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Background: A new form of cell death, copper-dependent cell death (termed
cuproptosis), was illustrated in a recent scientific study. However, the biological
function or prognostic value of cuproptosis regulators in bladder cancer (BLCA)
remains unknown.

Materials and Methods: Sequencing data obtained from BLCA samples in TCGA
and GEO databases were preprocessed for analysis. Biological function and
immune cell infiltration levels evaluated by gene set variation analysis (GSVA)
were employed to calculate enrichment scores. lIteration least absolute
shrinkage and selection operator (LASSO) and COX regression model were
employed to select feature genes and construct a novel cuproptosis-related
(CR) score signature. The genomics of drug sensitivity in cancer (GDSC) and
tumor immune dysfunction and exclusion (TIDE) analysis were used to predict
the chemotherapy and immunotherapy efficacy for BLCA patients. The relative
expression of the genes involved in the signature was also verified by real-time
quantitative PCR (qRT-PCR) in cell lines and tissues.

Results: Expression abundance and the prognostic value of cuproptosis
regulators proved that cuproptosis might play a vital part in the
carcinogenesis of BLCA. GSVA revealed that cuproptosis regulators might be
associated with metabolism and metastasis-related pathways such as TGF-f,
protein secretion, oxidative Phosphorylation, MYC targets, MTORC1, and
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adipogenesis pathways. CR scores could predict the prognosis and evaluate the
chemotherapy and immunotherapy efficacies of BLCA. CR scores were
positively correlated with EMT, MYC, MTORC1, HEDGEHOG, and E2F
signaling pathways; meanwhile, they were negatively correlated with several
immune cell infiltration levels such as CD8* T cells, y8T cells, and activated
dendritic cells. Several GEO datasets were used to validate the power of
prognostic prediction, and a nomogram was also established for clinical use.
The expressions of DDX10, RBM34, and RPL17 were significantly higher in BLCA
cell lines and tissues in comparison with those in the corresponding normal
controls.

Conclusion: Cuproptosis might play an essential role in the progression of
BLCA. CR scores could be helpful in the investigation of prognostic prediction
and therapeutic efficacy and could make contributions to further studies

in BLCA.
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Introduction

With an estimated 549,000 new cases and 200,000 deaths in
2018, as a urinary tract malignancy, bladder cancer is the 10th most
common form of cancer globally (Sung et al., 2021). According to
the pathological diagnosis, bladder cancer can be divided into two
subtypes. One is a non-muscle-invasive subtype (NMIBC), and the
other one is an invasive muscle subtype (MIBC) (Prout et al., 1992).
While the 5-year survival rate of patients with NMIBC is more than
90%, the 5-year survival rate of patients with MIBC is lower than
70% (Prout et al., 1992). Therefore, much manpower and material
resources are inputted, and we also witnessed great advancement in
the diagnosis and therapy of bladder cancer (Soloway, 2013).
However, the effect of surgery and chemotherapy is still
unsatisfactory. Hence, the deeper mechanism of occurrence and
progress of bladder cancer is to be urgently found.

As we all know, metal ions are essential for vital movements;
however, excessive intracellular accumulation of metal ions could
lead to various types of cell deaths, such as ferroptosis induced by
iron, etc. (Dixon et al., 2012). Cuproptosis, a novel form of cell
death induced by copper ion, has been proven to play an essential
role in developing several types of cancers. (Wang et al., 2022).
Several genes, such as CDKN2A, FDX1, DLAT, DLD, GLS, LIAS,
LIPT1, and MTF]I, have been proven to be involved in the process
of cuproptosis (Tsvetkov et al., 2022), and their potential mutual
interaction mechanism has been explored in clear-cell renal-cell
carcinoma, melanoma, colorectal cancer, lung adenocarcinoma,
and gastric cancer (Ji et al,, 2022; Lv et al., 2022). Although their
role in the process of cuproptosis has been reported in recent
months, the possible mechanism of these cuproptosis regulators in
bladder cancer has never been researched yet. Several studies have
reported that ferroptosis regulators could construct prognostic
signatures to predict the prognosis or therapeutic efficacy in
bladder cancer (Sun et al, 2021; Yan et al, 2021; Yang et al,

Frontiers in Genetics

02

2021). Similarly, multiple gene signatures, such as IncRNAs (Wu
et al,, 2020; Zhou et al., 2021), RNA methylation (Li et al., 2021;
Zheng et al., 2021), and immune-related genes (Wang et al., 2020;
Jin et al., 2021), were used to emphasize the underlying research
value of the genes involved in the signatures. Most studies have
only used these gene signatures to construct prognostic models,
but few studies have explored the value of the genes involved in the
signatures themselves for studying the disease. Nevertheless,
systematical analyses of cuproptosis regulators and their related
prognostic signatures have never been conducted in BLCA.

Our research aimed to comprehensively analyze the
underlying mechanisms between the expression of cuproptosis
regulators and enrichments of functional biological pathways.
Based on the iteration LASSO and COX regression models, a
novel cuproptosis related (CR) signature containing ten
cuproptosis-related genes was constructed to predict the overall
survival and immunotherapy efficacy of BLCA, and a nomogram
was also established for clinical use. Moreover, we illustrated the
validity of the prognostic signature from a biological perspective
and tested the predictive accuracy in several validation datasets.
We surprisingly found that the CR scores could also predict the
response of chemotherapy and immunotherapy efficacies in
bladder cancer. Eventually, we conducted qRT-PCR in several
BLCA cell lines and tissues to verify the expression levels of genes
involved in CR signature. These results may provide novel insights
to the treatment of bladder cancer.

Materials and methods
Dataset source and data preprocessing

The fragments per kilobase per million values and clinical data
of BLCA in the Cancer Genome Atlas (TCGA) database were
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downloaded from the UCSC XENA database (https://xenabrowser.
net/datapages/) (Goldman et al., 2020). The GISTIC copy number of
BLCA derived from focal copy number estimates was also
downloaded from XENA. Microarray profiles were downloaded
as the raw “CEL” files from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/), and seven BLCA
datasets  (GSE13507, GSE32548, GSE32894, GSE48075,
GSE48276, GSE69795, and GSE70691) were used in this study
(Supplementary Table S1). The “ComBat” algorithm was applied to
reduce the likelihood of batch effects from non-biological technical
biases between different datasets (Johnson et al, 2007). The
urothelial
patients treated with an anti-PD-L1 antibody atezolizumab
(IMvigor210 cohort) was used as the validation cohort, and the
expression data and detailed clinical annotations were obtained

immunotherapeutic cohort of metastatic cancer

from http://research-pub.Gene.com/imvigor210corebiologies based
on Creative Commons 3.0 License. The combined expression
profiles of genes in GTEx and TCGA were downloaded from an
analysis platform Sangerbox (http://sangerbox.com/home.html)
(Shen et al, 2022). Furthermore, the IHC images of genes
involved in the CR signature were downloaded from the Human
Protein Atlas (https://www.proteinatlas.org).

Gene set variation analysis

The enrichment scores of curated pathways and infiltration
immune cells were quantified by R package “GSVA,” a method
used to estimate the variation of gene set enrichment in a single
sample (Hénzelmann et al.,, 2013). The gene set of “c5.all.v6.2.
Symbol” was downloaded from the MSigDB database (https://
www.gsea-msigdb.org), and a set of immune cell markers
containing 24 types of immune cells was obtained from a
published article (Supplementary Table S2) (Bindea et al., 2013).

Estimation of infiltration levels of
immune cells

Infiltration levels for distinct immune cells in BLCA were
quantified by using the “CIBERSORT” R package (Newman
et al, 2015) and employing the LM22 signature and
1,000 permutations. The Estimation of STromal and Immune
cells in MAlignant Tumors using Expression data (ESTIMATE)
algorithm was applied to the normalized expression matrix for
estimating the stromal and immune scores for each BLCA sample
(Yoshihara et al., 2013).

Logistic regression model construction

The logistic regression analysis was performed to screen the
characteristic variables with survival significance which would
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appear with higher frequency during the operation of LASSO.
Then, the variables with higher frequencies will be selected for
subsequent penalized multivariate Cox proportional hazards
survival modeling using an algorithm for variable selection
based on Ll-penalized estimation. Cross-validation was
selected via the learning series, and a penalty parameter, AL,
was inflicted upon the gene expression levels during the modeling
process. Subsequently, CR was calculated by a combined
the of BLCA.
Furthermore, a nomogram of the ten cuproptosis regulators
rms” to indicate the OS

probability and death odds. The predictive accuracy of the

signature to predict overall survival

«

was built through the R package

nomogram was tested through a calibration plot.

Prediction of immunotherapy and
chemotherapy response

Tumor Immune Dysfunction and Exclusion (TIDE) database
(http://tide.dfci.harvard.edu/) was used to predict the response to
immunotherapy in patients (Jiang et al., 2018). The TIDE value
the probability of
immunotherapy response, and the cutoff of the TIDE value

was calculated and wused to assess
defaulted as 0. The chemotherapeutic response for each
sample was predicted according to the largest public
the of Drug
Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/).

pharmacogenomics ~ database, Genomics
We used the R package to implement “pRRophetic”, the
the
inhibitory concentration (IC50) was evaluated following the

instructions (Geeleher et al., 2014).

prediction process, where samples”  half-maximal

Calculation of stemness index and
ferroptosis index

To assess the stemness of cancer cells, the gene expression-
based stemness index (mRNAsi) was calculated with the
instruction of a one-class logistic regression algorithm for
each BLCA sample (Malta et al, 2018). To represent the
ferroptosis level, a ferroptosis index (FPI) was established
based on the expression data of genes in ferroptosis, including
positive components and negative components, with instructions
published before (Liu et al., 2020).

Cell culture

The normal uroepithelial cell line SV-HUC-1 and bladder
cancer cell lines, including 5,637, UM-UC-3, T24, and EJ, were
purchased from the Cell Bank of the Chinese Academy of
Sciences (Shanghai, China). All the bladder cancer cell lines
were cultured in an RPMI 1640 medium supplemented with
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10% fetal bovine serum (FBS) and SV-HUC-1 was cultured in
Ham’s F-12K medium with 10% FBS. All cell lines were
maintained at 37°C in a 5% CO2 mammalian cell-culture
incubator.

The real-time quantitative PCR analysis

Human bladder tumor tissues and para-carcinoma tissues
were collected and preserved from the patients experiencing
radical cystectomy in Wuhan Union Hospital as described
before (Zhang et al.,, 2021). This study was approved by the
Ethics Committee of Wuhan Union Hospital of Huazhong
University of Science and Technology (120201 IEC-] (022).
We collected 12 pairs of frozen bladder specimen and
extracted the total RNA through a TRIZol reagent
(Invitrogen, 15596026) and measured the total RNA by SYBR
Green One-Step qRT-PCR kit (Invitrogen, 11736059). The
specific details of the primers are shown in Supplementary
Table S3. The relative expressions of these genes in normal
and tumor tissues were presented in “PCRdata,” and the
clinicopathological data of the 12 pairs of tissues were
presented in the “Clinical pathological data for the tissues
used for PCR”.

Statistical analysis

DAVID (david.ncifcrf.gov) was used to perform Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
GO the
clusterProfiler package of R software, and the online website

analysis. analyses were conducted by using
Image GP (http://www.ehbio.com/ImageGP/) was used to
display the results of the GO analyses. Spearman correlation
analysis was used to conduct correlation analysis. Kruskal-Wallis
and Wilcoxon tests were used for statistical tests. The “surv-
cutpoint” function searched for the best separation cutoff value in
survival analysis using the “survminer” R package. All statistical p
values were two-sided, with p < 0.05 considered statistically
significant. All data processing was performed in the R 4.0.

3 software.

Results

The landscape of cuproptosis regulators in
bladder cancer

The workflow of this study is displayed in the flow chart
(Figure 1). From a basic function perspective, differentially
expressed analysis was important to explore whether the genes
possessed research value. Currently, ten regulatory genes
explicitly related to cuproptosis have been found (Tsvetkov
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et al., 2022), including 7 positive regulatory genes FDXI,
LIAS, LIPT1, DLD, DLAT, PDHAI, and PDHB, and
3 negative regulatory genes MTF, GLS, and CDKN2A. In the
GSE13507 cohort, we could find that the expression of CDKN2A
and MTF1 were significantly higher in BLCA than in normal or
surrounding tissues, while DLD, FDX1, GLS, LIAS, and PDHB
were lower in BLCA than in normal or surrounding tissues
(Figure 2A). As for diagnostic efficiency, ROC analysis was
conducted for these cuproptosis regulators, and only PDHB,
FDX1, and DLD displayed strong diagnostic power with
AUC >0.7 (Figure 2B). In the TCGA cohort, we analyzed the
relative percentage of CNV for cuproptosis regulators in BLCA,
and combined with expression levels we found that almost all
CNV losses of the cuproptosis regulators could account for the
aberration of the expression levels (Figure 2C). Except PDHAI,
the expressions of all cuproptosis regulators were lower in the
CNV-loss group than in the CNV-gain group. The expressions of
DLD, FDX1, GLS, LIPT1, and MTF1 were lower in a non-CNV
group than in the CNV-gain group, while the expressions of
CDKN2A, DLAT, FDX1, GLS, LIAS, and PDHB were higher in
the non-CNV group than in the CNV-loss group (Figure 2D).
Only FDX1 and GLS entirely satisfied the relationship between
the change tendency of CNV and expression levels, which meant
that the genetic variation might contribute to the function of
them in the carcinogenesis of BLCA. To make the conclusion of
the follow-up study more rigorous, we conducted normalization
and batch removal of data from the same sequence platform in
the GEO database so that these data could be combined into a
larger dataset. Among them, GSE32548, GSE32894, and
GSE48075 are combined as the GSE-COM-1 dataset
(Supplementary Figure S1A), while GSE48276, GSE69795, and
GSE70691 the GSE-COM-2 dataset
(Supplementary Figure SIB). To investigate the prognostic

are combined as

value of cuproptosis regulators, survival analyses were
conducted in four datasets (Figure 2E). Only MTF1, LIPTI,
FDX1, and CDKN2A could be simultaneously satisfied with
significantly prognostic values in at least three datasets. We
further established all
cuproptosis regulators in four datasets by using correlation
analysis, and we could find that only MTF1, GLS, and
CDKN2A
cuproptosis regulators in most of the datasets which was

an expression network among

showed a negative relationship with other
consistent with the basic function of positive or negative
regulation in the process of cuproptosis (Figure 2F). It
indicated that the regulatory relationship of cuproptosis
regulators might indeed exist in BLCA.

Functional characteristics of cuproptosis
regulators in bladder cancer

In view of novel insights into cuproptosis in recent days,
systematically functional characteristics of cuproptosis regulators
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FIGURE 1
The flowchart of this study.

might be helpful in identifying their regulatory patterns in BLCA.
The correlation results of the expression of cuproptosis
regulators and GSVA enrichment scores revealed that most
cuproptosis  regulators showed inconsistent correlation
tendency with GSVA enrichment scores in four datasets
(Figure 3A). But several signaling pathways were highly
positively associated with most cuproptosis positive regulators,
such as TGF-f, protein secretion, oxidative Phosphorylation,
MYC targets, MTORCI, and adipogenesis. At the same time,
several signaling pathways were highly negatively correlated with
cuproptosis positive regulators, such as myogenesis, KRAS,
inflammatory response, and apical junction. From the results
of the four datasets, we could simply find that most of the
immune cells were correlated with cuproptosis regulators,

such as CD8" T cells, NK cells, and other types of T cells
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(Figure 3B). For further validation of the aforementioned
results, we employed mRNAsi and FPI to explore the most
promising cuproptosis regulators in regulating the metabolism
and metastasis phenotypes in BLCA. We could find that GLS was
the most relevant cuproptosis regulator, which was highly
negatively correlated with mRNAsi, while CDKN2A was the
most relevant cuproptosis regulator which was positively
correlated with mRNAsi (Figure 3C). Due to same regulated
by metal ions, we wanted to identify the relationship between
ferroptosis and cuproptosis. Correlation analysis showed that
PDHB was the most relevant cuproptosis regulator with a
ferroptosis index, and PDHALI, LIAS, and FDX1 also showed
correlation with FPI (Figure 3D). To further explore the
relationship among ferroptosis and cuproptosis regulators, the
correlation analysis showed that most of them showed high
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FIGURE 2

The landscape of cuproptosis regulators in BLCA. (A) Relative expression of ten cuproptosis regulators in different groups in BLCA. (B) AUC for

ten cuproptosis regulators between tumor and normal tissues in BLCA. (C) Relative frequency percentage of copy number variation of ten
cuproptosis regulators in the BLCA. (D) Relative expression of ten cuproptosis regulators in different CNV groups. (E) The prognostic analyses for ten
cuproptosis regulators in four BLCA cohorts. (F) Correlation network among ten cuproptosis regulators in four BLCA cohorts. The thickness of

the lines represented the strength of correlation. *P < 0.05, **P < 0.01, ***P < 0.001.

correlation with each other, especially for NCOA4 and NFE2L2
(Figure 3E). We speculated that there may be crosstalk between
signaling pathways associated with cuproptosis and ferroptosis,
because both were initiated by metal ions, and a strong
correlation were found among the core regulators, which still
need further experiment research.
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Identification and function prediction of
cuproptosis-related genes

To investigate cuproptosis-related genes, correlation analyses

were conducted in four independent datasets among cuproptosis
regulators and messenger RNAs. After intersection of the results
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FIGURE 3

Functional characteristics of cuproptosis regulators in BLCA (A). Correlation analysis among GSVA scores and the expression of ten cuproptosis
regulators in the four BLCA cohorts (B). Correlation analysis among infiltration levels of immune cells and the expression of ten cuproptosis
regulators in four BLCA cohorts. Vacant positions represent no statistical significance between the term and cuproptosis regulator. The size of dots
showed the correlation strength between regulators and function terms. The depth of the color indicates the strength of the correlation (C). The
correlation analysis between ten cuproptosis regulators and mRNAsi in the four BLCA cohorts (D). The correlation analysis between ten cuproptosis
regulators and the ferroptosis index in the four BLCA cohorts (E). The correlation analysis among ten cuproptosis regulators and ferroptosis
regulators in the four BLCA cohorts.

from four datasets, 945 genes were satisfied with correlation
coefficients >0.3 and p-value <0.05 (Figure 4A). GO analysis
was conducted for these genes, and we found that these genes

were highly enriched in molecular function terms, such as ATPase
activity, catalytic activity, acting on RNA, single-stranded DNA
binding, ribonucleoprotein complex binding, and structural
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FIGURE 4

Identification and function prediction of cuproptosis-related genes (A) Intersection results from four datasets for cuproptosis-related genes (B).
Molecular function enrichment for cuproptosis-related genes (C). Biological function enrichment for cuproptosis-related genes (D). Cellular
component enrichment for cuproptosis-related genes (E). KEGG pathway enrichment for cuproptosis-related genes.

constituent of ribosomes (Figure 4B). As for biological function, we
could find that the mainly enriched pathways were mitochondrial
translation, mitochondrial gene expression, ribosome biogenesis,
protein-containing complex disassembly, and ncRNA metabolic
process (Figure 4C). Not surprisingly, these genes were mainly
located in the mitochondrial inner membrane, matrix or protein
complex, and ribosomal subunit (Figure 4D). KEGG analysis
showed that these were enriched in ROS, ubiquitin-mediated
proteolysis, spliceosome, ribosome, cell cycle, and oxidative
phosphorylation (Figure 4E).
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Constructing a prognostic signature in

bladder cancer

Univariate COX regression

analysis showed that 141 genes

were prognostic factors in BLCA (Figure 5A and Supplementary
Table S3). To construct a perfect model, iteration LASSO was
used to select feature genes that could be found in a high
LASSO After
1,000 iterations, 28 genes were selected for further analysis

frequency in  repetitious operations.

(Figure 5B). Multivariate COX regression analysis was used to
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FIGURE 5

Constructing a prognostic signature in BLCA (A). Univariate COX regression analysis for cuproptosis-related genes (B). The variation tendency

of AUC with the change of genes ordered by frequency (C). Multivariate COX regression for constructing a prognostic signature in BLCA (D).The
survival analysis for low- and high-CR scores in BLCA (E). ROC curves plotted for 3-, 5-, and 8-y overall survival (F). The vital status of patients in the
high-risk and low-risk groups with changes in CR scores, and a heatmap of the expression profiles of members in the gene signature.

construct a prognostic signature, and a ten-gene signature was set
up with a concordance index of 0.71 (Figure 5C). The ultimate
scores were called cuproptosis-related (CR) scores, and the CR
scores were calculated using the following formula: CR scores =
ZBTB41 * 0.692453 + PRMT6 * 0.617085 + DDX10 * 0.543223 +
RPL17 * 0.3934 + FANCF * -0.29078 + MARS2 * -0.39922 +
HMGN4 * -0.42016 + MRFAPIL1 * -0.43038 + RBM34
* —-0.60586 + RSBNIL * -0.69634. The survival analysis
showed that CR scores could predict the prognosis of BLCA
patients well, the high CR score group showed a worse prognosis
than the low CR score group (Figure 5D). ROC analysis showed
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that AUC at 3, 5, and 8 years were all higher than 0.7, which
meant that the efficacy of the CR scores to predict survival was
excellent (Figure 5E). With increase in the CR scores, the
number of dead people was increasing, and the expression of
ten members in the CR signature performed differences
between the low and high CR score groups (Figure 5F). We
could find that ZBTB41 and RSBNIL were the highest two
genes in the aspect of coefficients in the signature (Figure 6A);
meanwhile, they also had the most predictive ability of survival
prognosis in BLCA. From univariate and multivariate COX
analyses, we could find that age, stage, and CR scores were
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independent prognostic factors for BLCA (Figure 6B). For
further clinical use, we established a nomogram for this CR
score-calculating system (Figure 6C), and the calibration test
showed that the nomogram-predicted survival rate displayed a
high degree of consistency with the observed survival rate
(Figure 6D). Moreover, we verified the predictive effect of
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CR signature in four validation datasets, and all datasets
showed that the high CR score group had a worse prognosis
than the low CR score group (Figure 6E). Eventually, ROC
analyses were also conducted for CR scores in four validation
cohorts to assess the 3-, 5-, and 8- year AUC, suggesting that CR
scores could work well (Figure 6F).
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Functional characteristics of CR scores in
bladder cancer

Correlation analysis between GSVA enrichment scores and
CR scores showed that CR scores was positively associated with
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EMT, MYC, MTORC1, HEDGEHOG, and E2F signaling in at
least three datasets (Figure 7A). The correlation analysis between
immune cell infiltration levels and CR scores showed that the CR
scores were highly positively correlated with macrophages,
neutrophils, and TH2 cells (Figure 7B). The high CR score
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group owned a higher mRNAsi and FPI than the low CR score
group (Figures 7C,D). However, ESTIMATE showed that
stromal scores was higher in the high CR score group than
the low CR score group (Figure 7E), while there was no difference
between low and high CR scores in immune scores. To be more
rigorous, CIBERSORT was also conducted (Figure 7F), and we
could find that the fraction of CD8" T cells, y8T cells, and
activated dendritic cells were significantly higher in the low CR
scores group than in the high CR scores group, while
macrophages were on the contrary (Figure 7G).

Prediction of chemotherapy and
immunotherapy efficacies of CR scores in
bladder cancer

CR scores could predict the prognosis of BLCA patients well
and was highly associated with some signaling pathways’ activation
and infiltration levels of several immune cells, and we aimed to
explore whether CR scores could predict the therapeutic efficacy in
BLCA. Correlation analysis between IC50 of drugs in GDSC and
CR scores showed that the low-CR group was more sensitive to the
treatment of vinblastine, docetaxel, and cisplatin, which were
frequently used in BLCA, while the high-CR group showed
resistance to most chemotherapy drugs (Figure 8A). Especially,
predicted IC50 of a cuproptosis inducer, elesclomol, was
significantly negatively correlated with the CR score, indicating
that inducing cuproptosis might be a potential therapeutic method
for BLCA patients possessing higher CR scores (Figure 8B). We
found that CDKN2A, DLAT, FDXI1, and PDHA1l were
significantly higher in the high-CR group, while LIPT1 was
lower in the high-CR group, showing that most of the
cuproptosis-positive regulators were higher in the CR score
group (Figure 8C). We also found that most of cuproptosis-
positive regulators including DLD, LIAS, LIPT1, MTFI, and
PDHB were lower in BLCA tissues, while cuproptosis-negative
regulator CDKN2A was significantly higher in BLCA tissues
(Figure 8D). These indicated that elevating the levels of
cuproptosis of BLCA patients might be a potential technology
to improve treatment efficacy. Based on expression profiles, we
predicted the efficacy of immunotherapy for BLCA patients in all
cohorts by using TIDE analysis. We could see that the TIDE scores
were lower in the low-CR group than in the high-CR group, which
meant that the low-CR group had better efficacy in immunotherapy
than the high-CR group (Figure 8E). To further validate the
prediction power for the CR scores of immunotherapy efficacy,
we selected the IMvigor210 cohort as an immune dataset for
validation. We found that the CR scores was significantly higher
in an immune-desert group than in the immune-inflamed group
(Figure 8F) and was a risk factor for BLCA patients (Figure 8G).
Moreover, the expression of CDKN2A was higher in the CR/PR
group, while the expressions of GLS and LIAS were higher in the
SD/PD group in the IMvigor210 cohort (Figure 8H).
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The validation of the expression of the
genes of the signature

To further elucidate the importance of genes involved in CR
score signature, we found that DDX10, FANCF, and RBM34 were
significantly higher in BLCA tissues, while RPL17 and RSBNI1L
were lower in BLCA tissues (Figure 9A). ROC analysis showed that
only AUC of these five genes were higher than 0.7, meaning greater
diagnostic efficiency between normal and BLCA tissues (Figure 9B).
Using the Human Protein Atlas, we confirmed that the expression
of DDX10, RBM34, and RPL17 were remarkably expressed higher
in BLCA tissues, while RSBNIL was higher in normal tissues
(Figure 9C). Moreover, using qRT-PCR, we showed that the
expression level of DDX10, RBM34, RPL17, and FANCF were
markedly up-regulated in BLCA cell lines in comparison with a
normal cell line, but the expression level of RSBN1L was uncertain
between BLCA and normal cell lines (Figure 9D). Importantly, we
collected twelve paired normal bladder tissues and bladder cancer
tissues, and the results demonstrated that the expression of DDX10,
RBM34, RPL17, and FANCF were elevated in tumor tissues, but
there was no significant difference in the expression of RSBN1L
between normal and bladder cancer tissues (Figure 9E).

Discussion

In this study, we systematically analyzed the landscape of
cuproptosis regulators in BLCA in the aspect of expression levels
and prognosis values and underlying relationships with biological
functions, immune cell-infiltration levels, mRNAsi, and FPI. First,
from the aspect of expression levels and copy number variation, we
speculated that PDHB, FDXI, and DLD were significantly
differentially expressed in BLCA with diagnostic efficacy
because the AUCs of them were more than 0.7 to differentiate
tumor and normal tissue. We also found that PDHB and DLD
were differentially expressed in colorectal cancer, while FDX1 was
distinctly expressed in lung adenocarcinoma. The prognosis aspect
in four independent datasets in BLCA, MTF1, LIPT1, FDX1, and
CDKN2A were satisfied with prognostic values in most of the
datasets. In other tumors, we also found that these genes were
closely related to the prognosis results of patients.

These cuproptosis-related molecules have been reported to be
related to the AMPK/mTOR/ULKI1 pathway, NF-kB pathway, and
P13K/AKT/YAP pathway (Bu et al., 2020; Huang et al., 2021; Khouja
et al, 2022). It could be seen from the results that TGF-{, protein,
MYC MTORCI,
adipogenesis were closely related to cuproptosis and cuproptosis-
related molecules (Lee et al,, 2012; Chen et al., 2021; Deng et al., 2021;
Ameh et al, 2022; Xia et al, 2022). Ferroptosis, autophagy, and
apoptosis were also reported to be associated with NF-kB, Nrf2-HO-
1, JAK-STAT, and mTOR pathways. Interestingly, cuproptosis was

oxidative  phosphorylation, targets, and

also a way of cell death, so the relationship between these pathways
and cuproptosis indicated that traditional cell death might have
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FIGURE 9

The validation of the expression of the genes of the signature (A). The expression levels of genes involved in CR score signature between normal
and BLCA tissues in GTEx and TCGA datasets (B). AUC for ten CR score signature members between tumor and normal tissues in GTEx and TCGA
datasets (C). Representative image of four members involved in CR signature in HPA dataset (D). Experimental verification of the expression levels of
the genes of the signature between normal cell line and BLCA cell lines through gRT-PCR (E). Experimental verification of the expression levels

of the genes of the signature between normal and BLCA tissues through qRT-PCR.

crosstalk with cuproptosis by regulating these pathways’ activation.
However, the specific regulating patterns with specific cuproptosis
regulators still need further experimentation.
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Since cuproptosis regulators were related to phenotypes such
as metastasis, etc., mRNAsi was used to evaluate the genes most
related to cell stemness among cuproptosis regulators, and it was
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found that GLS was the most associated regulator with mRNAsi
(Li et al,, 2019; Mukha et al., 2021). To explore the two most
popular cell death modes induced by metal ions so far, the
relationship between FPI and ferroptosis-regulated gene
expression was verified. It was found that PDHB and LIAS
had the most significant crosstalk with iron death. However,
there have been no studies that have reported the specific
relationship between these two factors, which would be a
promise research direction in the future.

Ferroptosis, apoptosis, autophagy, and various other cell
death modes have been demonstrated to be highly correlated
with immune cell infiltration. Ferroptosis, autophagy, and
apoptosis were also formerly reported to influence the effect
of immune therapy. From the results of our analysis, cuproptosis
regulators were also highly correlated with infiltration levels of
immune cells, such as CD8" T cells, NK cells, and dendritic cells.
Previous studies have confirmed that these cells play a key role in
the of the
microenvironment, and the degree of infiltration of these cells

immunotherapy and regulation immune
could be affected by various cell death methods, especially
ferroptosis, immunogenic cell death (ICD), apoptosis, etc. Our
results showed that cuproptosis may also affect the immune
the of

immunotherapy and so on. Intermolecular regulation was

microenvironment and even efficacy tumor
ubiquitous in our lives. However, cuproptosis regulators
proposed in the previous literature were limited and could not
fully reveal such a phenomenon. Therefore, we conducted a
correlation analysis to further explore the genes that may
regulate cuproptosis-related genes or were regulated by
cuproptosis-related genes. Through correlation analysis, we
not only found 945 genes that were significantly related to
cuproptosis regulators, but also through the univariate COX
regression model, iteration LASSO and multivariate COX
regression models, filtering, and screening, finally identified
10 genes that could be used to build a prognostic survival
model, and might be involved in the regulation of cuproptosis.

Recently, more and more researchers have begun to focus on
the role of cuproptosis to predict the prognosis or assessing the
condition of immune cell infiltration levels. A novel cuproptosis-
related prognostic gene signature has been constructed in clear-
cell renal cell carcinoma and melanoma to predict the prognosis
and validated to be associated with immune cell infiltration (Bian
et al., 2022). Moreover, cuproptosis-related IncRNAs were also
comprehensively analyzed and used to construct a prognostic
model in hepatocellular carcinoma and soft-tissue sarcoma (Han
et al, 2022; Zhang et al., 2022). Our study was the first to
comprehensively analyze the cuproptosis regulators in bladder
cancer and different from other methods of modeling, we
employed iteration LASSO to make our model more robust.
Importantly, several independent datasets were used to validate
our conclusions.

Importantly, using data mining and qRT-PCR, we
determined three genes involved in the CR-score signature,
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including DDX10, RBM34, and RPL17, that were higher
expressed in BLCA than in normal tissues. Previous studies
proved that DDX10 could promote proliferation or metastasis
of tumor cells in lung cancer (Liu et al., 2021), colorectal cancer
(Zhou et al., 2022), and ovarian cancer (Gai et al.,, 2016).
However, its role in bladder cancer has not been reported
It has been reported that RPL17 could promote
proliferation and stemness of colorectal cancer through ERK
and NEK2/B-catenin signaling pathways (Ko et al., 2022). As
for RBM34, no studies have been reported on its role in the

yet.

progression of cancers. However, in our study, we validated that
these three genes were significantly abnormal in BLCA tissues
and showed great power for predicting the survival rate and
therapeutic efficacy. But there still needs some mechanism
experiments to explore the reason how these genes could
influence the process of cuproptosis.

In conclusion, we systematically analyzed 10 cuproptosis
regulators from the perspective of expression levels, prognostic
values, and associated biological functions in BLCA. Based on the
LASSO and COX algorithms, the CR scores calculated by ten
cuproptosis-related genes could be helpful in the investigation of
BLCA prognostic prediction and therapeutic efficacy.
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