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The evaluation of toxicity in preclinical species is important for identifying

potential safety liabilities of experimental medicines. Toxicology studies

provide translational insight into potential adverse clinical findings, but data

interpretation may be limited due to our understanding of cross-species

biological differences. With the recent technological advances in sequencing

and analyzing omics data, gene expression data can be used to predict cross

species biological differences and improve experimental design and toxicology

data interpretation. However, interpreting the translational significance of

toxicogenomics analyses can pose a challenge due to the lack of

comprehensive preclinical gene expression datasets. In this work, we

performed RNA-sequencing across four preclinical species/strains widely

used for safety assessment (CD1 mouse, Sprague Dawley rat, Beagle dog,

and Cynomolgus monkey) in ~50 relevant tissues/organs to establish a

comprehensive preclinical gene expression body atlas for both males and

females. In addition, we performed a meta-analysis across the large dataset

to highlight species and tissue differences that may be relevant for drug safety

analyses. Further, we made these databases available to the scientific

community. This multi-species, tissue-, and sex-specific transcriptomic

database should serve as a valuable resource to enable informed safety

decision-making not only during drug development, but also in a variety of

disciplines that use these preclinical species.
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1 Introduction

Compound attrition rates remain high for drug companies, despite the significant

contributions of animal toxicity studies (Monticello et al., 2017). For example, only ~10%

of Phase 1 candidates reach final approval by the U.S. Food and Drug Administration

(FDA), costing well over $1 billion to as much as $4.5 billion (Schlander et al., 2021) U.S.
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dollars on average to produce a single marketed drug (Munos,

2009; Hay et al., 2014; Blomme andWill, 2016). Lack of efficacy is

the greatest cause of drug attrition accounting for ~57% of these

failures (Hwang et al., 2016). However, safety is also a significant

cause of drug failures reportedly accounting for 35% and 28% of

drug failures from Phase 1 and from Phase 2 to submission,

respectively (Arrowsmith and Miller, 2013).

The absence of toxicity in preclinical toxicology species

strongly predicts similar outcomes in clinical trials (Monticello

et al., 2017). Olson et al. (2000) calculated the sensitivity of the

animal to human prediction of 150 drug candidates and

concluded that rodents and non-rodents predicted ~43% and

~63% of human toxicities, respectively demonstrating the value

and limitations of these models. In addition, differences in

toxicology/pathology findings in small versus large animal

species can make it challenging to understand the human

relevance of the findings (Fabre et al., 2020). Species

differences in gene expression profile have been linked to

differential species sensitivity or resistance to various

mechanisms of toxicity (Desforges et al., 2021). Therefore,

understanding the translation of specific findings in preclinical

toxicology species to human outcomes is critical in making

decisions to progress new drug candidates based on safety.

Target safety assessments (TSAs) are an important tool in

drug discovery for understanding potential toxicities for a given

target a priori (Hornberg et al., 2014). As a key component of

TSAs, a reliable tissue database of mRNA expression is often used

to identify organs and tissues in humans where a given target is

expressed and to rank levels of expression between tissues. While

well populated human expression databases exist in publicly

available formats [e.g., Genotype-Tissue Expression (GTEx)]

and have been typically employed for TSAs, equivalent

databases in preclinical toxicology species continues to be a

clear need (Mele et al., 2015).

With a preclinical database, the target of interest can be

queried, and its relative levels of expression between tissues can

be examined and interpreted in the context of toxicity assessment

and for TSA development. These data may help explain/predict

possible species or sex-related differences in sensitivity to drugs.

For example, the absence of a particular target-related transcript

in a given tissue may suggest that this tissue will be less likely

associated with an on-target toxic effect. Likewise, target

expression in a tissue of one species, but not of another, can

provide a mechanistic understanding of species differences in

toxicological outcomes. This knowledge can form the basis of

designing specialized exploratory toxicology or in vitro studies to

confirm suspected effects or to collect certain tissues or endpoints

earlier in the development process than typical if an effect is

suspected. The TSA, with preclinical species gene expression

database information, may also provide a basis for understanding

the translation of certain toxicities between preclinical species

and humans.

FIGURE 1
Transcriptomic Body Atlas Study Design. A large number of diverse tissues from mouse, rat, dog, and monkey in males and females were
collected separately for RNA isolation and used for RNA-Sequencing and generation of a transcriptomic body atlas. For each species, strains and ages
matched those most commonly used in preclinical drug safety studies.
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TABLE 1 List of Tissues Collected (✓) Across Each Species and Respective Classified Organ Systems. A total of 47–57 tissues were collected for each species.
After collection, a portion of tissues was transferred to a Whirl-Pak bag and immediately flash frozen in liquid nitrogen and stored at −80°C.

Organ Systems Tissues Rat Mouse Dog Monkey

Respiratory Lung ✓ ✓ ✓ ✓

Olfactory Epithelium - - ✓ -

Trachea - - - ✓

Digestive/Excretory Liver ✓ ✓ ✓ ✓

Pancreas** ✓ ✓ ✓ ✓

Tongue ✓ ✓ ✓ ✓

Ileum* ✓ ✓ ✓ ✓

Jejunum* ✓ ✓ ✓ ✓

Duodenum* ✓ ✓ ✓ ✓

Cecum* ✓ ✓ - -

Colon# ✓ ✓ ✓ ✓

Stomach@ ✓ ✓ ✓ ✓

Esophagus* ✓ ✓ - ✓

Harderian Gland ✓ ✓ - -

Salivary Glands$ ✓ ✓ ✓ ✓

Mouth Mucosa - - ✓ ✓

Gallbladder - - ✓ ✓

Lacrimal Gland - - ✓ ✓

Circulatory/Cardiovascular Aorta ✓ ✓ ✓ ✓

Heart ✓ ✓ ✓ ✓

Caudal Vena Cava ✓ ✓ - -

Femoral Vein - - ✓ ✓

Urinary Bladder ✓ ✓ ✓ ✓

Kidney ✓ ✓ ✓ ✓

Integumentary Skin* ✓ ✓ - ✓

Ear Cartilage ✓ - - -

Adipose White Adipose ✓ ✓ ✓ ✓

Brown Adipose ✓ ✓

Musculoskeletal Skeletal Muscle - Gastrocnemius ✓ ✓ - -

Quadriceps - - ✓ ✓

Soleus - - ✓ ✓

Gastrocnemius Tendon - - ✓ ✓

Synovium - - ✓ -

Physis/Metaphysis - - ✓ -

Endocrine Adrenal Gland ✓ ✓ ✓ ✓

Pituitary Gland ✓ ✓ ✓ ✓

(Continued on following page)
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TABLE 1 (Continued) List of Tissues Collected (✓) Across Each Species and Respective Classified Organ Systems. A total of 47–57 tissues were collected for each
species. After collection, a portion of tissues was transferred to a Whirl-Pak bag and immediately flash frozen in liquid nitrogen and stored at −80°C.

Organ Systems Tissues Rat Mouse Dog Monkey

Thyroid/Parathyroid ✓ ✓ ✓ ✓

Hemic/Immune Bone Marrow ✓ ✓ ✓ ✓

Mesenteric Lymph Node ✓ ✓ ✓ ✓

Spleen ✓ ✓ ✓ ✓

Thymus ✓ ✓ - -

Whole Blood** ✓ ✓ ✓ -

Peyer’s Patch* - - ✓ ✓

Nervous Cerebellum ✓ ✓ ✓ ✓

Sciatic Nerve ✓ ✓ ✓ ✓

Spinal Cord (Cervical) ✓ ✓ ✓ ✓

Cortex ✓ ✓ - -

Frontal Cortex ✓ ✓ - -

Medulla ✓ ✓ - -

Frontal Lobe - - ✓ ✓

Subcortical White Matter - - ✓ ✓

Thalamus - - ✓ ✓

Caudate Nucleus - - ✓ ✓

Hippocampus - - ✓ ✓

Dorsal Root Ganglia - - ✓ ✓

Ocular¥ Cornea ✓ ✓ ✓ ✓

Retina ✓ ✓ ✓ ✓

Uvea - - ✓ ✓

Lens - - ✓ -

Reproductive Epididymis ✓ ✓ ✓ ✓

Prostate ✓ ✓ ✓ ✓

Testes ✓ ✓ ✓ ✓

Ovary ✓ ✓ ✓ ✓

Uterus ✓ ✓ ✓ ✓

Vagina ✓ ✓ ✓ ✓

Mammary Tissue ✓ ✓ ✓ -

Cervix Uteri - ✓ ✓ ✓

Penis - - ✓ -

Oviduct - - - ✓
#Transverse colon in rat and mouse.
@Pyloric and fundic stomach collected separately in dog. Pyloric stomach and stomach body collected separately in monkey.
$Submandibular and parotic salivary glands collected separately in dog. Submandibular salivary gland in monkey.
¥Whole eye (including cornea and retina) was collected in mouse.

* Indicates that tissues were alternatively rinsed in saline solution, stored in RNALater Stabilization Buffer and maintained at 4°C until RNA isolation.

** Indicates that there was a separate protocol used for RNA isolation
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The GTEx database is one of the most extensive gene

expression databases containing RNAseq data from a wide

range of human donors across multiple organ sites (Stanfill

and Cao, 2021). This publicly accessible database provides

tremendous value to researchers in understanding the levels of

mRNA transcripts, as well as non-coding RNAs, across tissues

while also providing information on interindividual variability.

No comparable dataset is currently publicly available for

preclinical species. In this report, we aim to expand the

availability of preclinical transcriptomic data by providing our

RNAseq data from males and females of multiple preclinical

species (available in GEO) that can be used to determine the

location and relative levels of RNA sequences between organs

and species. These data could further be compared to existing

human RNAseq databases (such as GTEx) to help understand the

potential for translation of animal findings to humans.

2 Materials and methods

2.1 In-life studies and tissue collections

AbbVie is committed to the internationally accepted

standard of the 3Rs (Reduction, Refinement, Replacement)

and adhering to the highest standards of animal welfare in the

company’s research and development programs. Animal studies

were approved by AbbVie’s Institutional Animal Care and Use

Committee (IACUC) and were conducted in an AAALAC

accredited program where veterinary care and oversight was

provided to ensure appropriate animal care. Figure 1 shows

the overall study design for animal tissue collections and

transcript sequencing. Species, strain, age, tissue, and sex were

selected to match our internal experimental space for preclinical

toxicology studies and toxicogenomic analyses.

Male and female SpragueDawley rats (n= 3/sex), approximately

10–12 weeks old, were euthanized by exsanguination under

isoflurane anesthesia and necropsied for tissue collection. Male

and female CD-1 mice (n = 3/sex), approximately 9–10 weeks

old and 20–25 g, were euthanized by exsanguination under

carbon dioxide anesthesia and necropsied for tissue collection.

Both rats and mice were purchased from Charles River

Laboratories, Inc., (Portage, MI, United States) and were then

housed (2-3 animals/cage) in plastic, solid bottom hanging cages

with bedding, equipped with feeders and an automatic watering

system at the AbbVie animal facility. Study animals were fed ad

libitum the Envigo Teklad Global rodent diet 2014 (Indianapolis, IN,

United States) and were fasted overnight prior to the time of

necropsy and tissue collection. A total of 47 tissues were

collected from each male and female rodent (including 3 to

4 reproductive tissues per sex).

Male and female Beagle dogs (n = 3/sex), approximately

1 year old and 5.6–10.7 kg, were purchased from Marshall

BioResources (North Rose, NY, United States) housed at the

AbbVie animal facility in social housing conditions prior to

inclusion in the study and were fed Teklad certified global

diet 2025 (Envigo, Madison, WI; ad libitum). Dogs were

euthanized through intravenous administration of a pharma

grade potassium chloride solution or by exsanguination after

administration of a barbiturate solution, in compliance with site

IACUC, and necropsied for tissue collection. Dogs were fasted

overnight (16–18 h) with access to water prior to the time of

necropsy. A total of 57 tissues were collected from each male and

female dog (including 4 reproductive tissues per sex).

Male and female Cynomolgus monkeys (n = 3/sex),

approximately 3–4 years old and 2.5–3 kg, were housed at the

Charles River Mattawan animal facility prior to inclusion in our

study. Lighting, temperature, and humidity were monitored in

accordance with institutional SOPs FAC-17 and FAC-52. Monkeys

were euthanized through overdose with a barbiturate-based

euthanasia agent, propofol, or exsanguination (methods approved

by site IACUC) and necropsied for tissue collection. Study animals

were fed the Lab Diet Certified Primate Diet #5048 ad libitum, were

provided tapwater ad libitum via an automatic water system andwere

fasted for no more than 1 h prior to necropsy. A total of 53 tissues

were collected from each male and female monkey (including

3 reproductive tissues for males and 5 for females).

A complete list of tissues collected in each species is included in

Table 1. In all four species, during necropsy, tissues were prioritized

for collection according to perceived research value and predicted

RNA stability. Upon collection, tissues were transferred into a

Whirl-Pak bag and immediately flash-frozen in liquid nitrogen

and maintained in freezers at −80°C until RNA isolation.

Pancreas was collected first and flash frozen to minimize RNA

degradation. A subset of tissues were alternatively rinsed in saline

TABLE 2 Transcript mapping information across species.

Mouse Rat Dog Monkey

Assembly Mouse.B38 Rat.B6.0 Dog.CanFam3.1 Macaca_fascicularis_5.0

Protein-coding 21,968 22,250 19,856 20,815

Non-protein coding 7,913 10,633 4,724 6,244

Average alignment 76.369% 66.854% 78.170% 75.215%

Average read depth 97,033,160 119,424,748 162,362,994 86,051,784
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solution and stored in RNALater Stabilization Buffer (Invitrogen,

Waltham, MA, United States) and maintained at 4°C until RNA

isolation. Tissue storage and preservation conditions were based

largely on previous experience with tissues. Upon collection, 100 μl

aliquots of whole blood were added to a cryovial containing 1 ml of

QIAzol Lysis Reagent (Qiagen, Germantown, MD, United States).

Contents of the vial were immediately mixed by inversion and flash

frozen in liquid nitrogen until RNA isolations could be performed.

2.2 Sample collection for clinical
pathology and histology

At necropsy, whole blood samples were collected (in rat, dog,

and monkey) and used for clinical pathology analysis (standard

hematology and clinical chemistry parameters) to confirm that

animals included in this study were healthy without any

background disease or pathologies that could potentially impact

FIGURE 2
Correlation Analysis Across Species for Major Toxicity Organs. Correlation analysis was performed to assess species and sex differences across
tissues. In both males (M) and females (F), spearman correlation coefficient values were generated across all species in (A) Duodenum, (B) Heart, (C)
Kidney, (D) Liver, (E) Lung, and (F) Spleen.
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gene expression changes. In mice, due to limited blood volume,

samples were not collected for clinical pathology analysis.

In all four species, representative samples were also

collected from selected key tissues for histological

evaluation to confirm that animals were healthy and

without disease. Tissues collected from each species for

histology evaluation are listed in Supplementary Table S1.

These tissue samples were fixed and then processed for

FIGURE 3
PCA Analyses to Identify Relationships between Species and Samples. PCA analyses was applied across all matching samples between species.
(A) Scree plot shows explained variation across the first 10 PCs. PC1 versus PC2was plotted highlighting species differences (B) and tissue differences
(C). PC3 was also evaluated to evaluate additional tissue differences (D).

TABLE 3 Gene enrichment analysis for negative PC1 loading.

Term Overlap p-value Adjusted p-value Odds ratio

Transmitter-gated ion channel activity 16/34 2.67E-17 1.00E-14 35.78

GABA receptor activity 13/22 5.17E-16 9.67E-14 57.81

GABA-gated chloride ion channel activity 10/13 2.33E-14 2.91E-12 132.63

Ligand-gated anion channel activity 11/18 5.81E-14 5.43E-12 62.64

Ligand-gated channel activity 13/30 1.04E-13 7.21E-12 30.59

GABA-A receptor activity 11/19 1.35E-13 7.21E-12 54.81

Glutamate receptor activity 11/19 1.35E-13 7.21E-12 54.81

Ligand-gated ion channel activity 13/31 1.75E-13 8.16E-12 28.89

Neurotransmitter receptor activity involved in regulation of postsynaptic membrane potential 11/21 6.02E-13 2.50E-11 43.84

Ionotropic glutamate receptor activity 11/17 1.45E-12 5.42E-11 56.83
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standard paraffin embedding and sectioning. Sections (5 μM)

were stained with hematoxylin and eosin and evaluated

microscopically by an American College of Veterinary

Pathologists-board certified veterinary pathologist.

2.3 RNA sample preparation

Total RNA was isolated from collected tissues according to

one of several methods, according to our lab’s previous

experience with various tissues. Target tissue input was

approximately 200–300 mg, with the exception of smaller

tissues, particularly in rodents. Flash frozen tissues and

RNALater-stored tissues were homogenized in the Omni

BeadRuptor (Kennesaw, GA, United States) or by using a

Kinematica Polytron homogenizing wand (Malters,

Switzerland). Tissue homogenates underwent RNA isolation,

DNAse digestion with the Qiagen RNAse-Free DNAse set,

and spin-column cleanup with the Qiagen RNeasy Mini kit

(Qiagen, Germantown, MD, United States). A portion of the

tissues were processed with the Promega Maxwell RSC

simplyRNA Tissue Kit (Madison, WI, United States) and the

remainder were processed using the Qiagen RNAeasy kit with

QIAzol.

FIGURE 4
Hierarchical Clustering of Tissues inMouse and Rat. Dendrogram to visualize hierarchical clustering ofmale tissues (left) inmouse (A) and rat (B).
These tissues were also mapped to broader organ/system classifications (right).
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RNA quality was assessed using the Agilent 4200 Tapestation

System and the Agilent 2100 Bioanalyzer with the Agilent High

Sensitivity RNA ScreenTape and Agilent 6000 Nano Kit,

respectively (Agilent, Santa Clara, CA, United States). RNA

was quantified by the Qubit fluorometer using the RNA BR

Assay (ThermoFisher Scientific, Waltham, MA, United States).

2.4 RNA sequencing

To ensure that future comparison could be made across

species, approximately 50 matching tissues across the four

species were selected and classified into broader organ systems

based on anatomic structure and/or function (e.g., lymphoid,

reproductive) (Figure 1; Table 1). In some individual cases,

samples were removed from downstream analyses due to low

tissue quality.

For rat andmouse samples, total RNAwas pooled in equalmass

inputs for each animal to generate a composite sample

representative of each tissue. Rodent samples were pooled

(within each species), but male and female-derived RNA samples

remained separate. Library preparation and sequencing for dog and

monkey samples were performed without sample pooling due to

greater individual variability in these research species. In some

instances, samples were omitted from sequencing when the library

prep procedure failed to produce adequate cDNA. The TruSeq

FIGURE 5
Hierarchical Clustering of Tissues in Dog and Monkey. Dendrogram to visualize hierarchical clustering of male tissues (left) in Dog (A) and
Monkey (B). These tissues were also mapped to broader organ/system classifications (right).
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Stranded Total RNA Library Prep Kit Gold (Illumina, San Diego,

CA, United States) was utilized to generate cDNA libraries with

capture of coding and multiple forms of non-coding RNA. The

prepared cDNA libraries were sequenced on the Illumina NextSeq

500 instrument using Illumina’s NextSeq 500/550 High Output

v2.5 kit. Each sequencing run anticipated 33–50 million reads per

sample, with paired-end sequencing of 76 base pairs (bp) in the

forward and reverse direction. The median percentage of total reads

uniquely mapped to the reference genome ranged from 66.9% to

78.2% across all species. All reads were mapped to the respective

reference genome for each species using Omicsoft Software OSA4

(Omicsoft, Cary, NC, United States), which are referenced in

Table 2.

2.5 In vitro assay for recombinant IL-22
activity

Frozen primary human (Cat # HMCPP5), cynomolgus

monkey (Cat # MKCP10), rat (Cat # RTCP10), and mouse

hepatocytes (Cat # MSCP10) were purchased from

ThermoFisher Scientific. Individual vials of cells for each

species were thawed and plated on 96-well collagen-coated

plates (Corning®, 354407) according to the ThermoFisher

protocol. Hepatocytes were plated at a density of

50,000 cells/well and were incubated under standard cell

culture conditions of 37°C and 5% CO2. Recombinant

interleukin-22 (rIL-22) specific for human (Cat # 782-IL-

010), rat (Cat # 1316-RL-010), and mouse (Cat # 582-ML-

010) were purchased from R&D Systems and used as a

reference positive control for STAT3 activation. After one

overnight incubation, human and cynomolgus monkey

hepatocytes were treated for 30 min with human rIL-22

(rhIL-22) in 7 serial 8-fold dilutions ranging from 600 nM

to .0023 nM. Rat and mouse hepatocytes were treated with rIL-

22 of respective species, in 7 serial 8-fold dilutions ranging

from 600 nM to .0023 nM, for 2 different time points of 15 and

30 min. Published literature suggested that rat hepatocytes

may need a longer incubation time to have a

STAT3 phosphorylation response from IL-22 signaling (Lee

et al., 2018). Based on this, we conducted additional

experiments using rat primary hepatocytes and incubated

with rat rIL-22 for 30 min, 6 h, and 24 h.

At the end of incubation periods, media was removed

from the wells and replaced with Tris lysis buffer, a

component of the Phospho-STAT3(Tyr705) detection kit

purchased from Meso Scale Discovery (MSD, Cat

#K150SVD-2). Following the kit protocol, cells were lysed

for 30 min at 4°C, and then lysates were added to the MSD

plate for subsequent detection of phosphorylated STAT3

(pSTAT3).

2.6 Data analyses

FastQ files were generated and uploaded to Array Studio

(OmicSoft, Cary, NC, United States) for reference genome

alignment and generation of transcript count data for all

samples (Table 2). Transcripts were assessed and normalized

using DESeq2 (Love et al., 2014).

Within each species, tissue samples were averaged and

principal component analysis (PCA) clustering was applied

TABLE 4 Summary of species sensitivity difference for IL22 signaling and associated pharmacology and safety findings.

Repeat dose toxicity study (11 weeks) or phase I trial
data h IL-22FC IG fusion protein (Lee et al 2018;

Al-Bawardy et al 2021)

STAT3 activation signal in primary
hepatocytes for rhIL22 and hIL-22
fusion proteina (Lee et al 2018)

EC50 value for
rIL22 induced

pSTAT3 in hepatocytes

Clinical
pathologyb

Skin toxicity NOAEL

Dose (AUC)

Monkey CRP ↑ Epidermal hyperplasia
at ≥75 µg/kg (IV, once every
2 weeks)

15 μg/kg
(333 ng.day/ml)

+ 3.5 nM

Fibrinogen ↑

Rat No change Epidermal hyperplasia at
500 µ/kg (IV, twice weekly)

150 μg/kg
(2,370 ng.day/

ml)

- No signal

Mouse -- -- -- + 32 nM

Human -- Dry skin, erythema, and
pruritis (30–90 μg/kg either
biweekly or monthly)

-- + .69 nM

aAt 30-min timepoint (Western blot data for pSTAT).
bChanges related to target engagement.

+, Elevations in STAT3 phosphorylation; -, No STAT3 phosphorylation; --, no data.
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using R (R_Core_Team, 2017) and R Package PCATools (Blighe

and Lun, 2022). Hierarchical clustering and data visualization was

performed using R Package GGplot2 (Wickham et al., 2016). Gene

enrichment analyses were performed using EnrichR (Chen et al.,

2013). Data visualization for pSTAT3/IL-22 and flavin-containing

monooxygenase (FMO) data was performed using GraphPad

Prism version 9.0.0 for Windows (San Diego, California

United States, www.graphpad.com). Transporter heatmaps were

generated using normalized Z-scores calculated from FPKMvalues

per gene using the R package pheatmap (Kolde, 2019).

3 Results

3.1 Clinical pathology and histology

In all four species, hematology (Supplementary Material S1)

and clinical chemistry (Supplementary Material S2) parameters

were evaluated and confirmed to be within the normal range.

Similarly, there was no microscopic evidence of disease or

unexpected background/spontaneous changes in any of the

tissues evaluated. These results confirmed that animals used

for this study were healthy and without any background

disease or organ dysfunction.

3.2 Evaluating tissue mRNA expression
differences

To evaluate the expression profile of genes at the transcript level

in different tissues/organs in each species, RNA-sequencing data

were analyzed to calculate fragments per kilobase of exon permillion

mapped fragments (FPKM) values for both protein and non-protein

coding genes. The number of transcripts evaluated depended on the

species and reference transcriptome assemblies used to map the

sequenced reads (Table 2).

After calculating the median FPKM values across the biological

replicates, transcripts were defined as “expressed” where FPKM ≥ 1.

Across all the species evaluated, the number of transcripts expressed

in a tissue ranged from 11,550 to 19,318 and not surprisingly was

found to differ based on tissue and/or species. In all species,

similarities for relative gene expression were observed for specific

tissues. Consistent with other studies (Yu et al., 2014), the liver, heart,

and skeletal muscles express relatively less genes than other tissues

(Supplementary Figures S1A, B, S2A, B). Differences in the average

expression across all expressed transcripts were also observed

between tissues (Supplementary Figures S3A, B, S4A, B).

Protein-coding genes for each species ranged from 19,856

(dogs) to 22,250 (rat), and non-protein coding genes ranged from

4,724 (dog) to 10,633 (rat). Average read depth ranged from

86,051,784 (monkey) to 162,362,994 (dog). To better interrogate

species differences across tissues, we filtered and evaluated

13,072 protein-coding genes that were annotated across all

FIGURE 6
Differential pSTAT3 stimulation and IL-22 receptor genes expression
across species. (A) pSTAT3 stimulation dose curves in response to
recombinant IL-22 (rIL-22) in mouse, rat, monkey, and human primary
hepatocytes. Species-specific rIL-22 was used for rat and mouse
hepatocytes. rhIL-22was used formonkey and human hepatocytes. For
rat, there was no signal, so no value is shown in the graph (A). Average
FPKM expression of IL-22-receptor genes (IL10Rβ, IL-22RA1, and IL-
22RA2) in Liver (B) and Skin (C) for mouse, rat, monkey, and human.
Additional details on this case example are summarized in Table 4.

Frontiers in Genetics frontiersin.org11

Krause et al. 10.3389/fgene.2022.1078050

http://www.graphpad.com
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1078050


species in this study. Frequent target organs of drug-induced

toxicity were selected for spearman correlation analysis in both

males and females: duodenum, heart, kidney, liver, spleen, and

lung. Correlation analyses were performed across species

(Figures 2A–F) and across all target organs (Supplementary

Figure S5). Overall, we observed a strong relative correlation

FIGURE 7
Relative difference in transcript level expression of Flavin-containing monooxygenases (FMO) genes. Sex differences between male (blue) and
female (red) are shown across 5 different FMO isoforms in mouse (A), rat (B), dog (C), and (D) human liver.

FIGURE 8
Expression heat map of key transporters in the liver, kidney, and heart of male preclinical species and humans confirms tissue-specific
expression of liver and kidney transporters across species. Heart was included as a general negative control as few transporters are reported to be
highly expressed there. Expression patterns are generally consistent across species with some notable exceptions.
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between similar tissues in both males and females. Other tissues

were also assessed using spearman correlation (Supplementary

Material S3).

3.3 Clustering analyses across species and
tissues

Principal Component Analysis (PCA) was used to evaluate

associations across the samples. Principal components (PC) 1, 2,

and 3 were observed to explain approximately 18, 11, and

9 percent of the variation within the data, respectively.

(Figure 3A). PC2 shows distinct clustering across species and

indicates a relatively closer relationship between the rodents

(mouse and rat) and clear separation from dog and monkey

(Figure 3B). Interestingly, dog was observed to have the strongest

separation on PC2. We further interrogated PC1 by annotating

tissues and nervous system-related tissues were responsible for

much of the variation on PC1 (Figure 3C). PC3 was also

evaluated resulting in a strong clustering of hemic and

immune system tissues, which may be driven by common

hematopoiesis processes (Short et al., 2019; Gomes et al.,

2021) (Figure 3D).

PCA loading analyses were performed across the top 5 PCs to

help identify genes responsible for the explained variance across

the PCs (Supplementary Material S4). The top 500 gene

responses for the negative PC1 loading were extracted and

assessed using gene set enrichment analysis (GSEA). Pathways

related to GABA receptor activity and Benzodiazepine were

identified among the top hits and are known to be associated

with central nervous system function (Griffin et al., 2013;Wu and

Sun, 2015) (Table 3). In both mouse and rat, similar analyses

were performed on a smaller subset of tissues and identified the

brain samples as having the most distinct cluster on PC1 (Sollner

et al., 2017). Due to the large number of tissues and species, we

expect clustering analyses to be complex with distinct PCs being

responsible for driving variation between distinct tissue groups

and species.

3.4 Hierarchical clustering across tissues

Hierarchical clustering was performed to confirm data

quality and evaluate tissue differences within species. Tissue

clustering was performed on the male tissues and annotated

with the organ classifications for both rodents (Figures

4A,B), and large animals (Figures 5A,B). Similarly

analyses were performed on female tissues in rodents

(Supplementary Figures S6A,B) and large animals

(Supplementary Figures S7A,B). Due to the large number

of genes that are expressed uniquely in the testes

(Djureinovic et al., 2014), a strong diversification between

testes and other tissues in rat, dog, and monkey was

observed. Related tissues from the same organ system,

such as nervous, digestive, and immune tissues, generally

clustered together.

3.5 Case examples to evaluate correlation
of gene expression profile with known
species and sex differences in
pharmacological and/or metabolic
responses

3.5.1 IL-22 receptor signaling
As a case example, the gene expression atlas was used to

understand reported species difference in interleukin 22 (IL-22)

signaling and associated changes observed in toxicity studies. IL-22

cytokine is a member of the IL-10 family and is recognized by IL-

22R, a heterodimeric transmembrane receptor complex composed

of IL-22R1 and IL-10Rβ (Xie et al., 2000). IL-22 activates

STAT3 signaling cascades and mediates multiple cellular

responses including induction of proliferative and anti-apoptotic

pathways, as well as production of anti-microbial molecules (Sabat

et al., 2014). An IL-22 recombinant fusion protein (UTTR1147A),

that consists of the human cytokine IL-22 with the Fc portion of a

human IgG4, was shown to have species differences of in vitro

STAT3 activation potential (a biomarker of target engagement and

histological changes in target cells) from preclinical toxicology

studies (Lee et al., 2018). Specifically, rats were shown to be less

sensitive thanmonkeys to IL-22mediated pSTAT3 phosphorylation

in vitro (hepatocytes) and for expected pharmacology related clinical

pathology changes (increased serum fibrinogen and C-reactive

protein) as well as skin toxicity (specifically epidermal

hyperplasia) in repeat-dose toxicity studies. This difference in

sensitivity was associated with an ~10-fold difference in NOAEL

levels (for skin toxicity) between rats and monkeys in 11-week

repeat-dose toxicity studies (Table 4). Adverse skin reactions (dry

skin, erythema, and pruritis) were also reported in healthy human

volunteers and ulcerative colitis patients dosed with UTTR1147A in

a Phase 1b study (Al-Bawardy et al., 2021). To further evaluate and

confirm species differences in sensitivity for IL-22 signaling, we

tested the in vitro pharmacologic activity of recombinant IL-22 (rIL-

22) in primary hepatocytes isolated from mice, rats, dogs, monkeys,

and humans. Species-specific rIL-22 was used for rat and mouse

hepatocytes. rhIL-22 was used for monkey and human hepatocytes.

Based on the EC50 values for STAT3 activation (Figure 6; Table 4),

r-IL-22 wasmore potent in cynomolgusmonkeys compared tomice

and rats. In rat cells, IL-22 failed to produce a pSTAT3 signal even

with extended duration of incubation (up to 24 h) compared to

other species (30 min) tested.

Based on this background information, we used our

comprehensive body atlas data to evaluate if the lower

potency in rodents compared to monkeys is correlated with

differential basal expression of IL-22R genes (mainly IL-

22RA1 and IL-10Rβ) in two representative key IL-22 target
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tissues (liver and skin). IL-22RA1 expression was highest in

monkeys in both liver and skin, compared to rodents.

Interestingly, there is little to no expression of IL-22RA1 in

rat, specifically in the liver (Figure 6). IL-10Rb expression levels

were consistent across mouse and rat liver but significantly

increased in monkeys. Based on the GTEx database, the

expression of IL-22RA1 in human skin appears to be

relatively higher than monkeys.

3.5.2 Flavin-containing monooxygenases (FMO)
expression levels

In another case study, we evaluated if basal transcript

expression in our database correlates with known sex-related

differences in expression and activity of Flavin-containing

monooxygenases (FMO). In both mice and dogs, much higher

levels of FMO1 and FMO3 expression were detectable at

transcript levels in females compared to males (Figure 7). A

comparison of transcript level expression of FMO isoforms in

preclinical species in our comprehensive body atlas data

supported previous reports of species and sex dependent

relative FMO1 and FMO3 expression levels (Falls et al., 1995;

Ripp et al., 1999). Interestingly, we did not observe these sex-

related differences in humans.

3.5.3 DDI transporter evaluation in liver, kidney,
and heart

To further demonstrate utility of our RNAseq database, we

compared relative expression levels of key drug efflux

transporters (P-gp, BCRP, MRP2, MRP4, MATE2K) and drug

uptake transporters (OATP1B1, OATP1B3, OAT2B1,

OATP1A4, OAT1, OAT3, OCT1, OCT2, BSEP, and NTCP)

across liver, kidney and heart (negative control tissue) in

males (Figure 8) and females (Supplementary Figure S8). The

2018 International Transporter consortium (ITC) recommended

these transporters as being of key importance in drug

development (Zamek-Gliszczynski et al., 2018). In addition,

we compared the relative expression of these transporters in

human tissues using the GTEx human expression body atlas with

preclinical species.

Drug transporters known to be specific or enriched in liver

such as BSEP, MRP2, OCT1, OATP1B1, OAT1B3, OAT2B1,

OATP1A4 showed higher expression in liver samples compared

to kidney and heart (Figure 8) confirming the expected tissue-

specific abundance across species. Higher expression of both

OATP1B1 and OATP1B3 is unique to both humans and monkey

liver (Wang et al., 2015). In addition, strong expression of

OATP1A4 (rodent ortholog of human OATP1B1) was

detected in both mouse and rat liver. Similarly, our database

confirmed higher levels of transporters specific or enriched in

kidney such as OAT1, OAT3, and OCT2, MRP4 compared to

liver and heart in all four preclinical species and were also

comparable to respective human tissue. In heart, which was

included as a negative control tissue for transporters,

expression of the majority of transporters evaluated were

either very low or not detected (except for P-gp and MATE2K

in mouse and BCRP and OAT2B1 in monkey).

Further comparison of the expression of a few selected

transporters between species, sex, and tissues demonstrated an

overall good correlation with published information. For

example, species and tissue specific distribution of organic

cation transporters (OCTs) are well documented (Bleasby

et al., 2006). OCT1 enrichment was limited to the liver in

human and monkeys, whereas in rat, mouse and dog

expression is detected in both liver and kidney (Figure 8).

Other than OCT1, the expression of other renal transporters

evaluated appeared to be comparable across preclinical species

and human at the transcript level. BCRP expression was more

highly expressed inmale rats uniquely, but this difference was not

found in other species (Figure 8; Supplementary Figure S8).

Interestingly, the expression profile of the multidrug and

toxin extrusion protein (MATE2K) was different in rodents from

other species. In dog, monkey, and human, high expression of

MATE2K was observed in kidneys, whereas in rats and mice,

high expression is detected only in liver, but not in kidney.

4 Discussion

Many applications of this comprehensive preclinical species

transcriptomic database can be envisioned to improve or

expedite drug discovery and development. These data could

be used to predict potential target tissues of toxicity in

preclinical species as part of a target safety assessment and to

design better early toxicology studies (Roberts, 2018). The same

exercise can reasonably be conducted for confirmed or predicted

off-target drug interactions (Van Vleet et al., 2019). In addition,

these data could serve to guide therapeutic target selection.

Likewise, species-specific expressions may be helpful in

understanding species-specific sensitivity to certain drugs and

the human relevance of preclinical findings (Spurgeon et al.,

2020). The translation of preclinical toxicity findings to humans,

when mechanism is understood, could also be better predicted

with these body atlas expression data. Finally, body atlas gene

expression may serve, in part, for selecting or justifying the most

appropriate preclinical toxicity species (Prior et al., 2020).

Several RNAseq body atlas databases from preclinical species

have been previously developed. Some of these contain data from

species which are of importance for drug safety evaluation such

as mouse, rat, and monkey (Perry et al., 2012; Li et al., 2017; Ji

et al., 2020; Thiemeyer et al., 2021). However, significant strain-

related differences in drug-related response and sensitivity have

been noted as well, reflecting the need for RNAseq databases in

the most common species and strain used for preclinical

toxicology assessment of drugs (Annas et al., 2013; Hoffmann

et al., 2017). In this body of work, we created an RNAseq body

atlas in the strains of mouse (CD1), rat (Sprague Dawley), dog
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(Beagle), and monkey (Cynomolgus) most used in preclinical

drug safety studies.

Prior to this work, no comprehensive CD1 mouse body

atlas RNAseq databases had been established. CD1 mice are

the most common mouse strain for drug toxicology studies

(Annas et al., 2013). Our sequencing efforts identified

21,968 protein coding and 7,913 non-coding genes in

CD1 mice (Table 2). More limited CD1 mouse tissue

profiling efforts have been reported previously. For

example, Kahr et al. (2011) evaluated transcriptional

expression differences between right and left atria in

3 strains of mice, including CD1, compared to humans.

C57BL/6 mice have been used to create several RNAseq

expression databases. For example, Hounkpe et al. (2021)

published a RNAseq database from 52 to 14 different

normal tissues in humans and C57L/6 mice, respectively.

The database was used to identify 2176 and

3277 housekeeping genes in humans and mice, respectively.

Likewise, Li et al. (2017) created a comprehensive, 17 tissue,

RNAseq database from C57BL/6 mice to identify

4,781 housekeeping genes. In this work, 27 consistently and

highly expressed genes were identified as reference controls

and 22,196 protein coding and 21,432 total non-protein

coding genes were identified. These values are similar to

those we report above for CD1 mice. Finally, a 2017 study

created a C57BL/6 mouse and Han Wistar rat RNAseq Body

Atlas from 13 tissues in each species (Sollner et al., 2017). This

study showed that tissue samples from both species clustered

similarly in the PCA space, had many genes with high

sequence similarity with human orthologues, and had

highly correlated tissue distribution profiles to humans.

Other rat RNAseq databases have been reported in Fischer

344 rats. For example, Yu et al. (2014) created a body atlas map

across 11 organs at 4 different developmental stages and

identified 40,064 genes and 65,167 transcripts with

31,909 alternatively spliced variants. Similarly, Ji et al. (2020)

presented an RNAseq database in Fischer 344 rats that included

11 organs. The study annotated 15,852 transcripts from

11,715 genes. Here for the first time, we introduce an RNAseq

body atlas from Sprague Dawley rats, one of the most common

rat strains used in drug toxicology studies (Weber et al., 2011;

Annas et al., 2013). Similar to the values reported by Yu and Ji

(2014 and 2020) from F344 rats, we identified 22,250 protein

coding and 10,633 non-protein coding genes (Table 2).

No full body tissue RNAseq databases currently exist in

the public domain for dogs. In this work, we present the first

dog RNAseq body atlas. Our effort found 19,856 protein

coding and 4,724 non-protein coding genes in beagle dogs

(Table 2). This work was conducted in the dog strain (Beagle)

used for drug safety toxicology studies (Weber et al., 2011;

Uchida et al., 2015). At the time of this publication, the only

dog related RNAseq databases that exist are focused on tumor

tissue. Thiemeyer et al. (2021) presented an RNAseq

framework for characterizing canine prostate cancers based

on 10 malignant (spontaneously occurring) and 14 non-

malignant prostate tissues from mixed breed dogs. The

study identified 4,098 differentially expressed genes in

tumors and 49 altered signaling pathways in prostate

tumors. Likewise, Kim et al. (2019) presented an RNAseq

whole transcriptome database of canine mammary gland

tumors, sequencing 197 tumors and matched controls.

Microarray technology has also been used previously to

profile normal dog (both beagles and mixed breed dogs)

tissue gene expression in 10 tissues including: liver, kidney,

heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas,

and skeletal muscle (Briggs et al., 2011).

Multiple non-human primate body atlas databases have been

reported, with atleast 2 containing transcriptome data from

cynomolgus macaques, the most commonly used non-human

primate (NHP) species for drug safety toxicology studies (Annick

et al., 2015). In a comparative study of endangered primate

species, Perry et al. (2012) reported a comprehensive database of

RNAseq data from 21 tissues in 12 NHP and 4 other mammalian

species. Cynomolgus monkeys were included in the database

where an average of 5,721 gene sequences per species were

identified. No relationship could be found between genetic

diversity and endangered status. The Perry et al. database also

contains liver transcriptomics for both the Indonesian and

Mauritius strains of Cynomolgus Macaques, which are each

used in toxicity studies and have been shown to have genetic

differences related to differences in response to drugs/toxicants

(Hoffmann et al., 2017). The database we introduce for Chinese

cynomolgus macaques in this effort is the most comprehensive

database to date with a total of 53 tissues represented. We

identified 20,815 protein coding and 6,244 non-protein coding

genes in cynomolgus macaques (Table 2). This value is similar to/

greater than the average of 5721 primate gene sequences

identified previously by Perry et al. (2012).

To illustrate the utility of our transcriptomic database, we

evaluated if basal gene expression differences in preclinical tox

species correlate with known species and/or sex differences in

pharmacological response to IL-22 signaling and drug

metabolizing enzyme (FMO) activity. In the IL-22 signaling

case example, basal expression levels of both IL-22RA1 and

IL-10Rβ genes in rat and monkey liver and skin samples

(Figure 7) correlated well with known differential species

difference in pharmacological and toxicological response for

IL-22 signaling in in vitro pSTAT assay and in vivo repeat

dose toxicology studies (summarized in Table 4). Interestingly,

this difference was unique to IL-22R receptor complex and not

observed for IL-22RA2, a naturally occurring IL-22 antagonist as

it negatively regulates IL-22 signaling (Xu et al., 2001). IL-22RA2

transcript expression levels in liver and skin are relatively low, but

comparable between mouse, rat and monkey. Further

comparison to a publicly available human gene expression

data base revealed that the IL22R expression level appeared to
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be comparable to monkeys, with relatively higher expression of

IL22RA1 in both liver and skin. Overall, these results support a

good correlation between reported species difference in the IL-

22R mediated pharmacological response and basal expression of

IL-22R genes at the transcript level compiled in our body atlas.

Species and sex differences in xenobiotic and drug

metabolizing enzyme expression levels and activity are well

known in human and other preclinical tox species

(Martignoni et al., 2006; Waxman and Holloway, 2009).

FMO enzymes catalyze the NADPH-dependent oxidation of

a wide variety of nucleophilic compounds containing

nitrogen, sulfur, and phosphorus moieties (Burnett et al.,

1994; Krueger and Williams, 2005). A total of five different

FMO isoforms have been identified (FMO1, 2, 3, 4, and 5),

each with unique species- and tissue-dependent expression

levels (Krueger and Williams, 2005). Among these five

enzymes, FMO3 is the predominant and most studied

isoform in adult human liver. In mice, FMO activity in

liver microsomes is much higher in females than in males

(Falls et al., 1995; Ripp et al., 1999). Specifically, FMO1 levels

in female liver are shown to be 2 to 3 times higher compared to

male mice and FMO3 expression are comparable to FMO1 in

females, but undetected in males (Falls et al., 1995). However,

FMO5 expression levels are comparable in both sexes.

Mechanistically this sex-related difference in mice is

attributed to male sex hormone- (testosterone) induced

repression of FMO expression (Duffel et al., 1981). This

sex-difference in FMO expression is not a mouse-specific

phenomenon, because higher levels of FMO3 isoform are

also observed in liver microsomes derived from mouse and

dog compared to other laboratory species such as rats and

rabbits (Ripp et al., 1999).

Using our body atlas data, comparison of transcript level

basal expression of FMO isoforms in liver samples

confirmed/supported these reports of species and sex

related difference in FMO1 and FMO3 expression levels.

As shown in Figure 8, in both mice and dogs, much higher

levels of FMO1 and FMO3 expression were detectable in

females compared to males. In humans (based on GTEX

data), as expected FMO3 is the predominantly expressed

isoform and expression level was comparable in both male

and female liver samples. FMOs are known to catalyze

oxidation of several drugs and chemicals into metabolites

with either reduced or increased toxicological properties

compared to parent compounds (Ripp et al., 1997;

Krueger and Williams, 2005). Hence understanding of

species, sex, and tissue level differences in the relative

expression of FMO and potentially other drug

metabolizing enzymes in preclinical toxicology species

using our comprehensive body atlas data would provide

valuable information in selecting relevant species for

metabolism and toxicology studies. The two case examples

discussed above, clearly support that the gene expression

data we compiled is a useful resource to predict cross species

biological differences and to improve preclinical

pharmacology and toxicology experimental design and

data interpretation.

The role of drug transporters in the disposition of drugs as

well as their influence on pharmacokinetic (PK) based drug-

drug interactions (DDI) and safety are well known (Chu et al.,

2013; Zou et al., 2018). However, due to known species

differences in tissue distribution, relative levels of

expression in key tissues, and substrate specificity of these

transporters, the extrapolation of data generated in preclinical

species to humans can be challenging in some cases (Chu et al.,

2013). Our RNAseq based tissue- and sex-specific

transcriptomic database covering four preclinical tox

species is expected to serve as a valuable tool to generate

cross species quantitative mRNA level expression of drug

transporters to understand species differences and improve

allometry based prediction of PK and DDIs in humans. For

example, OCT1 is shown to be expressed in liver in all

preclinical tox species (mouse, rat, monkey) and human.

However, OCT1 kidney expression was detected only in

rodents, but not in the monkey and human (Bleasby et al.,

2006). Correlating with this published report, our RNAseq

data also show that OCT1 enrichment is limited to the liver in

human and monkeys, whereas in rat, mouse and dog,

expression is detected in both liver and kidney.

In addition to species differences, sex-related difference

in expression of drug transporters are also reported. For

example, relatively higher levels of breast cancer resistance

protein (BCRP) expression were detected in the kidney of

male rats compared to females (Tanaka et al., 2005). In our

database, sex-related BCRP expression differences were

observed in rat kidney (higher in males), but not other

species.

A relative expression comparison of key drug uptake and

efflux transporters in liver and kidney across species provided

some good correlation with expected tissue specificity in liver

and kidney as well as with previously reported species/tissue

(OCT1) and sex (BCRP) specific abundance for the selected

transporters. Even though mRNA expression may not always

correlate with protein expression, potential inconsistencies

exist when comparing expression levels in whole tissues versus

key cells of interest within these tissues by either

transcriptomics or proteomics approaches (Wang et al.,

2015). We believe that a comprehensive RNAseq database

will provide useful information to predict potential species

differences in drug disposition and help select relevant

preclinical species in early stages of transporter targeted

drug development.

Data consistency is a significant consideration when

developing a reference dataset. In this study, measures were

taken wherever practical to procure samples in a way that

optimized consistency. Certain decisions made to enhance
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workflow efficiency or to promote the 3R’s principles may

have introduced a degree of variability to this dataset.

Cynomolgus macaques utilized for tissue collections were

protein naïve but had been dosed with non-protein test

article in previous studies preceding a lengthy washout

period. Similarly, male beagles utilized in our dataset had

been included as vehicle-treated (DMA:PG:PEG-400 (20:40:

40) animals in a terminal study immediately prior to tissue

collection. Additionally, multiple methods were employed for

tissue RNA extraction to optimize the quality and quantity of

RNA isolated. For instance, these differences may be partially

responsible for dog tissues showing relatively strong

differentiation from other species based on PC2 analysis

(Figure 3B). While this potentially introduced additional

variability, it enabled inclusion of a wider array of species

and tissue types within the dataset.

A separate effort to develop an RNAseq atlas of rodent

gene expression noted relatively low gene expression

variability when comparing the same tissue across separate

individuals (Sollner et al., 2017). Based on this information,

the decision was made to pool rodent samples to enhance

workflow efficiency and reduce costs. Pooling biological

replicates is a practice that has been evaluated previously in

the context of RNA microarray gene expression analysis.

While this approach may have implications on the

statistical power, previous investigations have concluded

that results from pooled samples have been adequate for

detecting key gene changes at the group level (Peng et al.,

2003). Likewise, pooling of samples can be a reasonable

approach to RNAseq for detection of genes with low and

moderate levels of expression to reduce costs and maintain

power (Takele Assefa et al., 2020).

Developing a reference database of preclinical tissue gene

expression offers a worthwhile opportunity to understand innate

differences in target gene expression that have had limited

characterization in preclinical species and enable users to

further perform translational analyses with existing human

expression databases. By performing RNAseq on a wide and

diverse panel of tissues, we decrease the likelihood that there will

be a future need to conduct additional tissue gene expression

analyses, thereby reducing the overall animal requirement

consistent with the 3Rs (replacement, reduction, and

refinement) principle. This dataset provides valuable

information to aid in species selection and experimental

design, as well as in interpretation of study data, reducing

costly study delays or repeat studies.

In summary, this work provides a comprehensive multi-

tissue cross species database for male and female mice, rats,

dogs, and monkeys. The species and strains used are of

particular interest for drug safety assessment and prediction.

The availability of these data will assist drug discovery and

development and reduce the need to conduct of additional basal

gene expression studies, reducing animal use. It is hoped that

improved understanding of species-specific toxicities and

preclinical to clinical toxicity translation will be significantly

advanced for those applying this work.
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SUPPLEMENTARY FIGURE S1
Number of Transcripts Expressed Across Tissues. FPKMs were generated
for transcripts across all samples. The number of expressed transcripts
(FPKM ≥ 1) for each tissue was calculated for mouse (A) and rat (B).

SUPPLEMENTARY FIGURE S2
Number of Transcripts Expressed Across Tissues. FPKMs were generated
for transcripts across all samples. The number of expressed transcripts
(FPKM ≥ 1) for each tissue was calculated for dog (A) and monkey (B).

SUPPLEMENTARY FIGURE S3
Average Expression Across Tissues. The average Log2(FPKM) across all
expressed transcripts in each tissue was calculated formouse (A) and rat (B).

SUPPLEMENTARY FIGURE S4
Average Expression Across Tissues. The average Log2(FPKM) across all
expressed transcripts in each tissue was calculated across dog (A) and
monkey (B).

SUPPLEMENTARY FIGURE S5
Correlation Analysis Across Major Toxicity Organs. Spearman
correlation analysis was performed to assess differences across
duodenum, heart, kidney, liver, lung, and spleen in both males (A)
and females (B).

SUPPLEMENTARY FIGURE S6
Hierarchical Clustering of Tissues in Mouse and Rat. Dendrogram to
visualize hierarchical clustering of female tissues (left) in mouse (A) and
rat (B). These tissues were also mapped to broader organ/system
classifications (right).

SUPPLEMENTARY FIGURE S7
Hierarchical Clustering of Tissues in Dog and Monkey. Dendrogram to
visualize hierarchical clustering of female tissues (left) in dog (A) and
monkey (B). These tissues were also mapped to broader organ/system
classifications (right).

SUPPLEMENTARY FIGURE S8
Expression heat map of key transporters in the liver, kidney, and heart of
female preclinical species and humans confirms tissue specific
expression of liver and kidney transporters across species. Heart was
included as a general negative control as few transporters are reported to
be to be highly expressed there. Expression patterns are generally
consistent across species and across sexes with some notable
exceptions.
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