manufacturer’s

protocol for 40 min at 37°C in the dark. The cells were

imaged using light microscopy (BX51, Olympus, Japan), and

TRAP-positive cells were quantified as osteoclasts. This

experiment was independently repeated three times.

2.10 Hematoxylin and eosin staining

HE staining of mouse femurs was used to detect bone

destruction in OVX and sham mice. Femurs were dissected

and fixed in 4% paraformaldehyde for 24 h, decalcified in 14%

ethylene diamine tetraacetic acid (EDTA) at 37°C for 20 days,

and then embedded into paraffin for sectioning. Bone sections

were stained with HE (Beyotime Biotechnology, Shanghai,

China) according to a standard protocol to quantify the

surface area of bone and adipose tissues.

2.11 m6A quantification

Total m6A content was detected by a m6A RNAmethylation

assay kit (Abcam, Cambridge, United Kingdom) following the

manufacture’s protocol. Briefly, total RNA samples of 200 ng for

each group were administered with the solution containing the

anti-m6A antibody. The m6A levels were quantified by using the

colorimetric analysis via absorbance at 450 nm.

2.12 Real-time PCR

Total RNA was extracted with TRIzol reagent (Invitrogen,

CA, United States) and obtained through chloroform isolation

and isopropanol precipitation. Then, cDNA was generated via

reverse transcription using a reverse transcription kit (Thermo

Scientific, MA, United States). Next, the cDNA was amplified by

a SYBR Kit (Roche Applied Science, IN, United States) on the

ABI 7500 Sequencing Detection System (Applied Biosystems,

CA, United States). RPS18 was used as a housekeeping gene, and

the primer sequences used in this process are shown in Table 2.

2.13 Western blotting

The total protein was extracted using a RIPA kit (Huaxing Bio,

Beijing, China), and then the protein concentration was quantified

using a bicinchoninic acid (BCA) kit (Thermo Fisher). Protein

samples (25 ug) were separated on electrophoresed in

polyacrylamide gels and transferred onto polyvinylidene

difluoride membranes (Millipore, MA, United States). After

blocking in 5% skimmed milk at room temperature for 1 h,

membranes were incubated with primary antibodies against

FTO (Proteintech, Wuhan, China), METTL16 (Proteintech),

YTHDF2 (Abcam), CBLL1 (Proteintech), and GAPDH

(Huaxing bio) at 4°C overnight. The membranes were

incubated with HRP-conjugated secondary antibodies (Huaxing

Bio) for 1 h and visualized by an enhanced chemiluminescence

blotting kit (Cwbiotech, Jiangsu, China). The intensities of the

bands were quantified using Quantity One software (Bio-Rad, CA,

United States). GAPDH was used as the internal control.

2.14 Statistical analysis

All the gene expression data from public datasets used in this

study were processed using R software (version 3.6.3). For the

gene expression data from public datasets, correlation analysis

between these m6A regulators and the bone metabolism-related

gene sets was conducted using the Spearman method. The limma

R package was used to analyze these parameters between

different groups. The m6A modification patterns were

identified by unsupervised clustering analysis using the

ConsensusClusterPlus package. Univariate and multivariate

logistic regression analyses were applied to reduce the non-

significant regulators, and the results were visualized using the

TABLE 2 Primer pairs used in the real-time PCR

Genes Forward primer Reverse primer

METTL16 GACAAACCACCTGACTTCGCA TCTGACTGCTTCGGGGTCTT

FTO TTCATGCTGGATGACCTCAATG GCCAACTGACAGCGTTCTAAG

CBLL1 GCGAGCCGAATCATGGATCA CTTCTTCATCACCTTGCGGG

YTHDF2 GAGCAGAGACCAAAAGGTCAAG CTGTGGGCTCAAGTAAGGTTC

RPS18 TTCCAGCACATTTTGCGAGTA CACGCCCTTAATGGCAGTGAT
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forestplot package. The prediction efficiency of the diagnostic

model was assessed by the ROC curve using the pROC package.

The data from the experimental verification are presented as the

mean ± standard deviation, and the comparison between two

groups was performed using the two-tailed Student’s t test. All

comparisons are presented as p values, and a p-value < 0.05 was

considered statistically significant. Significant differences were

considered at p < 0.05 *, p < 0.01 **, and p < 0.001 ***.

3 Results

3.1 Expression of m6A regulators in the
high- and low-BMD groups

The flowchart and analysis strategy used in the present study

are shown in Figure 1. Before further analysis, the RNA expression

data of GSE56815 were normalized (Figure 2A). UMAP and PCA

plots were generated to reduce the dimensionality of the data and

show the diverse gene expression patterns between the high- and

low-BMD samples (Figures 2B,C). To explore the m6A

modification patterns between the two groups, we thoroughly

screened the complete gene expression profiles. There were 14 vital

m6A regulators involved in the study, and their correlations were

assessed at the protein and transcriptome levels. The PPI network

was built on the STRING database and showed close direct

physical interactions and indirect functional correlations

between these m6A regulators (Figure 3A). Then, the

correlation analysis revealed their strong relationship at the

RNA level; notably, YTHDF3 and RBM15 were the most

correlated genes, suggesting that they might work as a unit to

act on OP (Figure 3B, Supplementary Table S2). Further variation

analysis was performed to examine the expression differences in

the 14 m6A regulators in the different groups (Figures 3C,D,

Supplementary Table S3). Among these differentially expressed

genes, four m6A regulators (METTL3, METTL16, HNRNPC, and

FTO) were upregulated, and two m6A regulators (CBLL1 and

YTHDF2) were downregulated.

3.2 Correlations between m6A regulators
and the bone metabolism
microenvironment

As mentioned above, metabolic alterations in bone tissues

contribute to BMD changes and OP occurrence. To probe

FIGURE 1
Flowchart and analysis strategy used in this study.

Frontiers in Genetics frontiersin.org06

Qiao et al. 10.3389/fgene.2022.1072948

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1072948


their association with m6A regulators and the bone

metabolism microenvironment, 13 bone metabolism-related

gene sets were obtained from the GSEA database, and ssGSEA

was used to calculate the relative enrichment score of each

bone metabolism-related gene set in every sample. The results

of the variation analysis are shown in Figure 4A; eight of the

13 bone metabolism-related gene sets were significantly

dysregulated in low-BMD samples compared to high-BMD

samples, illustrating the disturbance of the bone metabolic

microenvironment in OP (Supplementary Table S4). Then,

the correlations of m6A regulators with bone metabolism-

related gene sets were explored. The results showed that

they had a very close relationship, in which the RBM15-

module pair was most negatively correlated (r = -0.735),

while the RBM15B-multinuclear osteoclast pair was most

positively correlated (r = 0.565) (Figure 4B, Supplementary

Table S5).

3.3 Identification of two distinct m6A
methylation patterns

To further understand the role of m6A regulators in low

BMD, unsupervised clustering analysis based on the 14 m6A

regulators was performed and divided the low-BMD samples into

two distinct m6A modification patterns, including 22 samples in

cluster 1 and 18 samples in cluster 2 (Figures 5A–C,

Supplementary Table S6). The PCA results confirmed that

these m6A regulators could differentiate the two clusters in

low-BMD samples (Figure 5D). Subsequently, we explored the

expression of m6A regulators and bone metabolism-related gene

sets between the two clusters. The variance analysis revealed that

eight of 14 m6A regulators had a significant expression

difference, validating the existence of diverse expression

patterns mediated by m6A methylation modification in low-

BMD samples (Figure 6A, Supplementary Table S7). Likewise,

FIGURE 2
Standardization of gene expression. (A) Box plots of the gene expression data after normalization. (B) The uniformmanifold approximation and
projection (UMAP) plot and (C) principal component analysis (PCA) plot show the differences in gene expression between the two groups. The blue
points represent the high bone mineral density (BMD) data, and the red points represent the low BMD data.
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eight of 13 bone metabolism-related gene sets showed significant

changes between the two clusters, and interestingly, we found

that all these dysregulated gene sets were upregulated in cluster

2 compared to cluster 1, suggesting that cluster 2 might have

more active bone metabolism characteristics (Figure 6B,

Supplementary Table S8).

3.4 Construction and validation of a
diagnostic model of OP

The above findings indicated that m6A regulators were

closely associated with bone metabolism-related gene sets

and played an essential role in BMD and OP. Univariate

logistic regression analysis was conducted to determine the

differentially expressed genes, and five m6A regulators were

found to be significantly correlated with BMD (Figure 7A,

Supplementary Table S9). Then, we employed multivariate

logistic regression to further reduce the unimportant

regulators, and four key regulators were identified, namely,

METTL16, CBLL1, YTHDF2, and FTO (Figure 7B,

Supplementary Table S10). Next, these four key m6A

regulators serving as variables were used to calculate the risk

score of each sample and construct a diagnostic model of OP.

The risk scores of the samples were determined (Supplementary

Table S11), and the median risk score (-0.366) was used as the

cutoff point to divide all the samples into two groups, namely,

the high-risk group and the low-risk group. The high-risk and

low-risk groups corresponded well to the low- and high-BMD

groups, respectively (Figure 7C). In the diagnostic model,

CBLL1 and YTHDF2 were protective factors, and their

expression showed a downward trend with increasing risk

score. METTL16 and FTO were risk factors, and their

expression showed an upward trend with increasing risk

score. Furthermore, the ROC curve demonstrated that the

expression values of the four key m6A regulators had

moderate diagnostic accuracy (Figure 7D). The same result

was also obtained for the test dataset (Figure 7E).

FIGURE 3
Expression and correlation of 14 m6A regulators in osteoporosis. (A) Protein–protein interactions of 14 m6A regulators. (B) Expression
correlations of the 14m6A regulators in all samples. The depth of the color block represents the level of the correlation coefficient, and * denotes the
significance of the statistical analysis. The most correlated gene pair was YTHDF2 and RBM15, the expression status of which is presented in the
scatter plot in the right panel. (C,D) The box plot and heatmap plot show the summary of 14 m6A regulators between the high- and low-BMD
groups, and six m6A regulators (METTL3, METTL16, CBLL1, FTO, YTHDF2, and HNRNPC) were significantly dysregulated.
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3.5 Creation of a BMD-related m6A
regulator-m6A target gene regulatory
network

We obtained 4,868 METTL16 targets, 7,727 CBLL1 targets,

5,207 FTO targets, and 9979 YTHDF2 targets fromM6A2Target,

of which 306 genes were potentially coregulated with the four key

m6A regulators (Figure 8A, Supplementary Table S12).

Furthermore, these 306 targets were intersected with genes in

the bone metabolism-related gene sets, and 26 target genes were

finally obtained (Figure 8B, Supplementary Table S13). The

KEGG pathway analysis showed that these genes were mainly

enriched in parathyroid hormone synthesis, secretion, action,

human papillomavirus infection, and the P13K-AKT signaling

pathway, suggesting that these pathways might be closely related

to BMD and OP (Figure 8C). The GO analysis indicated that the

biological processes of these genes were mainly enriched in

ossification, regulation of ossification, connective tissue

development, and osteoblast differentiation, which were

primarily related to bone metabolism (Figure 8D,

FIGURE 4
Relationship between bone metabolism-related gene sets and m6A regulators. (A) Differences in abundance and activity of bone metabolism-
related gene sets in the high- and low-BMD groups. (B) Expression correlations of these bone metabolism-related gene sets and m6A regulators in
all samples. Significantly, the RBM15-module pair was themost negatively correlated, the expression status of which is presented in the scatter plot in
the upper right panel, while the RBM15B-multinuclear osteoclast differentiation pair was the most positively correlated with expression status
presented in the scatter plot in the lower right panel.
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Supplementary Table S14). Then, we used Cytoscape software

and created a regulatory network composed of the four hub m6A

regulators and the 26 m6A target bone metabolism-related genes

(Figure 8E).

3.6 Validation of the expression of the key
m6A regulators in vitro and in vivo

To identify the reliability of the results based on

bioinformatics analysis, we examined the expression of the

four key m6A regulators (METTL16, CBLL1, YTHDF2, and

FTO) in vitro and in vivo. RAW 264.7 cells, which are a

classic cell line model for osteoclast and OP studies in vitro,

were used in this study. RANKL treatment induced intense

osteoclast differentiation of RAW264.7 cells (Figure 9A,

Supplementary Figure S1A). Compared to control cells, a

significantly elevated number of TRAP+ multinuclear

osteoclasts formed upon RANKL stimulation for 4 days,

indicating that the osteoclast induction model in vitro was

successfully constructed (Figure 9B). We quantified the m6A

content in total RNA by ELISA assays, and the m6A content was

significantly decreased during osteoclast differentiation

(Figure 9C). The expression patterns of METTL16, FTO,

CBLL1, and YTHDF2 at the RNA and protein levels were

examined in RAW264.7 cells, and the results showed

downregulated expression of CBLL1 and YTHDF2 and

upregulated expression of METTL16 and FTO during

osteoclast differentiation (Figures 9D–F). Likewise, osteoclast

differentiation induced from mouse BMMs were used for

further validation. The number of TRAP+ multinuclear

osteoclasts significantly increased upon RANKL- and MCSF

FIGURE 5
Unsupervised clustering analysis based on the 14 m6A regulators. (A,B) Consensus clustering cumulative distribution function (CDF) and the
relative area under the CDF curve for k = 2–10. According to the recommendations for selecting the number of clusters, the number of clusters with
the highest average consistency was k = 2. (C) The heatmap shows the consensusmatrix for the optimal k = 2. (D) The PCA plot confirmed the striking
difference between the two m6A modification patterns.
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stimulation. (Figures 9G,H, Supplementary Figure S1B). Next, we

examined the total m6A level and the expression of four key

genes in BMMs during osteoclast differentiation. The results

were the same as those in RAW264.7 cells, except METTL16 at

the protein level (Figures 9I–L). Finally, an OVX mouse model

was constructed to represent the OP patients, and a schematic

diagram was drawn to show how we obtained the PBMCs from

mice (Figure 9M). Bone destruction was indicated by HE

staining, and the bone mass was significantly decreased in

OVX mice, which suggested that OP model was successfully

constructed. (Figure 9N). We obtained the same total m6A level

and mRNA expression data of these four key m6A regulators in

PBMCs from the OVXmodel (Figures 9O, P). These results were

consistent with our integrated analysis, indicating that the four

key m6A regulators might be used as biomarkers of OP.

However, the exact regulatory mechanism requires further study.

4 Discussion

OP, characterized by reduced BMD, is a widespread disease

with a high prevalence in older women (Camacho et al., 2020).

Abnormal bone metabolism, including enhanced bone

resorption and diminished bone formation related to low sex

hormones, is the primary pathological mechanism of OP in older

adults (Awasthi et al., 2018). m6A RNA methylation is the most

common epigenetic modification and is confirmed to be involved

in almost every aspect of metabolism (Wei et al., 2017; Wu et al.,

FIGURE 6
Expression of the m6A regulators and bonemetabolism characteristics between the twom6Amodification patterns. (A) Expression differences
of 14 m6A regulators in the two m6A modification patterns. (B) Differences in the abundance and activity of bone metabolism-related gene sets in
the two m6A modification patterns.
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2018b). Studies have found that some m6A regulators, such as

METTL3, FTO, and YTHDF2, play an essential role in bone

metabolism by affecting the differentiation and proliferation of

bone-related cells (Wu et al., 2018a; Li et al., 2019; Yu et al., 2019).

However, an integrated bioinformatics analysis of various m6A

regulators and bone metabolism characteristics in OP has not

been systematically researched, which may increase

understanding of the molecular mechanisms of m6A-mediated

OP and provide some evidence for subsequent treatment.

We first searched GEO datasets and downloaded

GSE56815 data concerning the gene expression of PBMCs in

pre- and postmenopausal females, including 40 high-BMD and

40 low-BMD samples. First, we found that many m6A regulators

have strong protein interactions or expression correlations,

suggesting that they may function as complexes. The

expression of most m6A regulators was altered between the

high-BMD and low-BMD samples, illustrating that m6A

regulators may be involve in OP development. Next, to

investigate the relationship between m6A regulators and bone

metabolism, we obtained 13 bone metabolism-related gene sets

from the GESA database. Osteoporosis and osteoclast signaling

gene sets were upregulated in the low-BMD group, while

ossification, bone remodeling, and osteoclast differentiation,

among other gene sets, were downregulated, implying the

disturbance of the bone metabolic microenvironment in OP.

In addition, we found that these bone metabolism-related gene

sets were closely associated with m6A regulators. RBM15 was

most negatively connected with Module. The module pathway

represents the degree of bone mineralization, which determines

BMD (Roschger et al., 2014). A previous study demonstrated that

circ-CTNNB1 interacted with RBM15 and subsequently

promoted the aerobic glycolysis process (Yang et al., 2022).

FIGURE 7
Construction of a diagnostic model of osteoporosis. (A) Univariate logistic regression analysis was conducted to identify the critical m6A
regulators, indicating that five m6A regulators were significant for osteoporosis (METTL16, CBLL1, YTHDF2, HNRNPC, and FTO). (B) Multivariate
logistic regression was employed to identify the independent modules, and four vital m6A regulators were obtained for the diagnostic model
(METTL16,CBLL1, YTHDF2, and FTO). (C) The risk score was calculated based on the expression of the four vital m6A regulators, and themedian
risk score (–0.366) was used as the cutoff point. All samples were divided into two groups: the high-risk group and the low-risk group. (D,E) The
sensitivity and specificity of the diagnostic model in the training dataset (D) and test dataset (E)were determined by receiver operating characteristic
(ROC) curves, and the area under the curve was calculated.
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Meanwhile, aerobic glycolysis is critical for osteoclastogenesis,

and increased aerobic glycolysis may induce excessive bone

resorption and lead to osteoporotic fractures (Li B. et al.,

2020). RBM15B was most positively connected with

multinuclear osteoclast differentiation, which accelerates bone

absorption and then promotes the occurrence and development

of OP, while no relevant studies have explored the role of

RBM15B in multinuclear osteoclast differentiation, which

needs to be further studied in the future. However, it has been

reported that METTL3 can modulate Atp6v0d2 mRNA

degradation and Traf6 mRNA nuclear export to regulate

osteoclast differentiation and function (Li D. et al., 2020).

These results suggested that m6A modification had an

essential regulatory role in shaping different bone metabolic

microenvironments in OP.

Unsupervised clustering analyses have been used in

several studies based on gene signatures to help elucidate

the underlying mechanism of the studied disease (Zhang et al.,

2020; Shen et al., 2021a; Liu et al., 2021). A recent study

employed this method to comprehensively evaluate the m6A

modification patterns among 9,804 pancancer samples and

identified three distinct m6A modification subtypes, which

enhanced our understanding of the dysregulation of RNA

methylation in tumor microenvironments (Shen et al., 2021b).

We used 14 m6A signatures and developed two distinct m6A

modification subgroups with different bone metabolism

microenvironments in the low-BMD group. Compared with

cluster 1, cluster 2 had more active bone metabolic activities.

The unique characteristics of bone metabolism between the

two clusters verified the feasibility of classifying the bone

metabolic microenvironment by m6A regulators.

Simultaneously, our findings aid a deeper understanding of

the molecular mechanisms of OP and may be used as a basis

for individualized choice of drug therapy (Marozik et al.,

FIGURE 8
Creation of a regulatory network of m6A regulators-m6A target genes. (A)m6A target genes were obtained from M6A2Target, and 306 genes
were potentially coregulated with the four m6A regulators. (B) Twenty-six m6A target genes were also closely related to bonemetabolism. (C) KEGG
pathway analysis showed that these 26 genes were mainly enriched in parathyroid hormone synthesis, secretion, action, human papillomavirus
infection, and the P13K-AKT signaling pathway. (D) TheGO analysis indicated that the biological processes of these genes weremainly enriched
in ossification, regulation of ossification, connective tissue development, and osteoblast differentiation. (E) A regulatory network was built with four
hub m6A regulators and 26 m6A target genes.
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FIGURE 9
Validation of the expression of the key m6A regulators in vitro and in vivo. (A,B) Tartrate-resistant acid phosphatase (TRAP) staining and TRAP+

multinuclear cells counting of RAW 264.7 cells with or without nuclear factor (NF)-κB (RANKL) stimulation. Scale bar, 100 μm. (C) The m6A level in
total RNA isolated from RAW264.7 cells during the osteoclast differentiation. (D) The expression ofMettl16, Fto, Cbll1, and Ythdf2 in RAW264.7 cells
was detected by real-time PCR after cultured with RANKL for 4 days (E,F) Western blotting and quantification of METTL16, FTO, CBLL1 and

(Continued )
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2019). Unsupervised clustering analyses have also been used

in some clinical studies of OP. A study divided patients into

nine subgroups with significant differences in clinical features,

BMD distribution, and medical care costs. It quantified

patients into three different fracture risk levels, which

showed a better understanding of fracture risk phenotypes

(Kruse et al., 2017).

We evaluated the role of m6A regulators in diagnosing OP

or the BMD phenotype using univariate and multivariate

logistic regression analyses, which are widely applied in

diagnosing diseases such as periodontitis and appendicitis

(Eddama et al., 2019; Zhang et al., 2021). Four key m6A

regulators significantly associated with the BMD phenotype

were chosen for the diagnostic model. In this model, patients

with high CBLL1 and YTHDF2 expression had a low likelihood

of decreased bone density. In contrast, patients with high

expression of METTL16 and FTO had an increased risk of

OP. Subsequently, the risk score of all the samples was

evaluated. The results showed that patients with low BMD

had a higher risk score, suggesting their potential clinical value

for the diagnosis of OP. Furthermore, the model’s predictive

power was assessed by ROC analysis, which showed moderate

accuracy. The same result was also obtained in the test dataset,

which further verified the extrapolation of the results. The roles

of FTO and YTHDF2 have been studied in OP. FTO promotes

OP through demethylating Runx2 mRNA and inhibiting

osteogenic differentiation (Wang et al., 2021).

YTHDF2 might be involved in regulation of the

lipopolysaccharide (LPS)-stimulated inflammatory reactions

via regulating the stability of MAP2K4 and

MAP4K4 mRNAs in RAW 264.7 cells (Yu et al., 2019).

However, CBLL1 and METTL16 have mainly been studied in

cancers and act as oncogenic markers to promote the

development and progression of tumors (Hui et al., 2019; Su

et al., 2022). Their role in OP has not been reviewed, which

guides us to further explore their relevant roles in the OP field.

A gene regulatory network containing the four hub m6A

regulators and 26 m6A target genes related to bone metabolism

was constructed to further understand the role of m6A

regulators in OP. The biological processes of these target

genes were mainly enriched in ossification, implying their

essential role in OP or BMD. In addition, KEGG analysis

revealed that these genes primarily focused on parathyroid

hormone synthesis, secretion, action, human papillomavirus

infection, and the P13K-AKT signaling pathway. Parathyroid

hormone has been reported to augment bone formation,

particularly in trabecular and cortical bone, and has a central

role in regulating extracellular fluid Ca ++ and phosphate (Pi)

homeostasis (Goltzman, 2018). One study has showed that

METTL3 reduces the translation efficiency of the bone

marrow stem cell (BMSC) lineage allocator parathyroid

hormone receptor 1 and disrupts parathyroid hormone-

induced osteogenic and adipogenic responses to promote OP

(Wu et al., 2018a). There is no related research on HPV

infection and OP, but one study found higher mean alveolar

bone loss in patients with HPV-positive tumors (Mine Tezal

et al., 2009). The PI3K-AKT signaling pathway has been

reported to be involved in various cellular processes,

including BMSCs proliferation and osteoclast differentiation

(Shen G. Y. et al., 2018). Conditional knockdown of METTL3 in

BMSC suppressed PI3K-Akt signaling and limited the

expression of bone formation-related genes to regulate

osteogenic differentiation and alternative splicing of Vegfa in

BMSC(Tian et al., 2019). These findings may provide a

foundation for m6A modification in OP and imply a

direction for the relationship between m6A regulators and

bone metabolism-related genes in OP.

Finally, we verified the expression of the key m6A

regulators in vivo and in vitro models of OP. Excessive

osteoclast activity results in reduced bone mass and

decreased bone strength in OP, hence, osteoclasts are

considered therapeutic targets for bone-related diseases

including OP. In the present study, we established RANKL-

and/or MCSF-induced BMMs and RAW264.7 cells as

osteoclast differentiation cell models (Kim et al., 2020). In

addition, we constructed animal models of OP to further

investigate our results, and the OVX model is the most

utilized approach in such studies (Fu et al., 2020). We first

quantified m6A contents and found that the total m6A levels

were significantly decreased in osteoclast differentiation cells

and OVX mice, which was consistent with the related research

in OP (Yan et al., 2020). The expression of METTL16, CBLL1,

YTHDF2, and FTO at the RNA and protein levels was

consistent with our bioinformatics analysis results.

However, interestingly, METTL16 and FTO, which exhibit

opposing m6A catalytic abilities, were significantly

FIGURE 9 (Continued)
YTHDF2 in RAW264.7 cells after cultured in RANKL. (G,H) TRAP staining and TRAP+ multinuclear cells counting of bone marrow-derived
macrophages (BMMs) with or without RANKL and macrophage colony-stimulating factor (MCSF) stimulation. Scale bar, 100 μm. (I) The m6A level in
total RNA isolated from BMMs during the osteoclast differentiation. (J) The expression of Mettl16, Fto, Cbll1, and Ythdf2 in BMMs was detected by
real-time PCR after cultured with RANKL andMCSF for 4 days (K,L)Western blotting and quantification ofMETTL16, FTO, CBLL1, and YTHDF2 in
BMMs after cultured in RANKL and MCSF. (M) A schematic diagram shows how peripheral blood monocytes (PBMCs) were obtained from the
ovariectomized (OVX) and shammice. (N) Representative images of Hematoxylin and eosin (HE) staining of mouse femurs showing the reduction of
bone formation in theOVXmice relative to the sham-control counterparts. (O) Them6A level in total RNA isolated from PBMCs of theOVX and sham
mice. (P) The mRNA expression level of Mettl16, Fto, Cbll1, and Ythdf2 in PBMCs of the OVX and sham groups. Compared with the sham group.

Frontiers in Genetics frontiersin.org15

Qiao et al. 10.3389/fgene.2022.1072948

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1072948


upregulated in RAW264.7 cells, BMMs and PBMCs. The

upregulation trend of FTO, the most important

demethylase, was consistent with the decreasing m6A level

and downregulated expression of CBLL1 and YTHDF2, while

METTL16 exhibited a negative correlation with that. One

possible explanation for the increased METTL16 might be

that METTL16 could be compensating for the feedback of

descending m6A modification induced by FTO, CBLL1 and

YTHDF2 in RAW264.7 cells, BMMs and PBMCs. The

phenomenon that these enzymes with opposite functions

have the same expression trend is common in other m6A-

related studies (Ma et al., 2017). The OVX mouse model is an

excellent preclinical model. However, because a small amount

of peripheral blood, approximately 0.75–1 ml for each mouse,

can be obtained, the number of PMBCs is limited. These

PMBCs could obtain approximately 1 ug of RNA, which

met the experimental verification at the RNA level.

However, those PMBCs were not enough for protein level

verification, and the relevant validation needs to be carried out

in other large animals or clinical trials in the future.

These findings further illustrated the impact of m6A

regulators on the bone metabolic microenvironment of OP.

However, there are still some limitations to our study. First,

collecting blood samples from human patients is an invasive

operation. Considering that our study is a preliminary

exploratory study, it cannot benefit patients for the time

being. Especially during the COVID-19 pandemic, due to the

requirements of ethics and social management, we were unable

to collect human samples, which are more credible than cell

lines and mouse samples. Of course, if we can collect some

blood samples during the operation of OP patients in the future,

we will carry out corresponding experiments for further

verification. In addition, the datasets on OP presently lack a

more extensive sample study, so extrapolation of the above

results may be limited due to the small sample size of our study.

Finally, our study mainly focused on exploring the role of m6A

modification in the diagnosis of OP, and we did not investigate

the specific regulatory mechanism of m6A regulators in OP.

Relevant studies have shown that FTO can regulate the

occurrence and development of OP through the GDF11-

FTO-Pparg axis, which can be used as a potential

therapeutic target (Shen G. S. et al., 2018). Moreover, only a

limited number of FTO inhibitors have been identified, yet their

efficacy and safety are inconclusive. Notably, there are currently

no m6A-based drugs developed for OP. Therefore, to address

these limitations, we still have a long way to go.

5 Conclusion

In conclusion, we preliminarily explored the implications

of m6A regulators in OP by identifying two m6A modification

patterns and constructing a regulatory network of the m6A

regulator-m6A target genes. In addition, we successfully

identified four m6A regulators, namely, METTL16, CBLL1,

YTHDF2, and FTO, as potential biomarkers for diagnosing OP

and the expression of the four key m6A regulators

was validated in vitro and in vivo. Taken together, our

results revealed that m6A modification has essential roles

in OP, which may imply a direction for us to

further explore the specific mechanism of these m6A

regulators in OP.
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