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Growth and fat deposition are complex traits, which can affect economical

income in the pig industry. Due to the intensive artificial selection, a significant

genetic improvement has been observed for growth and fat deposition in pigs.

Here, we first investigated genomic-wide association studies (GWAS) and

population genomics (e.g., selection signature) to explore the genetic basis

of such complex traits in two LargeWhite pig lines (n=3,727) with theGeneSeek

GGP Porcine HD array (n = 50,915 SNPs). Ten genetic variants were identified to

be associated with growth and fatness traits in two Large White pig lines from

different genetic backgrounds by performing both within-population GWAS

and cross-population GWAS analyses. These ten significant loci represented

eight candidate genes, i.e., NRG4, BATF3, IRS2, ANO1, ANO9, RNF152, KCNQ5,

and EYA2. One of them, ANO1 gene was simultaneously identified for both two

lines in BF100 trait. Compared to single-population GWAS, cross-population

GWAS was less effective for identifying SNPs with population-specific effect,

but more powerful for detecting SNPs with population-shared effects. We

further detected genomic regions specifically selected in each of two

populations, but did not observe a significant enrichment for the heritability

of growth and backfat traits in such regions. In summary, the candidate genes

will provide an insight into the understanding of the genetic architecture of

growth-related traits and backfat thickness, and may have a potential use in the

genomic breeding programs in pigs.
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1 Introduction

In the past decades, Large White pigs had experienced

intensive artificial selection for the fast growth rate and a high

lean percentage (Bosi and Russo, 2004; Zhang et al., 2020). Their

excellent performance has led them to dominate the global pig

industry. Days of age at 100 kg live weight (AGE100) has been

used as the evaluation trait for growth rate. The range of

AGE100 heritability is from 0.3 to 0.5, which are moderate

(Johnson and Nugent, 2003). Since a strong negative genetic

correlation was between backfat thickness and carcass lean

percentage (Bidanel et al., 1994), backfat thickness at 100 kg

(BF100) is a good predictor for carcass lean percentage in pig

breeding industry (Davoli et al., 2019). Both AGE100 and

BF100 are economically important traits in Large White pigs.

Therefore, a better dissection of the genetic architecture of

growth and fat deposition traits will benefit for breeding and

genetic improvement in pigs.

Genome-wide association study (GWAS) is a powerful tool

for revealing the genetic basis of quantitative traits across the

whole genome, which usually use high-density SNP genotypes in

livestock and poultry population. Numerous GWASs in different

pig populations have successfully identified many candidate

genes associated with important production traits, such as

growth, carcass (Jiang et al., 2018; Bergamaschi et al., 2020)

and reproductive traits (Wang Y et al., 2017; Wang et al., 2018;

Chen et al., 2022). However, low reproducibility rates (Marigorta

et al., 2018) and a large number of false-positive discoveries

(Colhoun et al., 2003) were common among those studies. The

cross-population GWAS has emerged as an efficient strategy to

prioritize GWAS results for further functional follow-ups, and

Mendelian randomization studies (Panagiotou et al., 2013). This

method provides the optimal power to look for the effects that are

homogeneous across cohorts, meanwhile it can also shed light on

between-study heterogeneity (Begum et al., 2012) and reduce

false-positive findings (Evangelou et al., 2007).

In this study, the objectives were 1) to conduct GWAS for

AGE100 and BF100 within two Large White pig lines with

distinct genetic backgrounds; 2) to detect shared loci in cross-

population GWAS; 3) to integrate GWAS with selection

signatures to explore whether the associated loci are under

selection. The findings here will help unravel the genetic

background of these two complex traits in pigs.

2 Materials and methods

2.1 Animals and phenotypes

Data were obtained from two Large White populations with

different genetic backgrounds in one Chinese commercial pig

company in Shanghai City, which were originated from

Canadian and French lines. Feeding and performance testing

of animals from these two lines were carried out at two different

farms. When the average live weight per batch was approximate

100 kg, individual tests were performed. Body weight and

ultrasonic backfat thickness between 11th to 12th ribs were

measured. The initial and ending dates were recorded. To

uniform the data, the measured age was adjusted to 100 kg

live weight using the equation (Wang, 2007, 18–19):

AGE100 � measured age + 100 kg−measured age
CF , where CFmale �

measured weight
measured age × 1.826 and CFfemale � measured weight

measured age × 1.715, and

themeasured backfat thickness was adjusted to 100 kg live weight

using the formula (Chen et al., 2019): BF100male � measured

backfat × 12.402
12.402+0.106 × (measured weight−100) and BF100female �

measured backfat × 13.706
13.706+0.119 × (measured weight−100).

Table 1 shows a summary of the descriptive statistics of

AGE100 and BF100 traits. Totally, there were 3,727 observations

available for both AGE100 and BF100. Out of them, 2,138 were

from the Canadian lines and 1,589 were from French lines. These

Large White pigs were born between 2015 and 2020. According

to the pedigree information, there were no genetic connectedness

between two populations. As seen in Table1, the heritability of

AGE100 in Canadian and France lines are 0.15 and 0.30, while

the heritability of BF100 in Canadian and France lines are

0.21 and 0.44, respectively.

2.2 Genotyping and quality control

Genotyping all the individuals with phenotypes was

carried out using GeneSeek GGP Porcine HD array. Since

the SNP chip is composed of 50,915 probes according to the

Sus Scrofa 10.2 version, the autosomal SNPs were further

liftovered to the latest version of the pig genome Sus Scrofa

11.1. Thus, 46,258 autosomal SNPs were kept for the

subsequent analysis.

Quality control was executed by PLINK (v1.90) (Purcell et al.,

2007). Pigs with call rate < 0.9 were excluded. SNPs with a minor

allele frequency (MAF) below 0.05 and call rate < 0.9 were

excluded in each population. Finally, the remaining autosomal

SNPs were 41,172 and 40,506 with the average distances of

53.87 Kb and 54.85 Kb between adjacent SNPs in Canadian

and French lines, respectively.

2.3 Population genomics analysis

To investigate the population stratification, principal

component analysis (PCA) was conducted using the

remaining SNPs to obtain eigenvalues and eigenvectors by

PLINK (v1.90) (Purcell et al., 2007). In addition, we

performed ancestry estimation using ADMIXTURE (v1.3.0)

(Alexander et al., 2009). The number of level of genetic

structure were estimated from K = 1 to four for all individuals

jointly, followed by the cross-validation error (CV) procedure.
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The linkage disequilibrium (LD, expressed as r2) was calculated

using PLINK (v1.90) (Purcell et al., 2007) within each line. In this

study, the population effect size (Ne) was computed by SNeP

software (v1.1) (Barbato et al., 2015).

2.4 Genome wide association studies

The mixed model was executed for analyzing the traits under

study as following:

y � μ +Xb +Wg + Zu + e (1)

where y is the vector of target phenotypes of individuals; μ is

overall mean; b is the vector of fixed effects: sex (two levels) and

year-season in which seasons were comprised of four levels

(Spring: March to May; Summer: June to August; Autumn:

September to November; Winter: December to February); g is

the vector of the SNP effects, X is the matrix of incidence

associating each observations to the pertinent level of fixed

effects, W is the incidence matrix relating observations to

SNPs effects with elements coded as 0, one and two for

genotype A1A1, A1A2, and A2A2, respectively, u is the random

additive genetic effect of the individual and is assumed to be

distributed as N(0, Gσ2u), G is the genomic relationship matrix

and σ2u is the polygenic additive genetic variance, Z is incidence

matrix for u, e is the random residual and is assumed to be

distributed as N(0, Iσ2e), where I is the identity matrix and σ2e is

the residual variance. Associations between the target traits and

the SNPs were analyzed using single-SNP association tests in

each population, which were implemented by themlma option of

the software GCTA (Version 1.93.3beta) (Yang et al., 2011).

Furthermore, we integrated two Large White pig lines to

identify the candidate genes using combined-population GWAS

and cross-population GWAS. In the combined-population

GWAS, line effect was taken into account the fixed effect, and

the analysis procedure was followed the single-population GWAS

mentioned above. The cross-population GWAS also utilized the

summary data of single-population GWAS to implement meta-

analysis by METAL (version 2011–03–25) (Willer et al., 2010). In

meta-analysis, the weighted Z-score model took account of the

p-values, direction of SNP effects and the number of individuals. In

each case, threshold p-values were set to -log10 (1/SNPs) and -log10
(0.05/SNPs) for suggestive and Bonferroni-adjusted genome-wide

significance, respectively. Quantile-quantile (QQ) plot of–log

(p-values) was examined to determine how well GCTA

accounted for population structure and family relatedness.

2.5 Partitioning heritabilities of complex
traits based on selection signatures

In response to intensive artificial selection pressures, the

porcine genome has been sculpted signals at the underlying

genomic regions harboring functional genetic variants, which

are termed as selection signatures (Bertolini et al., 2018).

Population differentiation-based methods were performed,

including FST, hapFLK and runs of homozygosity (ROH). The

VCFtools software (Danecek et al., 2011) was used to compute

the Weir and Cockerham’s FST estimator (Weir and Cockerham,

1984) per site between the two pig lines. The hapFLK statistic

(Fariello et al., 2013) was estimated using hapFLK module in

python. It should be mentioned that before calculation of

hapFLK values, fastPHASE (Scheet and Matthew, 2006) was

used to determine the optimum number of haplotype clusters.

ROH analysis was performed using PLINK (v1.90) (Purcell et al.,

2007), and the parameters were assigned following our previous

study (Shi et al., 2020).

In addition, we further investigated the impact of SNPs

undergoing selection signatures on the traits under study.

First, according to the sizes of selection signals, we sorted the

whole SNPs and split them into five sets [0–20%, 20–40%,

40–60%, 60–80% and 80–100%]. To quantify the relative

importance of SNPs sets, we calculated one of these SNP sets

and the remaining four SNP sets explaining the proportion of

phenotypic variance. The statistical model was employed as

below:

y � μ +Xb + u1 + u2 + e (2)

where u1 is the vector of the first random additive genetic effect,

which is distributed as u1 ~ N(0, G1σ2u1 ), where G1 is the first

TABLE 1 Descriptive statistics of AGE100 and BF100.

Trait Source Unit N min Max Mean Sd h2 Significant
level

AGE100 Canadian
line

day 2,138 138.25 215.78 173.04 10.83 0.15 p <0.001

France line 1,589 132.89 215.75 162.66 10.77 0.30

BF100 Canadian
line

mm 2,138 5.89 21.15 11.11 2.00 0.21 p <0.001

France line 1,589 5.36 19.82 10.20 2.06 0.44
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genomic relationship matrix that was constructed using one of

quantile SNPs, u2 is the vector of second random additive genetic

effect, which is distributed as u2 ~ N(0, G2σ2u2 ), where G2 is the

second genomic relationship matrix which was calculated using

the remaining four SNP sets. Other notations are same as Eq. 1.

These two random effect variances can be computed by Qgg R

package (Rohde et al., 2020). The proportion of phenotypic

variance contributed by the selected SNP set (h2u1 ) was

computed using the following equation: h2u1 �
σ2u1

σ2u1+σ2u2+σ2e
.

2.6 Annotation of candidate genes

To identify positional candidate genes, the BioMart database

(http://www.ensembl.org/) was implemented. The candidate

genes resided within the genomic regions of up- and

downstream 500 kb around the significant SNPs were taken

into account in our study. Functional annotation of the genes

located in the regions of interest was performed with R package

WebGestaltR (Wang J et al., 2017).

3 Results

3.1 Descriptive statistics of phenotype data
and population structure analysis

Table 1 summarized the descriptive statistics of AGE100 and

BF100 in the two LargeWhite pig lines. Phenotypes of both traits

followed a normal distribution (Supplementary Figure S1). PCA

showed a substantial genetic diversity between these two

populations. The total genetic variance in these animals was

explained 14.92%, 1.25% and 1.16% by the first three principal

components, respectively (Figure 1A). As seen in Figure 1A,

PC1 distinctly divided them into Canadian and French line,

suggesting that two pig populations shared less similarity in the

genetic background. Moreover, in PC2 Canadian line had a

widespread. This finding agreed with the results of model-

based analysis of population admixture which was showed in

Figure 1B (K = 2, 3 and 4). Figure 1C displayed average LD (r2) at

various physical distances between two loci on all the autosomes.

The average r2 at pair-wise SNP distance of less than 5 Mb on

FIGURE 1
Descriptive statistics of population structure. (A) Principal component analysis indicating the relationship between the first two principal
components (PC1, PC2) and the proportions of genetic variances explained (% explained var.) among Canadian and French pig lines. (B) Admixture
analysis for Canadian and French lines ranging from K = 2 to K = 4. (C) Linkage disequilibrium (LD) for the Canadian and French lines, r2 values were
averaged within bins of 0.5 Mb between pair-wise SNP physical distance and pooled over autosomes. (D) Average estimated effective
population size (Ne) plotted against the number of past 500 generations.
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autosomes ranged from 0.432 to 0.582 in Canadian Large White

population. The LD decay pattern in French population was

similar to the Canadian line with average r2 ranging from 0.431 to

0.588. The average r2 decreased much more slowly with the

increase of pair-wise SNP physical distance and remained

constant beyond 1 Mb in two lines (Figure 1C). Ne estimated

at 99 generations ago were 110 for Canadian line and 107 for

French line, respectively (Figure 1D). It should be noted that

MAFs in Canadian and French lines had no significant

differences (Supplementary Figure S2).

FIGURE 2
Manhattan and Quantile-Quantile (QQ) plots of genome-wide association analysis for AGE100 trait. (A) is Canadian line. (B) is French line. (C) is
combined-population. (D) is cross-population GWAS analysis. The x-axis denotes autosomes. The y-axis indicates -log10 (p-values).
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3.2 Partitioning heritability with selection
signatures partitioning heritability with
selection signatures

To identify the selection signatures between these two

populations, FST, hapFLK and ROH were used to detect

selection signatures across the whole genome in two pig lines

(Supplementary Figure S3). In each selection signature method,

the top 20% of genomic regions were selected. All the genes in the

genomic regions under selection were further analyzed for

functional annotation using the WebGestaltR package (Wang J

et al., 2017) (Supplementary Figure S4). To find the proportions of

phenotypic variances explained by SNPs subjected to selection, the

entire genome was divided into five groups according to selection

signatures. The heritability of AGE100 and BF100 explained by

these groups were jointly estimated using a multi-components (a

GMR for each group) linear mixed model. However, we did not

observe heritability of AGE100 and BF100 tended to enrich in the

regions under selection (Supplementary Figure S5). The possible

reason for this result was the lack of statistical power due to the

small population size and the traits are complex (Ma et al., 2019).

3.3 SNPs significantly associated with
AGE100

For both lines, no genome-wide significant SNPs were detected

associated with AGE100 trait (Figure 2A, Figure 2B), while only four

SNPs at the suggestive significant level were observed (Figure 2C;

Table 2). Only one SNP located in Sus scrofa chromosome 7 (SSC7)

was identified by cross-population GWAS to be significantly

associated with AGE100 at the suggestive significant level, which

was also detected in the combined-population (Figure 2D; Table 2).

3.4 SNPs significantly associated with
BF100

For Canadian line, two SNPs (SSC2:236157, SSC2:3285386)

were significantly associated with BF100 at genome-wide

significant level. These two SNPs were also detected by the

cross-population GWAS analysis, which resided in the genic

regions of ANO9 and ANO1 (Figure 3A; Table 3). There was no

significant SNPs identified to be associated with BF100 trait in

the French line (Figure 3B).

Three SNPs (SSC1:159697691, SSC2:3285386 and SSC18:

48235741) were identified to be significantly associated with

BF100 using the combined-population GWAS at the

suggestive significant level (Figure 3C; Table 3). Cross-

population GWAS analysis of association results from the two

pig populations revealed two additional SNPs for BF100, and the

most significantly associated SNP from the cross-population

GWAS was located on chromosome 2 (Figure 3D; Table 3).

4 Discussion

In present study, we carried out the population structure and

admixture analyses in two different genetic background lines of

Large White pigs which are Canadian and French lines. LD

pattern of the studied populations strongly relied on their

evolutionary history and structure (Bohmanova et al., 2010).

The LD at long distances revealed Ne in the recent past, while the

LD at short distances reflected the Ne in the distant past (Hayes

et al., 2003). Although the LD pattern and Ne results in these two

lines were similar, the Canadian and French lines were obviously

separated by admixture analysis at assumed K values from 2 to 4,

which was further supported by PCA. Therefore, these two

populations could not be pooled directly to estimate SNP

effects because of the population stratification. In multi-

population association studies, population stratification is the

confounding factor that inflates the false positive rate (Jiang et al.,

2019; Sohail et al., 2019; Morris et al., 2020). The cross-

population GWAS analysis was used summary statistics from

single-population GWAS, which can alleviate the problem of

population stratification (Salanti et al., 2005; Wang et al., 2012).

Lots of the significant SNPs detected using the single-population

GWASwere validated by the cross-population GWAS. Furthermore,

cross-population GWAS identified novel genetic loci. This method

can produce a precise estimate of the SNP effect and increase

TABLE 2 Significant SNPs and genes in which they are located identified in the genome-wide association study for AGE100 trait.

SSC (Sus scrofa chromosome) Position (bp) p-value Distance Gene

Combined-population

7 56252185 4.19 × 10–6 Within NRG4

9 130681106 1.77 × 10–5 Downstream 18 Kb BATF3

11 76296871 4.45 × 10–6

11 76606088 2.56 × 10–6 Downstream 20 Kb IRS2

Cross-population

7 56252185 7.13 × 10–6 Within NRG4
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considerably statistical power. This property is important to a small

sample size because the power of the primary study is limited. Some

significant SNPs were identified using the combined-population

GWAS but not detected using the cross-population GWAS,

although the data size is same. The reason might be that a SNP is

identified to be significantly associated with a trait in one population

since the SNP is in linkagewith the causalmutation.Nevertheless, the

LD pattern might be different in another population, and thus can

lead to a weakened association between the SNP and trait if

combining these populations. Moreover, different populations

may have different causal variants segregating at the same locus,

which can result in the reduction of significance using the cross-

populationGWAS, although this reversal of effect of causal variants is

not common (van den Berg et al., 2020).

FIGURE 3
Manhattan and Quantile-Quantile (QQ) plots of genome-wide association analysis for BF100 trait. (A) is Canadian line. (B) is French line. (C) is
combined-population. (D) is cross-population GWAS. The x-axis denotes autosomes. The y-axis indicates -log10 (p-values).
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For AGE100, both combined-population GWAS and cross-

population GWAS simultaneously identified one SNP (SSC7:

56252185) that resided in the genic region of the NRG4 gene.

This gene is a member of the EGF family of extracellular ligands,

and played a key role in the modulation of glucose and lipid

metabolism and energy balance (Tutunchi et al., 2020; Martinez

et al., 2022). In addition, four SNPs significantly associated with

BF100 were identified by cross-population GWAS. Out of them,

three SNPs (SSC1:52528199, SSC2:236157, and SSC2:3285386)

located the genomic regions identified to be associated with

backfat thickness in multiple pig lines by other study (Gozalo-

Marcilla et al., 2021). In this region, both combined-population

and cross-population GWAS simultaneously identified anoctamin

1 (ANO1) gene, which was also known as TMEM16A. ANO1 and

IRS2 played positive roles in insulin secretion (Dong et al., 2006;

Xu et al., 2014; Hashimoto et al., 2015; Toyoshima et al., 2020),

which could affect growth rate and fat deposition in pigs.

ANO1 gene defects or its expression in pancreatic islets might

influence cytokine expression and elicit an immune response that

could result in death of β cell (Xu et al., 2014). CRISPR-edited

animals study demonstrated KCNQ3 expression was sensitive to

the energy state of animals (Stincic et al., 2021). EYA2 had been

documented to be closely associated with the biological processes

of striated muscle tissue development, muscle cell and skeletal

muscle cell differentiation (Li et al., 2019). In addition, RNF152

gene was also identified to be related to IMF (Zhang et al., 2021),

and EYA2 has already been identified by selection signature

detection between the Sudanese thin-tail vs. Ethiopian fat-rump

sheep (Ahbara et al., 2019).

5 Conclusion

In this study, we performed single-, combined- and cross-

population GWAS analysis for growth and fatness traits in

purebred Large White pigs that were from two separated

foundation lines (Canadian and French lines). We demonstrated

that the cross-population GWAS could be used to increase the

power of GWAS. One candidate gene, ANO1 gene was

simultaneously identified for both two lines in BF100 trait. By

integrating selection signatures with growth rate and backfat

thickness relevant trait association studies, however, we did not

observer that heritability of growth and fatness were significantly

enriched in genomic regions under selection. Future study is needed

to refine the genomic regions and identify candidate genes and

candidate mutations affecting growth and fatness in pigs.
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