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Sarcocheilichthys parvus (Cypriniformes: Gobionidae) is a stream fish which is
endemic to sub-tropical coastal drainages in southern China, thus offering a
valuable model for understanding how genetic divergence arises in stream-
adapting freshwater fishes in this region. Using the mitochondrial Cyt b gene,
integrative analyses of phylogeny, population demography, and ancestral area
and paleo-drainage reconstructions are carried out to explicitly explore the role
of landscape evolution in genetic diversification of S. parvus. The time-calibrated
phylogeny of S. parvus indicates the splitting of two major lineages (A and B) at
~3.66 Ma. Lineage A inhabits the Poyang Lake sub-drainage of the middle Yangtze
River, Han River and Pearl River, and can be split into two sub-lineages (A-I and A-II),
where sub-lineage A-II can be further sub-divided into three infra-sub-lineages
(A-IIa, A-IIb and A-IIc). Except for the infra-sub-lineage A-IIc, which is restricted to
the Han River and Pearl River, the other sub-lineages and infra-sub-lineages live
exclusively in the Poyang Lake sub-drainage. Lineage B lives in the lower Yangtze
River, Qiantang River, Jiaojiang River and Ou River, displaying close genetic
relationships among the drainages. Rapid population expansion has occurred
since the Late Pleistocene. Our findings indicate that the splitting of lineages A
and B could be attributed to geographic isolation due to the Zhe–MinUplift, acting as
a biogeographic barrier before the late Early Pleistocene. Furthermore, the strong
genetic divergence within Lineage A could be explained by the isolation role of the
Nanling Mountains and Poyang Lake acting as an ecological barrier; while the lack of
phylogenetic structure within Lineage B may have been the result of paleo-drainage
connections or episodic freshwater connections during the eustatic low stand of sea
level in the late Middle–Late Pleistocene.
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1 Introduction

Phylogeographic research on freshwater fish has continued to play an important role in
understanding the underlying causal factors shaping inter- and intra-specific genetic variations
of freshwater fish biodiversity across contemporary isolated drainages (Shelley et al., 2020; Van
Steenberge et al., 2020; Waters et al., 2020; Lima et al., 2021; Yang et al., 2022). Landscape
evolution, either through tectonic activities or drainage rearrangements, has been considered to
be a major driver for the diversification of obligate freshwater fishes (Burridge, et al., 2006;
Unmack et al., 2013; Swartz et al., 2014; Xu et al., 2014; Zúñiga-Vega et al., 2014; Craw et al.,
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2016; Lima et al., 2017; Souza et al., 2020; Sholihah et al., 2021; Barreto
et al., 2022; Souto-Santos et al., 2022; Val et al., 2022). One type of
drainage rearrangement is stream capture, a geomorphological
process that refers to a stream displacing a portion of another
neighboring stream due to tectonic or erosive events (Bishop,
1995). Another type of drainage rearrangement is paleo-drainage
connection, referring to river coalescence among contemporary
coastal drainages during the eustatic low stand of sea level in the
Pleistocene era (Burridge et al., 2008; Unmack et al., 2013; Thomaz
et al., 2015). In addition, episodic freshwater connection may occur
among neighboring coastal drainages through lowland flooding under
short-term extreme weather events, especially on the wide continental
shelf with low relief during the Pleistocene glacial period (Thacker
et al., 2007; Burridge et al., 2008; Unmack et al., 2013; Zúñiga-Vega
et al., 2014).

The Yangtze River Basin is generally thought to lie in the
northernmost part of southern China, based on delimitation of the
northern boundary of the subtropical zone across China (Kou et al.,

2020). After the uplift of the Nanling and Wuyi Mountains (Figure 1)
around 15–10 Ma, the modern coastal drainages in southern China
were established and have remained in a relatively stable configuration
(Yan et al., 2018; Zhang et al., 2021). The northern species range limit
for endemic freshwater fishes in southern China is often the Yangtze
River (Chai and Fu, 2020; Yang et al., 2022). Stream capture, paleo-
drainage connections, and episodic freshwater connections have been
widely invoked to explain the genetic divergence, secondary contact,
and range expansion of freshwater fishes among contemporary
isolated drainages in southern China (Yang and He, 2008; Yang
et al., 2009; Xu et al., 2014; Chen et al., 2017; Wang et al., 2021;
Yang et al., 2022).

A long-term biogeographic barrier, the Zhe–Min Uplift (also
called the Zhejiang–Fujian Uplift or Fukien–Reinan Massif),
formed in the Late Mesozoic, and extends from the southern
Korean Peninsula to Zhejiang and Fujian Provinces in southern
China (Wageman et al., 1970; Jin and Yu, 1982). It was high
terrain before the Pleistocene era and, thus, historically restricted

FIGURE 1
Map presenting 49 sampling localities of S. parvus. The distributions of lineages, sub-lineages, and infra-sub-lineages (defined in Figure 2) are shownwith
different colors or shapes. The area exposed during Last Glacial Maximum (largest height of sea level fall: 130 m) is shown in nattier blue, and the reconstructed
paleo-drainages as distribution drainages for S. parvus in that area are presented by colored lines. Blue dotted lines indicate the possible routes of the proto-
Yangtze River flowing into the Yellow Sea before the late Early Pleistocene (Zhang et al., 2019; Liu et al., 2022). Orange and yellow dotted lines indicate
the major drainage divides.
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the proto-Yangtze River (Figure 1) northward into the modern Yellow
Sea (Chen and Stanley, 1995; Yi et al., 2014). Following the subsidence
of the Zhe–Min Uplift after ~0.8 Ma or ~0.9 Ma, the proto-Yangtze
River (Figure 1) began to divert from its northward flow, instead
moving southward towards the East China Sea (Zhang et al., 2019; Liu
et al., 2022). The role of the Zhe–Min Uplift has long been neglected in
freshwater fish biogeographical studies regarding China. In this study,
we first hypothesize that the existence or subsidence of the Zhe–Min
Uplift before or after the late Early Pleistocene could impede or
facilitate genetic exchange of freshwater fishes between the Yangtze
River and its adjacent coastal drainages in southern China.

The Poyang Lake sub-drainage is located in the Poyang Lake Basin
of the middle Yangtze River Basin, including the Poyang Lake and its
surrounding five inflow rivers: The Fu, Rao, Xin, Gan and Xiu rivers
(Figure 1). The Poyang Lake is the largest freshwater lake in China,
with a water area of ~4000 km2 during high water levels, and is
connected with the Yangtze River by a narrow outlet (Shankman
et al., 2006; Li et al., 2017). The Poyang Lake Basin formed in the Late
Mesozoic, and its overall depression occurred in the Pleistocene era
(Yang X. D. et al., 2016). The modern Poyang Lake may have emerged
in the Holocene, but its precise age is still uncertain (Xu et al., 2019).
Some authors have indicated that riverine impoundments (large
reservoirs) create a gradient of hydrological and limnological
conditions, functioning as ecological barriers against downstream
movements for rheophilic freshwater fishes (Fluker et al., 2014;
Pelicice et al., 2015). The results of a recent study indicated genetic
differences in the freshwater gudgeon Huigobio chenhsienensis
(Cypriniformes: Gobionidae) among the major tributaries flowing
into the Poyang Lake (Yang et al., 2022). Therefore, we hypothesize
that the Poyang Lake may serve as an ecological barrier, restraining
dispersal and facilitating genetic divergence in stream-adapting
freshwater fishes among the major tributaries within the Poyang
Lake sub-drainage.

Sarcocheilichthys parvus (Cypriniformes: Gobionidae) is a small
stream freshwater gudgeon with body length less than 7 cm
(Supplementary Figure S1), which is endemic to sub-tropical
coastal drainages in southern China (Yue, 1998; An et al., 2020). It
has been known to be distributed south of the Yangtze River, including
in the Poyang Lake sub-drainage of the middle Yangtze River, some
tributaries of the lower Yangtze River, Qiantang River, Jiaojiang River,
Ou River, Han River, and three sub-drainages (Xijiang, Beijiang and
Dongjiang rivers) of the Pearl River (Li, 2018). S. parvus prefers sandy
or pebbly substrate environments, swims on the sub-benthic water
column, possesses an inferior mouth, and feeds on benthic
invertebrate animals and algae (Xu, 2012). It is sexually mature at
2 years old, and spawns from March through August (Xu, 2012).
Females of S. parvus possess a short ovipositor (Supplementary Figure
S1), and likely lay their eggs through the inhalant siphon into the
mantle cavity of unionid mussels, as has been observed in other
Sarcocheilichthys species (Bǎnǎrescu and Nalbant, 1973;
Barabanshchikov, 2004).

Despite much progress having been made in understanding how
landscape evolution has shaped the phylogeographic patterns of
freshwater fishes in southern China over time (Yang and He, 2008;
Yang et al., 2009; Chen et al., 2017; Yang et al., 2022), a detailed picture
of how their genetic divergence arises in this region is still poorly
understood. For this study, we selected Sarcocheilichthys parvus as a
model, in order to further improve our knowledge about the drivers
and processes determining the intraspecific genetic variation of

freshwater fishes in southern China. Using the mitochondrial
cytochrome b (Cyt b) gene, integrative analyses of phylogeny,
population demography, and ancestral drainage and paleo-drainage
reconstructions were carried out to explicitly explore the role of
landscape evolution in the genetic diversification of S. parvus. We
also test special hypotheses regarding the Zhe–Min Uplift as a
biogeographic barrier before the late Early Pleistocene and the
Poyang Lake as an ecological barrier leading to genetic divergence
of S. parvus.

2 Materials and methods

2.1 Specimen Collection

A total of 235 specimens from 49 localities covering the
distributional range of Sarcocheilichthys parvus were collected, with
the help of local fishermen, across the six coastal drainages in southern
China from November 2011 to December 2019 (Figure 1;
Supplementary Table S1). According to the laboratory
animal—guideline for ethical review of animal welfare in China (GB/
T 35892-2018), fish euthanasia was conducted using the anesthesia
method. Sampled fish were anaesthetized with a 0.25 mL L−1 aqueous
solution of Eugenol until they lost consciousness. Then, the unconscious
fish were fixed in 75% ethanol. Subsequently, they were transferred into
95% ethyl alcohol for long-term storage, and deposited in the Zoological
Museum of Fudan University.

2.2 Sequence acquirement

The total genomic DNA of S. parvus was extracted from muscle
tissue of each specimen using a high-salt protocol (Miller et al., 1988).
The mitochondrial genomes were amplified using 13 primer pairs
(Supplementary Table S2), among which the 12th primer pair
(GobND6F and GobProR) was used to amplify the Cyt b gene.
Polymerase chain reactions (PCR) were carried out using 30.0 μL
final volumes containing 15.0 μL 2 × Es TaqMasterMix, 0.6 μL of each
primer with 20 μM, 1.2 μL genomic DNA and 12.6 μL dd H2O. All
PCR reactions were run as follows: Thermal cycling began with 95°C
denaturation for 5 min, followed by 35 cycles of 95°C denaturation for
50 s, 52.4°C–56.0°C annealing (Supplementary Table S2) for 60 s, 72°C
extension for 70 s and, finally, 72°C extension for 10 min. The raw
sequences were obtained by Sanger sequencing.

The sequences were assembled and trimmed using the Sequencher
v5.4 software (Gene Codes, Ann Arbor, MI, USA), and manually
adjusted if necessary. Nucleotide sequences for each gene were aligned
using the MAFFT v7.427 software (Katoh and Standley, 2013).
Haplotype calculations were performed with aligned sequences as
input into the DnaSP v6.12.01 software (Rozas et al., 2017). The basic
characteristics of aligned sequences were summarized using the
MEGA v7.0.26 software (Kumar et al., 2016).

2.3 Phylogenetic inference and divergence
time estimation

The time-calibrated phylogeny of S. parvus was inferred using
haplotype sequences in the BEAST v2.6.6 software (Bouckaert et al.,
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2019). Due to a lack of fossil evidence for genus Sarcocheilichthys, a
secondary calibration point was achieved through the mitogenome
time tree of S. parvus and its relatives (Supplementary Figure S2), on
the basis of two fossil species with intact skeletons and their
corresponding stratigraphic time (mitogenome data sources
provided in Supplementary Table S3). The bModelTest module was
applied to automatically search for the best substitutionmodel for each
of 13 mitochondrial protein-coding genes (Bouckaert and
Drummond, 2017). The first fossil species, †Palaeogobio
zhongyuanensi (Zhou, 1990), occurring in the Eocene
(50.5–42.0 Ma; Liu et al., 2018), corresponds to the ancestral node
of Gobionidae and Acheilognathidae (i.e., calibration point 1; log-
normal distribution, μ = 3.82 and σ = 0.05). Another fossil species,
†Gnathopogon macrocephala (Zhou, 1990), occurring in the Miocene
(20.4–15.0 Ma; Deng et al., 2019), corresponds to the ancestral node of
Gnathopogon and Coreoleuciscus (i.e., calibration point 2; log-normal
distribution, μ = 2.86 and σ = 0.078). The birth–death model and
relaxed log-normal clock model were employed to specify the priors.
Two duplicates of 400,000,000 MCMC generations were run, with a
sample frequency of 10,000 and 30% burn-in. All parameters reached
convergence (ESSs >200).

To infer the time-calibrated phylogeny of S. parvus, the divergence
time between S. parvus and Sarcocheilichthys caobangensis (11.46 Ma
with 95% confidence interval of 12.70–10.05 Ma; Supplementary
Figure S2) was chosen as a secondary calibration point (normal
distribution, m = 11.36 and s = 0.68). Based on the results of the
molecular clock test (X2 = 139.96, df = 98, p = 0.0035) accomplished by
likelihood ratio test in the DAMBE v7.2.43 software (Xia and Xie,
2001), the relaxed log-normal clock model was used. S. caobangensis
was used as the outgroup taxon. Two duplicates of 50,000,000 MCMC
generations were run, with sample frequency of 1000 and 30% burn-
in. The remaining settings were the same as above.

In addition, haplotype networks were obtained using the median-
joining algorithm in the Network v10.2 software (Bandelt et al., 1999).

2.4 Genetic diversity and historical
demography

Two genetic diversity indices, haplotype diversity (h) and
nucleotide diversity (π), were calculated in the Arlequin
v3.5.2.2 software (Excoffier and Lischer, 2010). The total genetic
differentiation coefficient (ΦST), pairwise ΦST, and their significance
among the drainages were obtained through 1000 random
permutations and the Tamura–Nei model using Arlequin v3.5.2.2.
Two genetic differentiation indices, NST and GST, were obtained with
1000 random permutations in the PermutCpSSR v2.0 software (Pons
and Petit, 1996). The population clusters with the largest genetic
divergence were detected with setting of K = 2–48 in the SAMOVA
v2.0 software (Dupanloup et al., 2002).

To reconstruct the historical demography of the lineage A and B,
sequences of all individuals from each lineage were used. Bayesian
skyline plots (BSP) were inferred in BEAST v2.6.6 and visualized in
Tracer v1.7.0 (Rambaut et al., 2018), using the Coalescent Bayesian
Skyline prior and a substitution rate for Cyt b (1.52% per site per
million years, obtained from the time-calibrated tree of S. parvus).
The generation time of S. parvus was set as 2 years (Xu, 2012).
Therefore, the effective population size was calculated as follows: the
relative value obtained by BSP analysis, multiplied by ten to the sixth

power and divided by two. Two neutrality tests—Tajima’sD (Tajima,
1989) and Fu’s Fs (Fu, 1997)—were applied, and their significances
were tested with 1000 random permutations. A mismatch
distribution analysis was applied to detect demographic
expansions through the evaluation of curve fitting and two
parameters (i.e., roughness index and variance) in Arlequin
v3.5.2.2 (Excoffier and Lischer, 2010).

2.5 Reconstructing ancestral area and paleo-
drainages

To evaluate the biogeographic history of S. parvus, we
reconstructed the ancestral area using the BioGeoBEARS
v0.2.1 package (Matzke, 2013) in R v3.5.0. The time-calibrated
phylogeny of Cyt b haplotypes was used as an input tree. Each
drainage was defined as a discrete biogeographical area, and each
haplotype were assigned based on sampling information
(Supplementary Table S1). Six biogeographic models (DEC,
DIVALIKE, BAYAREALIKE, and their derived models with +J
parameter) were applied (Matzke, 2014), and the optimal model
was identified by assessing the Akaike Information Criterion (AIC)
(Akaike, 1973).

Due to the maximum sea level drop of about 130 m during the
Last Glacial Maximum (Lambeck et al., 2014; Yokoyama et al.,
2018), paleo-drainages related to the distribution drainages for S.
parvus from the present coastline to the sea floor depth of −130 m
were reconstructed using GIS technology, with reference to
Thomaz et al. (2015). Using the ArcGIS v10.3 software,
GEBCO_2014 Grid (30 arc-seconds interval) as input data were
downloaded from the General bathymetric chart of the oceans
(http://www.gebco.net/) project, and a series of hydrological tools
were used to create visualized paleo-drainages [for further details,
see Yang et al. (2022)].

3 Results

3.1 Phylogeny and divergence time

A total of 99 haplotypes were identified in the Cyt b sequences
(1140 bp; GeneBank no: ON964027–ON964125) from 235 individuals
of S. parvus (Supplementary Table S1), which contained 157 variable
sites and 123 parsimony informative sites. The time-calibrated
phylogeny results displayed two major lineages (A and B), with a
divergence time of 3.66 Ma (Figure 2). Lineage A included two sub-
lineages (A-I and A-II), with a divergence time of 0.97 Ma, and sub-
lineage A-I was further divided into three infra-sub-lineages (A-IIa,
A-IIb and A-IIc) with divergence times of 0.60 and 0.43 Ma.

There were 62 mutation steps linking Lineage A with Lineage B
(not shown in Figure 3). Lineage A inhabits the Poyang Lake sub-
drainage of the middle Yangtze River, Pearl River and Han River
(Figure 3A), while Lineage B is distributed in the lower Yangtze River,
Qiantang River, Jiaojiang River, and Ou River (Figure 3B). Within
Lineage A, sub-lineage A-I lives in the Rao and Xin rivers of the
Poyang Lake sub-drainage (localities 34–38 in Figure 1); the infra-sub-
lineages A-IIa and A-IIb are endemic to the Xiu and Gan rivers of the
Poyang Lake sub-drainage, respectively (localities 47–49 and 39–46 in
Figure 1); and infra-sub-lineage A-IIc inhabits the Pearl and Han
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rivers with three co-shared haplotypes (A07, A08 and A12; Figure 3A).
Within Lineage B, six (B02, B03, B07 and B35–37) of the 51 haplotypes
are located in two or three drainages, while the other haplotypes are
restricted to a single drainage (Figure 3B).

3.2 Genetic diversity and population history

The haplotype diversity (h) ranged from 0.9623 (Qiantang River)
to 0.7033 (Han River), while the nucleotide diversity (π) ranged from

FIGURE 2
Time-calibrated Bayesian phylogeny of S. parvus and ancestral drainages of 99 Cyt b haplotypes. Ancestral drainages were inferred using the DIVALIKE
model. Numbers above and below the nodes show themean value and 95% confidence interval (CI) of divergence time and posterior probability, respectively.
S. caobangensis was selected as the outgroup taxon (not shown). Numbers in circles represent the code for main nodes. LGM, Last Glacial Maximum.
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0.0304 (Yangtze River) to 0.0013 (Han River) among the distribution
drainages of S. parvus (Table 1).

The total ΦST value was 0.714 (p = 0.000), and pairwise ΦST values
among the drainages ranged from 0.105 (between Han River and Pearl

River) to 0.970 (between Ou River and Han River; Table 2). NST and
GST were 0.810 and 0.098, respectively. The amount of explained
variation for theΦCT reached a plateau value (ΦCT = 0.986) at K = 8 in
the SAMOVA analysis. The best grouping arrangement

FIGURE 3
Median-joining networks of S. parvus: (A) Lineage A; and (B) Lineage B. The numbers in the circle represent the codes of haplotypes in the Lineage A and
B. Themutation steps are shown as the numbers along the branches, except for onemutation step, andmissing (unsampled) haplotype is presented by a black
dot. The area of each circle is proportional to the number of individuals for each haplotype.

TABLE 1 Genetic diversity for mitochondrial Cyt b of S. parvus.

Drainages No. of samples No. of haplotype No. of private haplotype Haplotype diversity Nucleotide diversity

Pearl River 57 15 12 0.8716 ± 0.0225 0.0023 ± 0.0014

Han River 14 5 2 0.7033 ± 0.1008 0.0013 ± 0.0009

Ou River 32 17 14 0.9435 ± 0.0206 0.0024 ± 0.0014

Jiaojiang River 1 1 1 — —

Qiantang River 46 31 26 0.9623 ± 0.0162 0.0049 ± 0.0026

Yangtze River 85 41 35 0.9605 ± 0.0109 0.0304 ± 0.0148

Overall 235 99 90 0.9783 ± 0.0031 0.0381 ± 0.0184
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corresponding to K = 8 was as follow. Group 1 (G1): Pearl River
(localities 1–7; details for localities in Figure 1; Supplementary Table
S1) + Han River (locality 8); Group 2 (G2): Ou River (localities 9–15);
Group 3 (G3): Jiaojang River (locality 16) + Qiantang River (locality
17–31) + Lower Yangtze River (localities 32 and 33); Group 4 (G4):
Rao River (locality 34) in the Poyang Lake sub-drainage of the Middle
Yangtze River (PLMYR); Group 5 (G5): Xin River (localities 35–38) in
the PLMYR; Group 6 (G6): localities 39–45 of Gan River in the
PLMYR; Group 7 (G7): locality 46 of Gan River in the PLMYR; and
Group 8 (G8): Xiu River (localities 47–49) in the PLMYR.

The estimated Tajima’s D and Fu’s Fs indices were –0.284 (p =
0.441) and –24.237 (p = 0.000) for Lineage A, and –1.978 (p = 0.006)
and –25.262 (p = 0.000) for Lineage B. The mismatches exhibited
multimodal and unimodal distributions for lineages A and B,

respectively (Figure 4A). The BSP indicated that the population
growth of lineages A and B began at 0.047 and 0.076 Ma,
respectively (Figure 4B).

3.3 Ancestral area and paleo-drainages

Comparison of the biogeographical models demonstrated that the
reconstruction results under the DIVALIKE model best explained the
biogeographical history of S. parvus, based on the AIC value
(Supplementary Table S4). S. parvus originated from the Qiantang
and Yangtze rivers, and there were two major vicariant events on
nodes 1 and 7, as well as multiple dispersal events within nodes 2 and 9
(Figure 2).

TABLE 2 Pairwise ΦST values (below diagonal) and the corresponding Bonferroni-corrected p-values (above diagonal) among the five drainages for S. parvus. The
Jiaojiang River was excluded in this analysis, as only one specimen was collected in the drainage.

Pearl river Han river Ou river Qiantang river Yangtze river

Pearl River 0.023 0.000 0.000 0.000

Han River 0.105 0.000 0.000 0.006

Ou River 0.966 0.970 0.000 0.000

Qiantang River 0.948 0.940 0.258 0.000

Yangtze River 0.314 0.242 0.653 0.651

FIGURE 4
Population historic dynamics for lineages A and B of S. parvus: (A)Mismatch distribution; the bar and linewith point represent the observed and predictive
distributions, respectively. (B) Bayesian skyline plot; the blue line and shadow represent the median and 95% CI of effective population size, respectively, and
the orange shadow represents the time frame of demographic expansion.
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The results of coastal paleo-drainage reconstruction on the
exposed continental shelf during the Last Glacial Maximum
indicated that the Qiantang and Yangtze rivers were
interconnected, whereas the Pearl, Han, Ou and Jiaojiang rivers
independently entered into the sea, considering the distribution
drainages of S. parvus.

4 Discussion

4.1 Major drivers of the lineage diversification

In this study, S. parvus from each of the six isolated drainages was
found not to be a monophyletic group. Instead, our analyses revealed
two major lineages—A and B—with deep genetic divergence, where
the distributions of the two lineages exhibited reciprocal separations
over geographic space (Figure 1). Lineages A and B originated in the
Yangtze River and the Qiantang River, respectively. The
phylogeographic pattern in S. parvus—namely, “deep gene tree,
major lineages allopatric” (Avise, 2000)—could be explained by
the existence of a long-term biogeographic barrier, the Zhe–Min
Uplift (for details, see the Introduction), preventing genetic
exchange between the Yangtze and Qiantang rivers. Our timing
results regarding the divergence between the two major lineages A
and B in S. parvus during the late Early Pliocene pre-dated the
subsidence of the Zhe–Min Uplift in the late Early Pleistocene
(Shankman et al., 2006; Zhang et al., 2019). Therefore, the long-
term isolation between the Yangtze River and Qiantang River could
have led to the deep genetic divergence between the two major
lineages A and B in S. parvus. Our findings indicate that the presence
of the Zhe–Min Uplift before the late Early Pleistocene likely played
an important role in the genetic divergence of freshwater fishes
between the Yangtze River and its adjacent coastal drainages in
southern China.

In Lineage A, S. parvus exhibited a strong phylogenetic
structure among the major tributaries (i.e., the Rao, Xin, Gan
and Xiu rivers) flowing into the Poyang Lake, in the apparent
absence of physical barriers (Figure 1). Our timing results for the
divergence between sub-lineages A-I (the Rao and Xin rivers) and
A-II (the Gan and Xiu rivers) at ~0.97 Ma (node 2 in Figure 2), and
between the infra-sub-lineages A-IIa (the Xiu River) and A-IIb (the
Gan River) at ~0.60 Ma (node 5 in Figure 2), was in accordance
with warm and humid climates over the period ca. 1.2–0.9 Ma
(Chen D. B. et al., 2020) and ca. 0.7–0.35 Ma in southern China
(Hong et al., 2013; Ao et al., 2020). Therefore, the large Poyang
Lake, with high water levels, may have formed due to warm and
humid climates during the late Early and early Middle Pleistocene
(Xu et al., 2019). This large lake may have then become an
ecological barrier, impeding the dispersal of and facilitating the
genetic divergence of S. parvus among the major tributaries within
the Poyang Lake sub-drainage. More studies on genetic structure of
fishes and other animals are needed to make generalization on the
role of Poyang Lake acted as a barrier for driving intraspecific
divergence. In addition, our findings may also provide empirical
evidence with respect to natural ecosystems, supporting a prior
theory that large reservoirs create a gradient of hydrological and
limnological conditions to function as ecological barriers against
the downstream movements of rheophilic fishes (Pelicice et al.,
2015).

Lineage A of S. parvus originated in the Yangtze River,
subsequently moving into the Pearl and Han rivers to form the
infra-sub-lineage A-IIc; in particular, this infra-sub-lineage
originated in the Pearl River and, subsequently, moved into the
Han River, based on the ancient area reconstruction results
(Figure 2). Our timing results for the divergence between infra-
sub-lineages A-IIb and A-IIc was at ~0.43 Ma (node 7 in Figure 2),
when the global sea level was ~100 m lower than the present day
(Grant et al., 2014), and it suggested no reciprocal connections among
the Yangtze, Han and Pearl rivers based on paleo-drainage
reconstructions during the Last Glacial Maximum (LGM, Figure 1).
Therefore, our findings indicate that a headwater stream section
belonging to the Gan River of the Yangtze River drainage was
likely captured by the Beijiang River of the Pearl River drainage
(Figure 1) in the Middle Pleistocene, although there is a lack of
geological evidence, and the episodic river capture event could be
responsible for the range expansion of S. parvus across the Nanling
Mountains (Figure 1). And then, the isolation role of the Nanling
Mountains could result in genetic divergence between the infra-sub-
lineage A-IIb living in the Gan River of the Yangtze River drainage and
A-IIc inhabiting the Pearl and Han rivers. Stream capture across
drainage divides has also been widely invoked to explain range
expansion of freshwater fishes through vicariance processes
(Burridge et al., 2006; Yang et al., 2009; Xu et al., 2014; Kim et al.,
2017; Lima et al., 2017; Souza et al., 2020; Lima et al., 2021; Barreto
et al., 2022). The close genetic relationships between the Pearl River
and Han River in S. parvus has also been observed in another
freshwater gudgeon, Squalidus argentatus (Yang et al., 2012).
Although the lack of coalescence between the Pearl and Han rivers
during the historically low sea level period in the LGM (Figure 1), the
close genetic relationships between the two neighboring drainages
could result from episodic freshwater connections under extreme
weather events—for example, through lowland flooding—as has
been suggested in other fish studies in southern China (Yang J. Q.
et al., 2016; Yu et al., 2016; Chen W. T. et al., 2020).

Lineage B of S. parvus originated in the Qiantang River, then
dispersed into the lower Yangtze River, Jiaojiang River, and Ou
River, based on the ancient area reconstruction results (Figure 2).
The geographic distributions of Lineage B display a few haplotypes
across two or three drainages, while other haplotypes are confined
to a single drainage (Figure 3B). Our timing of the crown age of the
Lineage B at ~0.40 Ma (node 2 in Figure 2) indicates that the
phylogeographic pattern in Lineage B could be explained by recent
historical connections among the lower Yangtze River, Qiantang
River, Jiaojiang River, and Ou River (Chen et al., 2017; Ding et al.,
2020; Yang et al., 2022). The recent historical connections between
the Yangtze and Qiantang rivers are supported by the coalescence
of the two rivers during the Last Glacial Maximum (Figure 1).
However, the paleo-drainage reconstruction results indicated no
coalescence among the Qiantang, Jiaojiang, and Ou rivers during
the historically low sea level period (Figure 1); therefore, the close
genetic relationships may have resulted from episodic sheet flow or
episodic tributary connections among the three isolated
neighboring rivers under short-term weather events, and that
these episodes may have occurred on the wide continental shelf
with low relief during the glacial period of the Late Middle–Late
Pleistocene, as has been suggested in previous studies (Thacker
et al., 2007; Burridge et al., 2008; Unmack et al., 2013; Zúñiga-Vega
et al., 2014). A similar scenario has also been revealed by a recent
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study, in which the close genetic relationships in another
freshwater gudgeon Huigobio chenhsienensis across the lower
Yangtze River, Jiaojiang River, and Ou River have been
suggested to be a result of lowland flooding during the eustatic
low stand of sea level in the late Middle Pleistocene (Yang et al.,
2022). In addition, our timing of the crown age of the Lineage B in
S. parvus during the Middle Pleistocene post-dated the southward
migration of the proto-Yangtze River into East China Sea, forming
the modern Yangtze estuary in the late Early Pleistocene due to the
subsidence of the Zhe–Min Uplift (Zhang et al., 2019; Liu et al.,
2022). Therefore, our findings indicate that the subsidence of
Zhe–Min Uplift after the late Early Pleistocene facilitated gene
flow in freshwater fishes between the Yangtze River and its adjacent
coastal drainages in southern China.

4.2 Genetic diversity and population history

The NST was much larger than the GST in S. parvus, suggesting a
clear phylogeographic signature. Grant and Bowen (Grant and
Bowen, 1998) have suggested that geographic co-occurrence
between previously allopatric lineages could result in large
values of nucleotide diversity. In our case, the Yangtze River
had higher nucleotide diversity due to geographic co-occurrence
of the two major lineages A and B in S. parvus (see Section 4.1),
while other drainages characterized by a single lineage (A or B),
such as the Pearl, Han, Ou, or Qiantang rivers, displayed lower
nucleotide diversity. The high pairwise ΦST observed among the
drainages in S. parvus were in line with that observed for other
freshwater fishes from southern China (Chen et al., 2007; Yang and
He, 2008; Watanabe et al., 2010; Wu et al., 2013; Yu et al., 2016;
Yang et al., 2022).

The signature of recent population expansion was evident in the
negative Tajima’s D and Fu’s Fs indices, as well as the unimodal
mismatch distributions in S. parvus. Meanwhile, the respective
population growth of the lineages A and B began at approximately
~0.047 and ~0.076 Ma (Figure 4). Paleoclimate studies
demonstrated that the period between 0.076 and 0.047 Ma in
the Late Pleistocene was in an interglacial to glacial transition
stage, when the climate was cold and dry, and the sea level dropped
down ~20–65 m in comparison with the present day (Grant et al.,
2014; Cheng et al., 2016). Therefore, episodic sheet flow through
lowland flooding or episodic tributary connections among the
isolated neighboring rivers under short-term weather events in
the Late Pleistocene could result in spatial expansion to facilitate
rapid population growth of lineages A and B. The timing difference
of population expansion for lineages A and B may reflect the
different biogeographical process. The pattern of rapid
population expansion in the Late Pleistocene prior to the Last
Glacial Maximum has been commonly reported in previous studies
on freshwater fishes in East Asia (Yang et al., 2009; Watanabe et al.,
2010; Xu et al., 2014; Chen et al., 2017; Zheng and Yang, 2018; Yang
et al., 2022).

4.3 Implications for conservation

The protection of genetic diversity and maintaining evolutionary
processes across the ranges of species have been recognized as critical

components for biodiversity conservation in the face of global changing
environments (Coates et al., 2018; Laikre et al., 2020). The results of our
SAMOVA analysis indicated that eight conservation units (G1–G8)
should be considered for the conservation of S. parvus. However, the
phylogeographic breaks with long-term separations in the Cyt b gene tree
of S. parvus (Figure 2) indicate that the twomajor lineages (A and B), two
sub-lineages (A-I and A-II), and three infra-sub-lineages (A-IIa, A-IIb,
andA-IIc) could be recognized as evolutionary significant units (ESUs) or
management units (MUs) (Moritz, 1994; Avise, 2005). Our identified
multiple ESUs orMUs and five conservation units (G4–G8) are located in
different tributaries flowing into the Poyang Lake sub-drainage of the
middle Yangtze River. Therefore, our results highlight that the Poyang
Lake sub-drainage should be considered as area of spatial conservation
prioritization for the protection of the genetic diversity of S. parvus
(Andrello et al., 2022). Our findings also indicated the importance of
considering the spatial complexity of the large River drainages when
developing management and conservation strategies for maintaining the
genetic diversity of freshwater fishes in southern China, as has been
suggested by a recent study emphasizing the effects of ecosystem size and
spatial complexity in co-regulating riverine biodiversity in nature (Terui
et al., 2021).

5 Conclusion

In summary, S. parvus was found to be comprised of two major
lineages (A and B), displaying strong phylogeographic structure. The
splitting of lineages A and B was attributed to geographic isolation,
due to the Zhe–Min Uplift acting as a biogeographical barrier before
the late Early Pleistocene. Within lineage A, the strong genetic
divergence in the Poyang Lake sub-drainage of the middle
Yangtze River could be explained by Poyang Lake acting as an
ecological barrier, and historical river capture was the main driver
of the range expansion of S. parvus from the Yangtze River into the
Pearl and Han rivers. Within lineage B, the lack of phylogenetic
structure among the lower Yangtze River, Qiantang River, Jiaojiang
River, and Ou River may have resulted from paleo-drainage
connections or episodic freshwater connections during the
eustatic low stand of sea level in the Late Middle–Late
Pleistocene. Our results also provide new insight into the
planning of management and conservation strategies for
preserving the genetic diversity of freshwater fishes in southern
China. More phylogeographic studies are needed to draw
generalizations on the role of the Zhe–Min Uplift as a
biogeographic barrier and Poyang Lake as an ecological barrier in
the biogeographic processes of freshwater fishes in southern China.

Data availability statement

The data presented in the study are deposited in the GenBank
repository of the national center for biotechnology information
(NCBI), accession number ON964027-ON964125, ON963980.

Ethics statement

The animal study was reviewed and approved by the Animal
Ethics Committee of Fudan University.

Frontiers in Genetics frontiersin.org09

Li et al. 10.3389/fgene.2022.1075617

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1075617


Author contributions

CF devised the study; XY, ML, and XN conducted the
experiments; XN analyzed the data, ML wrote the drafting of the
paper; CF and XN revised it critically. All authors have read and agreed
to the published version of the manuscript.

Funding

This research was funded by National Natural Science Foundation
of China under grant number 31872209, and the Science and
Technology Commission of Shanghai Municipality, China under
grant number 21DZ1201804.

Acknowledgments

We are particularly grateful to English editor of MPDI for help
with the English editing of the manuscript. We greatly appreciate the
members of the Biodiversity and Conservation Biology Laboratory at
Fudan University for their assistances with collecting specimens.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.1075617/
full#supplementary-material

References

Akaike, H. (1973). “Information theory and an extension of the maximum likelihood
principle,” in Second international symposium on information theory. Editors B. N. Petrov
and F. Csaki (Budapest: Akademiai Kiado), 267–281.

An, C. T., Zhang, E., and Shen, J. Z. (2020). Sarcocheilichthys vittatus, a new species of
gudgeon (teleostei: Cyprinidae) from the Poyang Lake Basin in jiangxi province, south
China. Zootaxa 4768 (2), 201–220. doi:10.11646/zootaxa.4768.2.3

Andrello, M., D’Aloia, C., Dalongeville, A., Escalante, M. A., Guerrero, J., Perrier, C.,
et al. (2022). Evolving spatial conservation prioritization with intraspecific genetic data.
Trends Ecol. evo. 37 (6), 553–564. doi:10.1016/j.tree.2022.03.003

Ao, H., Rohling, E. J., Stringer, C., Roberts, A. P., Dekkers, M. J., Dupont-Nivet, G., et al.
(2020). Two-stage mid-Brunhes climate transition and mid-Pleistocene human
diversification. Earth-Sci. Rev. 210, 103354. doi:10.1016/j.earscirev.2020.103354

Avise, J. C. (2005). “Phylogenetic units and currencies above and below the species
level,” in Phylogeny and conservation. Editors A. Purvis, J. L. Gittleman, and T. Brooks
(New York: Cambridge University Press), 76–100.

Avise, J. C. (2000). Phylogeography: The history and formation of species. London:
Harvard University Press.
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