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MicroRNAs (miRNAs) are closely associated with the occurrences and

developments of many complex human diseases. Increasing studies have

shown that miRNAs emerge as new therapeutic targets of small molecule

(SM) drugs. Since traditional experiment methods are expensive and time

consuming, it is particularly crucial to find efficient computational

approaches to predict potential small molecule-miRNA (SM-miRNA)

associations. Considering that integrating multi-source heterogeneous

information related with SM-miRNA association prediction would provide a

comprehensive insight into the features of both SMs andmiRNAs, we proposed

a novel model of Small Molecule-MiRNA Association prediction based on

Heterogeneous Network Representation Learning (SMMA-HNRL) for more

precisely predicting the potential SM-miRNA associations. In SMMA-HNRL, a

novel heterogeneous information network was constructed with SM nodes,

miRNA nodes and disease nodes. To access and utilize of the topological

information of the heterogeneous information network, feature vectors of

SM and miRNA nodes were obtained by two different heterogeneous

network representation learning algorithms (HeGAN and HIN2Vec)

respectively and merged with connect operation. Finally, LightGBM was

chosen as the classifier of SMMA-HNRL for predicting potential SM-miRNA

associations. The 10-fold cross validations were conducted to evaluate the

prediction performance of SMMA-HNRL, it achieved an area under of ROC

curve of 0.9875, which was superior to other three state-of-the-art models.

With two independent validation datasets, the test experiment results revealed

the robustness of ourmodel. Moreover, three case studies were performed. As a

result, 35, 37, and 22 miRNAs among the top 50 predicting miRNAs associated

with 5-FU, cisplatin, and imatinib were validated by experimental literature

works respectively, which confirmed the effectiveness of SMMA-HNRL. The

source code and experimental data of SMMA-HNRL are available at https://

github.com/SMMA-HNRL/SMMA-HNRL.
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Introduction

MicroRNAs (miRNAs) are a large group of non-coding

RNAs (ncRNAs) with approximately 22 nucleotides in length,

which are widespread in eukaryotes (Bartel, 2004). Since the

discovery of the first miRNA, lin-4, in Caenorhabditis elegans by

Lee et al. (1993), accumulating evidence has demonstrated that

miRNAs play vital roles in various key physiological processes,

including cell proliferation (Cheng et al., 2005), cell

differentiation (Miska, 2005), cell apoptosis (Xu et al., 2004),

regulation of animal immune function (Stern-Ginossar et al.,

2007) and regulation of gene expression levels (Shivdasani, 2006)

etc. Meanwhile, many studies have confirmed that numerous

complex human diseases are also closely related to the

dysregulations of related key miRNAs (Croce and Calin, 2005;

Sayed and Abdellatif, 2011; Chen et al., 2019). Due to the ubiquity

of miRNAs in physiological and pathological processes, miRNAs

are also recognized as a potentially important class of drug targets

(Liu et al., 2008; Rossi, 2009; Cheng et al., 2015). Nowadays,

computer-aided drug design has been applied broadly in the early

stages of drug development, and the prediction results of

computational models can provide directions for researchers

to find the most effective drugs, reduce experimental costs

and blindness significantly (Zhao et al., 2019). Among them,

computational prediction of Small Molecule-miRNA (SM-

miRNA) associations is a critical step in drug R&D (Chen

et al., 2018). With deepening research in the field of SM-

miRNA association prediction, many corresponding databases

have been constructed, such as SM2miR (Liu et al., 2013),

NoncoRNA (Li et al., 2020), mTD (Chen et al., 2017a), and

NRDTD (Chen et al., 2017b). These databases provide abundant

resources for exploring SM-miRNA associations and make it

possible to construct effective and accurate SM-miRNA

association prediction models. SM-miRNA computational

models are usually divided into three categories, models based

on biological networks, models based on machine learning

algorithms and other prediction models.

In the first category, the models construct biological

networks based on biological information and utilize network

topology information to predict potential SM-miRNA

associations. In 2015, Lv et al. (2015) built an integrated

heterogeneous network by SM and miRNA similarity

networks and SM-miRNA association network. They

employed random walk with restart (RWR) algorithms on the

heterogeneous network for predicting potential SM-miRNA

associations. In 2016, Li et al. (2016) developed a network-

based inference framework which was termed SMiR-NBI. A

heterogeneous network which consisted of SMs, miRNAs and

genes was constructed, and the network-based inference

algorithm was implemented to calculate the association scores

between the given SMs and miRNAs. Qu et al. (2018) proposed a

prediction framework based on a heterogeneous network which

was named TLHNSMMA in 2018. TLHNSMMA constructed a

triple-layer network and finally predicted potential SM-miRNA

associations by the iterative update algorithm based on the global

network. In the same year, Guan et al. (2018) proposed GISMMA

based on Graphlet interactions. Graphlet interactions between

SMs and miRNAs were calculated on SM and miRNA similarity

networks. In 2020, Shen et al. (2020) proposed a computational

model named SMMART based on graph regularization

technique.

The second category of the computational models predicts

novel SM-miRNA associations based on machine learning

algorithms. Extracting the biological features of SMs and

miRNAs for training the classifiers, potential associations are

predicted with machine learning algorithms. In 2019, Wang et al.

(2019) proposed RFSMMA model based on random forest

algorithm. A filtering approach was employed to extract

reliable features of SM-miRNA pairs by using their similarity

data. Subsequently, the features were exploited to train the

random forest model, and potential SM-miRNA associations

were predicted with it. In 2022, Wang et al. (2022) developed an

EKRRSMMA model based on ensemble of kernel ridge

regression. By constructing different feature subsets for SMs

and miRNAs, an integrated learning model containing

multiple KRR-based base learning tasks was constructed. The

prediction results of all base learners were averaged and the

results were introduced as the SM-miRNA association scores.

Beside the above two categories, there are also other models

which can predict SM-miRNA associations. In 2019, Xie et al.

(2019) proposed a new text mining framework, termed EmDL,

for extracting associations between miRNAs and SMs efficacy

from the literature and recording them in the database. In 2012,

Jiang et al. (2012) constructed a SM-miRNA Network (SMirN)

for each type of 23 common cancers. The associations of cancer-

related miRNAs with SMs were determined by the enrichment

scores. To give readers a clear overview, Supplementary Material

S1 summarizes the aforementioned models in a tabular form.

More recently, network representation learning algorithms

have been widely used in the field of biomedical sciences (Yue

et al., 2020). In 2021, Thafar et al. (2021) predicted drug-target

associations with node2vec (Grover and Leskovec, 2016) and

ensemble learning. Ji et al. (2020) adopted the LINE (Tang et al.,

2015) to catch the feature information from the drug-target

network and utilized random forest method as the classifier in

2020. Early network representation learning algorithms could

only address homogeneous networks. Yet in the reality, a vast

number of networks are composed of different types of entities
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and different kinds of relationships, which were called

heterogeneous information networks. Heterogeneous network

representation learning algorithm was more capable of retaining

the rich structural and semantic information in heterogeneous

information networks. Thus, numerous heterogeneous network

representation learning algorithms have been proposed rapidly,

and have been implemented into biological networks. In 2021,

Deng et al. (2021) used HIN2Vec (Fu et al., 2017) to learn the

embedding vectors for each node in lncRNA-disease-miRNA

heterogeneous network and utilized gradient boosting tree (GBT)

classifier for predicting potential lncRNA-disease associations. In

2018, Zhu et al. (2018) utilized Metapath2vec (Dong et al., 2017)

to extract heterogeneous network features and employ a

kernelized Bayesian matrix factorization method for predicting

drug-gene associations.

In this study, we proposed a novel model, SM-MiRNA

Association prediction based on Heterogeneous Network

Representation Learning (SMMA-HNRL), to improve the

performance of SM-miRNA association prediction. The data

was collected from six networks (miRNA-SM, miRNA-disease,

miRNA-miRNA, SM-disease, SM-SM, disease-disease) for

constructing miRNA-SM-disease heterogeneous information

network. Inspired by the success of integrated features on the

lncRNA-disease association prediction problem (Li et al., 2021),

we employed two excellent heterogeneous network

representation learning algorithms, HIN2Vec (Fu et al., 2017)

and HeGAN (Hu et al., 2019), to embed all nodes of the miRNA-

SM-disease heterogeneous network into low-dimensional vectors

respectively, and then combined them into the novel feature

vectors of SMs and miRNAs. Finally, Hadamard function was

chosen to gain all SM-miRNA vector pairs, and LightGBM (Ke

et al., 2017) classifier was selected to predict potential SM-

miRNA associations. To assess the prediction performance of

SMMA-HNRL, we compared it with three state-of-the-art

models with 10-fold-cross validations. For validating the

robustness, our model performed on two independent

validation datasets. Moreover, the dependable prediction

performance of SMMA-HNRL was also confirmed with three

case studies. All the results of evaluation experiments

demonstrated the reliable and predictive performance of

SMMA-HNRL.

Materials and methods

SM-miRNA association network

The experimentally validated SM-miRNA associations used

in our study was downloaded from the SM2miR v3.0 database

(Liu et al., 2013). By manual inspection, we eliminated the SMs

which were not present in DrugBank (Wishart et al., 2018), and

merged the mature miRNAs which were generated from the

same precursor miRNAs (e.g., hsa-miR-21-3p and hsa-miR-21-

5p). Then, the format of mature miRNAs was converted to that of

precursor miRNA. Moreover, non-human data and duplicate

SM-miRNA associations were culled out. Finally,

1766 experimentally validated SM-miRNA associations which

included 546miRNAs and 93 SMs were obtained. Finally, an SM-

miRNA association network was constructed based on these

1766 associations which was used during training the model and

the cross-validation evaluation.

miRNA-disease association network

Human experimentally validated miRNA-disease

associations was downloaded from the HMDD v3.2 database

(Huang et al., 2019), and disease names of miRNA-disease

associations were converted into the standardized names

according to the MESH glossary. After removing duplicated

data, a total of 18,732 miRNA-disease associations involving

1206 miRNAs and 892 diseases were obtained and the miRNA-

disease association network was constructed with them.

SM-disease association network

The SM-disease association data was collected from the

SCMFDD-L dataset in the SCMFDD database (Zhang et al.,

2018). SCMFDD acquired available drug-disease associations

from the CTD database (Davis et al., 2017) and selected drugs

with known drug substructure information. The SM drugs were

selected and duplicated data was removed. Through screening,

49,032 pairs of SM-disease associations were obtained which

included 1313 SMs and 2822 diseases.

Integrated SM similarity network

The integrated SM similarity data was downloaded from the

DrugSimDB database (Azad et al., 2021) which were the mean

values of chemical structure similarity, target protein sequence-

based similarity, target protein functional similarity and drug-

induced pathway similarity of SM drugs. The integrated SM

similarity network was constructed according to this data which

included 1331 SM drugs.

Integrated miRNA similarity network

The miRNA similarity data was sourced from miRNA-disease

associations and Gene Ontology (GO) annotations of miRNA target

genes respectively. In 2010, Wang et al. (2010) proposed a method

namedMISIM to calculate the functional similarity ofmiRNAs based

on the hypothesis that functionally similar miRNAs were often

associated with semantically similar diseases. In 2019, MISIM was
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updated and named MISIM v2.0 by our research group which not

only had a threefold increase in data content compared with MISIM

but also improved the original MISIM algorithm (Li et al., 2019).

Additionally, Yang et al. (2018) developed a novel method called

MIRGOFS which calculated the functional similarity of miRNAs

based on the GO annotations of their target genes. We downloaded

miRNA similarity data from MISIM v2.0 and the normalized

miRNA similarity network data from MIRGOFS respectively. To

facilitate calculation, mature miRNAs produced from the same pre-

miRNA were merged and converted into the precursor miRNA.

Inspired by SM similarity network, we integrated the above

two miRNA similarity networks with average ensemble method.

If one miRNA was in only one similarity network, its similarity

value was considered the final results. In the end, an integrated

miRNA similarity network consisting of 1309 miRNAs was

obtained.

Disease semantic similarity network

The semantic similarity values between two diseases can be

calculated based on the Medical Subject Headings (MESH)

disease structure. Each disease represented by the MESH

descriptor, which were obtained from National Library of

Medicine (https://www.nlm.nih.gov/), could be represented as

a Directed Acyclic Graph (DAG). One disease d can be denoted

in the DAG as follows:

DAGd � d, Td, Ed( ) (1)

Where Td represented the node set which was composed of

disease d and all its ancestor nodes; and Ed represented the edge

set of disease d in the DAG. The semantic contribution value D of

disease t to disease d can be defined by the following equation:

Dd t( ) � 1
Dd t( ) � max Δ*Dd t′( ) | t′ ∈ children of t{ } if t ≠ d

{ (2)

Eq. (2) indicated that if there were multiple paths for disease t

to reach disease d in the DAG graph, the shortest path needed to

be selected to achieve the maximum semantic contribution value.

Δ was the semantic contribution factor which reflected the

influence degree of the parent node on the child nodes in the

DAG graph. Based on the related study by Xuan et al. (2013), the

value of Δ was set as 0.5 in the beginning of the calculation. After

accumulating the semantic contribution values of all disease

nodes in the DAG, the semantic contribution value of every

disease was obtained.

DV d( ) � ∑
t∈Td

Dd t( ) (3)

With the semantic contribution value of each disease, we could

calculate the similarity between any two diseases di and dj
according to Eq. (4).

Sim di, dj( ) � ∑t∈Tdi
∩Tdj

Ddi t( ) +Ddj t( )( )
DV di( ) + DV dj( ) (4)

where t was used to denote nodes of disease di and dj in the

DAG structure, DV(di) and DV(dj) represented semantic

values of disease di and dj, and Ddi(t) and Ddj(t) were

indicated as the semantic contributions of disease t to

diseases di and dj.

Feature extraction by HeGAN

HeGAN was the first method which introduced Generative

Adversarial Networks (GAN) into heterogeneous networks

representation learning problem (Hu et al., 2019). The basic

idea of GAN was to train the discriminator and the generator

with the ideas of competition, and thus obtained the data latent

distribution. Compared with traditional heterogeneous network

representation learning methods, HeGAN exhibited more

stability to sparse data or noisy data and achieved the best

performance in downstream tasks on public datasets. Besides,

it should be noted that HeGAN did not employ meta-paths and

there was no costly meta-path setup.

HeGAN was composed of two main competing modules, the

relational perception discriminator and the generalized

generator. For a given node, the generalized generator firstly

attempted to generate fake samples associated with the given

node and fed these fake samples to the discriminator. The

FIGURE 1
The framework of the HeGAN algorithm.
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discriminator accepted true samples from the real network and

fake samples generated by the generator, respectively. Secondly,

HeGAN attempted to adjust its parameters to separate the fake

samples from the true samples repeatedly. Finally, the

discriminator predicted the probability of two nodes that

there was a relationship r between them. In the iterative

process, the trained discriminator continually forced the

generator to generate better fake samples, while the

discriminator would enhance its judgment ability

correspondingly. Figure 1. illustrates the framework of the

HeGAN algorithm.

Traditional network representation learning methods were

limited performance due to lack of making full use of the valuable

semantic information of heterogeneous information networks.

For a given miRNA m, suppose that there were two nodes SM1

and SM2 which were associated with it. The traditional methods

simply regarded SM1 and SM2 as true nodes and did not analyze

them in depth. Normally, SM1 and SM2 were generally associated

withm due tomultiple reasons, such as SM1 upregulatedm, while

SM2 downregulated m. The traditional methods did not take full

use of the valuable semantics embedded in heterogeneous

networks, which would lower the accuracy of functional

predictions of SM1 and SM2. The relational perception

discriminator and generalized generator introduced by

HeGAN were more suitable for distinguishing various types of

semantic relations between two nodes. Besides that, the negative

samples of the traditional methods were limited to the number of

known samples. In practice, the most representative negative

samples were likely to be located between the embedding vectors

corresponding to existing nodes, not the existing nodes. To better

generate negative samples, HeGAN specifically introduced one

generalized generator to generate negative nodes which did not

exist in the samples. For example, m′ in Figure 1, it did not exist

in the original graph, but it was the node which best represented

the original network.

Feature extraction by HIN2Vec

HIN2Vec was another heterogeneous network

representation learning method with excellent performance

(Fu et al., 2017). The core part of HIN2Vec was one three-

layer neural network which learned the rich information from

the heterogeneous information network by captured different

relationship information of network topologies. HIN2Vec not

only obtained low-dimensional representations of nodes, but also

learned representations of relationships (meta-paths) in the

networks. HIN2Vec also got the best performance in

downstream tasks. The flowchart of the HIN2Vec algorithm is

shown in Figure 2.

As illustrated in Figure 2, the HIN2Vec model consisted of

two main parts, one was the training data preparation which was

generated based on random walk and negative sampling, the

other was representation learning which was performed on the

generated training data. In training data generation, HIN2Vec

represented the heterogeneous network in the form of

〈m, n, r, L(m, n, r)〉, where m, n represented two nodes, r was

a different type of relationship between two nodes, L(m, n, r)was
a binary value representing whether there was a relationship

between the m and n nodes. HIN2Vec utilized random walk

algorithm to generate node sequences and differentiated their

types r. It was unlike Metapath2vec (Dong et al., 2017) which

FIGURE 2
The flowchart of HIN2Vec algorithm.

FIGURE 3
The neural network structure of HIN2Vec.
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walked exactly according to a given meta-path, the HIN2Vec

model completely randomly selected different walking nodes. If

there was a connection between two nodes, a random walk could

be conducted. Considering the above, HIN2Vec would retain

more contextual information and acquire richer semantics.

In the representation learning part, HIN2Vec innovatively

transformed the relationship between two nodes from multi-

classification problem to a multiple binary classification problem.

HIN2Vec built a three-layer feedforward neural network as a

logical binary classifier to predict whether there is a definite

relationship r between two nodes which avoided traversing all

relationships in the network, and learned the vector

representation of nodes and relationships at the same time.

Figure 3 showed the neural network structure of HIN2Vec.

From Figure 3, the relationship between two nodes in

HIN2Vec was no longer considered as a prediction object, but

as training data of the input layer. The model mainly predicted

whether there was a specific relationship r between node m and

node n.The inputs to the model were three one-hot vectors, �m, �n

and �r. They were converted in the latent layer to the latent vector

W′
M �m,W′

N �n and f01(W′
R �r). Since the semantic information of

the node was different from the semantic information of the

relationship, the regularization function f01(.) was added before

the relationship r for regularization to ensure that the value of the

relationship r was between 0 and 1. Then the three latent vectors

were aggregated with the Hadamard function (the elements in

the vector were multiplied two by two) to obtain the form of

W′
M �m⊙ W′

N �n⊙ f01(W′
R �r), and applied the identity function to

activate. At the output layer, HIN2Vec took summation for the

output d-dimensional vectors in the hidden layer and activated

them with the Sigmoid function. Eventually,

sigmoid (∑W′
M �m⊙ W′

N �n⊙ f01(W′
R �r)) was utilized for logical

classification.

HIN2Vec was trained iteratively on the training set D

with a backpropagation algorithm with stochastic gradient

descent. By continuously adjusting the weights of each entry

Wm, Wn and WR in set D, the objective function O was

maximized, which was the multiplication of each training

data entity Om,n,r(m, n, r) in set D. To simplify computation,

HIN2Vec maximizes log O instead of directly maximizing

O. The objective functions O and log O were defined as

follows:

O∝ logO � ∑
m,n,r∈D

logOm,n,r m, n, r( ) (5)

In particular, in a training sample 〈m, n, r, L(m, n, r)〉, if
L(m, n, r) was 1, Om,n,r(m, n, r) aimed to maximize P(r | m, n).
Otherwise, the Om,n,r(m, n, r) aimed to minimize P(r | m, n).
Om,n,r(m, n, r), log Om,n,r(m, n, r) and P(r | m, n) were derived

by the following formula:

Om,n,r m, n, r( ) � P r | m, n( ), if L m, n, r( ) � 1
1 − P r | m, n( ), if L m, n, r( ) � 0

{ (6)

log Om,n,r m, n, r( ) � L m, n, r( )log P r | m, n( )
+ 1 − L m, n, r( )[ ]log 1 − P r|m, n( )[ ]

(7)
P r|m, n( ) � sigmoid ∑W′

m �m⊙ W′
n �n⊙ f01 W′

R �r( )( ) (8)

Then, HIN2Vec adjusted the weights of W′
M �m,W′

N �n and

W′
R �r according to the gradients of logOm,n,r(m, n, r)

differentiated by W′
M �m,W′

N �n and W′
R �r, and thus maximized

the objective function O. The specific definitions were as follows:

W′
M �m≔ W′

M �m + dlogOm,n,r m, n, r( )
dW′

M �m
(9)

W′
N �n≔ W′

N �n + dlogOm,n,r m, n, r( )
dW′

N �n
(10)

W′
R �r≔ W′

R �r +
dlogOm,n,r m, n, r( )

dW′
R �r

(11)

Feature vector merging

With heterogeneous network representation learning

method HeGAN and HIN2Vec based on the above generative

adversarial network and meta-path random walk, we obtained

two feature vector matrices, U and V, respectively. The final

merging feature matrix X used in SMMA-HNRL was expressed

with the following merging formula:

X � U,V[ ] (12)

where [ ] represented the vector connect operation.

SMMA-HNRL model

In this study, we developed a novel model termed SMMA-

HNRL to improve the performance of predicting potential SM-

miRNA associations. The flowchart of SMMA-HNRL was shown

in Figure 4.

Results

Evaluation metrics

The Recall, Precision, Accuracy, F1 Score, ROC curve with

AUC (area under ROC curve) (Obuchowski and Bullen, 2018)

value and PR curve with AUPR (area under PR curve) (Saito and

Rehmsmeier, 2015) value were adopted as indicators for

evaluating the performance of SMMA-HNRL. In contrast

experiments, the average AUC values and the AUPR values of

ten training sets of each model were calculated and the

corresponding ROC curves and PR curves were drawn

according to the results of 10-fold cross validation. Finally, the
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FIGURE 4
The flowchart of SMMA-HNRL model. Step 1: The associated data and similarity data obtained from different biological databases were
preprocessed, a heterogeneous information network was constructed with three association networks (miRNA-SM, miRNA-disease, SM-disease)
and three similarity networks (miRNA-miRNA, SM-SM, disease-disease) in our study. Step 2: With two different network representation learning
algorithms, HeGAN and HIN2Vec, two feature matrices of the heterogeneous information networks were obtained. Step 3: Combining the
feature vectors ofmiRNAs and SMs from two featurematrices, amerged featurematrix was finally obtained. Step 4: Hadamard function was adopted
to convert SM and miRNA feature vectors into a feature vector for a SM-miRNA pair. The known SM-miRNA associations from the heterogeneous
information network were chosen as training set for LightGBM classifier to predict potential SM-miRNA associations.
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average values of all evaluation indicators were used to evaluate

the model performance. For experiment details, please see

Supplementary Material S2.

Comparison with other feature vector
merging methods

After we obtained two sets of feature vectors of SM and

miRNA by HeGAN and HIN2Vec, we conducted comparative

experiments to evaluate the performances of different merging

methods. Three merging methods (connection, averaging, and

multiplication) were adopted to fuse two feature vectors of both

SM and miRNA into one integrated vector. According to the

experimental results, the connect operation had obtained the best

performance. The detailed experimental results are shown in

Table 1.

Classifier selection

After calculating of the SM-miRNA pair vectors, the

problem of predicting potential SM-miRNA associations

could be considered as a binary classification problem. In

our study, 1766 pairs of SM-miRNA associations were

downloaded from the SM2miR database as positive

samples, and the same amount of SM-miRNA associations

from all remaining combinations were randomly selected as

negative samples. During the classifier selection, five different

popular machine learning methods, Naive Bayes (NB) (Yang,

2018), Linear Regression (LR) (Maulud and Abdulazeez,

2020), K-Nearest Neighbor (KNN) (Zhang and Zhou,

2007), AdaBoost (Freund and Schapire, 1997) and

LightGBM (Ke et al., 2017), were tested based on the

merging feature vectors of the above samples, respectively.

The performance of these five classifiers was evaluated with

the Recall, Precision, Accuracy, F1 Score, AUC, and AUPR.

Figure 5; Supplementary Material S3 illustrated the

performance of these classifiers.

Vector function selection for SM-miRNA
pair

After gaining node vectors of SMs and miRNAs by the

heterogeneous network representation learning algorithms, SM-

miRNA pair vectors were subsequently calculated with vector

functions. We study four commonly functions, Hadamard,

Average, Minus and Absolute Minus (Deng et al., 2021), which

merged one SM vector and onemiRNA vector into one SM-miRNA

pair vector. 10-fold cross validations of SMMA-HNRL with these

four functions were employed in turn. Table 2 documented the

descriptions of SM-miRNA pair vector functions and the

corresponding AUC values of 10-fold cross validations. The

experimental results demonstrated that Hadamard function

outperformed the remaining three vector combinations. It could

better remain the association between one SM vector and one

miRNA vector. Therefore, Hadamard function was chosen as the

SM-miRNA pair vector function for the following experiments.

TABLE 1 The six evaluation metrics results of the three merging methods.

Recall Precision Accuracy F1 score AUC AUPR

Connection 0.9745 0.9563 0.9649 0.9652 0.9875 0.9885

Averaging 0.9513 0.9456 0.9482 0.9483 0.9828 0.9813

Multiplication 0.9439 0.9491 0.9465 0.9463 0.9814 0.9823

FIGURE 5
The ROC curves of different classifiers.

TABLE 2 Vector functions and AUC values of 10-fold cross validations.

Functions Hadamard Average Minus Absolute minus

Descriptions v1i
�→*v2i

�→ v1i
�→+v2i

�→
2

v1i
�→− v2i

�→ |v1i�→− v2i
�→|

AUC 0.9875 0.9829 0.9808 0.9701
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Parameter tuning

In SMMA-HNRL, HeGAN, and HIN2Vec were utilized

for feature extraction respectively, which are both highly

encapsulated representation learning models. In our study,

most of the inner parameters of HeGAN and HIN2Vec were

set to the recommended values, and the number of dimensions

of features was treated as hyperparameters. The 16-

dimensional, 32-dimensional, 64-dimensional and 128-

dimensional topological feature vectors of SM nodes and

miRNA nodes were calculated and merged respectively for

gaining the optimal combination of feature vector

dimensions. The results of 10-fold cross validation of

different combinations were shown in Table 3. The

numbers in the vector combination name represented

feature vector dimensions, for example,

HeGAN16HIN2V16 represented the integrated features

combined with 16 dimensional features of HeGAN and

16 dimensional features of HIN2Vec. In Table 3, the best

evaluation results of each metric were in bold. With a

comprehensive consideration, HeGAN32HIN2V32 achieved

the best results in the most evaluation metrics which was also

marked in bold. Finally, HeGAN32HIN2V32 was selected as

the final feature combination of SMMA-HNRL.

Ablation study

One of the significant characteristics of SMMA-HNRL is that

the node feature vectors which were obtained from HeGAN and

HIN2Vec are merged. To explore whether merging node features

is effective for predicting SM-miRNA associations, we designed

the ablation studies to evaluate the performance of the methods

with only HeGAN feature vectors, only HIN2Vec feature vectors,

and the merging of HeGAN feature vectors and HIN2Vec feature

vectors. They were named as HeGAN32, HIN2V32, and

HeGAN32HIN2V32 respectively. The results of different

feature vector methods were shown in Table 4. It can be seen

from Table 4 that HeGAN32HIN2V32 outperformed the other

methods.

In order to confirm the hypothesis that adding disease

association information can increase the information

richness between miRNAs and SMs which would improve

the accuracy of SM-miRNA association prediction, we

designed two sets of experimental conditions for SMMA-

HNRL. One set only contained heterogeneous information of

three networks (SM-miRNA association network, integrated

SM similarity network and integrated miRNA similarity

network). There were only two kinds of nodes (miRNAs

and SMs) in this heterogeneous network which was named

as HIN-2N. The other set contained the heterogeneous

information of all six networks which included three kinds

of nodes (miRNAs, diseases and SMs) and was named as

HIN-3N. The experimental results (AUC, AUPR) were

shown in Figure 6. The AUC and AUPR values of HIN-3N

are 0.9875 and 0.9885, which are both higher than those of

HIN-2N. The comparison results for the remaining metrics

are listed in Supplementary Material S4, and results showed

they were all enhanced with different degree. This fully

confirmed that introducing disease association information

in our study is more reliable and more effective in predicting

potential SM-miRNA associations.

TABLE 3 The six evaluation metrics results of different vector combinations.

Recall Precision Accuracy F1 score AUC AUPR

HeGAN16HIN2V16 0.9355 0.9550 0.9456 0.9450 0.9826 0.9839

HeGAN16HIN2V32 0.9575 0.9582 0.9578 0.9578 0.9865 0.9880

HeGAN16HIN2V64 0.9541 0.9575 0.9558 0.9557 0.9853 0.9882

HeGAN16HIN2V128 0.9541 0.9559 0.9550 0.9549 0.9858 0.9866

HeGAN32HIN2V16 0.9626 0.9514 0.9567 0.9569 0.9850 0.9861

HeGAN32HIN2V32 0.9745 0.9563 0.9649 0.9652 0.9875 0.9885

HeGAN32HIN2V64 0.9711 0.9529 0.9615 0.9619 0.9871 0.9886

HeGAN32HIN2V128 0.9774 0.9522 0.9640 0.9645 0.9868 0.9875

HeGAN64HIN2V16 0.9626 0.9514 0.9567 0.9569 0.9850 0.9861

HeGAN64HIN2V32 0.9632 0.9514 0.9570 0.9572 0.9859 0.9843

HeGAN64HIN2V64 0.9677 0.9586 0.9629 0.9631 0.9867 0.9873

HeGAN64HIN2V128 0.9694 0.9587 0.9638 0.9639 0.9870 0.9862

HeGAN128HIN2V16 0.9496 0.9546 0.9522 0.9520 0.9861 0.9868

HeGAN128HIN2V32 0.9615 0.9606 0.9609 0.9610 0.9874 0.9890

HeGAN128HIN2V64 0.9660 0.9580 0.9618 0.9619 0.9868 0.9879

HeGAN128HIN2V128 0.9643 0.9580 0.9609 0.9611 0.9869 0.9859
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Robustness testing

The robustness is the ability of one predictive model to

maintain a stable performance on different scales and types of

datasets. To evaluate the stability of SMMA-HNRL, two

datasets were downloaded from BNNRSMMA (Chen et al.,

2021) and TLHNSMMA (Qu et al., 2018) respectively as

independent validation datasets. The BNNRSMMA dataset

included 831 SMs, 541 miRNAs and contained 664 pairs of

SM-miRNA associations. The TLHNSMMA dataset included

831 SMs, 541 miRNAs and 383 diseases. There were 664 SM-

miRNA association pairs and 6233 miRNA-disease

association pairs in it. The two datasets also include

integrated similarities of SMs, miRNAs and diseases. In 10-

TABLE 4 Ablation study results of different feature vector models.

Recall Precision Accuracy F1 score AUC AUPR

HeGAN32 0.9485 0.9471 0.9476 0.9476 0.9826 0.9822

HIN2V32 0.9417 0.9503 0.9462 0.9459 0.9825 0.9840

HeGAN32HIN2V32 0.9745 0.9563 0.9649 0.9652 0.9875 0.9885

FIGURE 6
The ROC curves (A) and PR curves (B) on different heterogeneous networks.

FIGURE 7
The ROC curves (A) and PR curves (B) of SMMA-HNRL in robustness testing.
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fold cross validation of the two independent validation sets, all

parameters of SMMA-HNRL were the same in both testing.

AUC and AUPR values of SMMA-HNRL are shown in

Figure 7, and the comparison of other metrics is shown in

Supplementary Material S5. The results indicated that

SMMA-HNRL achieved promising results on two sets and

had power robust to different SM-miRNA datasets.

Independent test set validation

NoncoRNA database (Li et al., 2020) systematically recorded the

information of ncRNAs with drug targets. Experimentally validated

SM-miRNA interactions fromNoncoRNA database were screened in

our study and performed the same data preprocessing like those from

SM2miRdatabase. The data duplicatedwith SM2miRwere eliminated

with manual inspection. Finally, a total of 584 associations were

obtained, including 272 miRNAs and 49 SMs. This data was not

involved in the training of the model but as an independent test set to

evaluate the generalization ability of SMMA-HNRL.

The ROC and PR curves of the experimental results of the

independent test set which was exhibited in SupplementaryMaterial

S6. In the independent test set validation, the AUC and AUPR

reached 0.9859 and 0.9859, respectively. This indicated that our

model had a strong generalization capability, and the

outperformance of SMMA-HNRL was not caused by overfittings.

Model contrast

To further demonstrate the predictive effectiveness of SMMA-

HNRL, we compared SMMA-HNRL with the three state-of-the-art

SM-miRNA association prediction models, EKRRSMMA (Wang

et al., 2022), GISMMA (Guan et al., 2018) and RWR (Lv et al., 2015).

In the contrast experiment, each model was trained and tested with

the same datasets. The overview of datasets involved in each

comparison model is exhibited in Supplementary Material S7.

The prediction performance of the three models were

performance with 10-fold cross validations, and the ROC curves

were shown in Figure 8. It showed that SMMA-HNRL achieved

AUC score of 0.9875, which outperformed RWR (AUC score:

0.8103), GISMMA (AUC score: 0.9381) and EKRRSMMA (AUC

score: 0.9775). The merged feature vectors of SM nodes andmiRNA

nodes which were obtained with two different heterogeneous

network representation learning algorithms (HeGAN and

HIN2Vec) can improve prediction accuracy of potential SM-

miRNA associations.

Case studies

To further evaluate the capability of SMMA-HNRL in

practical applications, we conducted case studies with three

FIGURE 8
The ROC curves of SMMA-HNRL, RWR, GISMMA, and
EKRRSMMA models.

TABLE 5 Validation of the top 50 predicted miRNAs related to 5-FU
(DB00544).

miRNA Evidence miRNA Evidence

hsa-mir-135a 29,735,329 hsa-mir-139 27,173,050

hsa-mir-150 32,669,857 hsa-mir-133b 32,865,180

hsa-mir-181a 29,795,190 hsa-mir-134 34,168,463

hsa-mir-214 30,915,129 hsa-mir-130a 30,510,209

hsa-mir-29b 34,155,879 hsa-mir-130b 33,816,278

hsa-mir-30c Unconfirmed hsa-mir-30d Unconfirmed

hsa-mir-320 25,446,103 hsa-mir-30b Unconfirmed

hsa-mir-328 33,948,374 hsa-mir-29c 31,037,126

hsa-mir-425 32,158,234 hsa-mir-26a 29,719,405

hsa-mir-451 Unconfirmed hsa-mir-28 30,762,286

hsa-mir-96 31,089,750 hsa-mir-24-1 Unconfirmed

hsa-mir-98 Unconfirmed hsa-mir-212 32,862,489

hsa-mir-16-1 Unconfirmed hsa-mir-22 25,449,431

hsa-mir-363 27,167,197 hsa-mir-221 27,726,102

hsa-mir-335 31,799,650 hsa-mir-223 Unconfirmed

hsa-mir-324 30,103,475 hsa-mir-20b 27,878,272

hsa-mir-326 26,239,225 hsa-mir-205 32,996,748

hsa-mir-424 33,793,771 hsa-mir-199b 32,580,513

hsa-mir-378 30,797,151 hsa-mir-100 Unconfirmed

hsa-mir-181a-2 Unconfirmed hsa-let-7f-2 Unconfirmed

hsa-mir-181b 27,081,844 hsa-let-7 26,687,759

hsa-mir-186 Unconfirmed hsa-let-7c 33,051,247

hsa-mir-193b 34,844,630 hsa-mir-1-1 Unconfirmed

hsa-mir-148b Unconfirmed hsa-mir-1-2 Unconfirmed

hsa-mir-144 32,162,886 hsa-mir-124-1 Unconfirmed
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common SM drugs, 5-FU (DB00544), Cisplatin (DB00515) and

Imatinib (DB00619), which were all closely related to human life

and health.

First, the known SM-miRNA association vectors were used as

positive samples and an equal amount of unknown associations

that randomly generated was adopted as negative samples.

Subsequently, SMMA-HNRL was trained with those samples.

Then, miRNAs unrelated to the three SMs were screened from

the heterogeneous network, and the SM-miRNA feature vectors

were generated by Hadamard function. Finally, the feature

vectors were input into the LightGBM classifier, and the

probability scores were calculated. The predicted SM-miRNA

associations were sorted in descending order by the probability

scores. The potential associations were verified by manually

reviewing the PubMed database for proving the effectiveness

of SMMA-HNRL. The specific results were shown in the

following table (Tables 5, 6, 7), and the full results for these

three SMs are available in Supplementary Materials S8, S9,

and S10.

5-FU, a pyrimidine analog, is a key chemotherapeutic drug

in colorectal cancer (CRC) and has been implicated in the

treatment of breast cancer. As an antimetabolite, it interferes

with DNA synthesis by blocking the conversion of

deoxyuridine to thymidylate by thymidylate synthase

(Longley et al., 2003; Wigmore et al., 2010). Table 5

showed the top 50 miRNA associations associated with 5-

FU, among the top 10, 8 miRNAs were confirmed by the

literature, among the top 30, 23 miRNAs were confirmed by

the literature, and among the top 50, 34 miRNAs were

confirmed by the literature.

Cisplatin, the first metal-based anticancer drug, is widely

used to treat various types of cancers, such as testicular cancer,

ovarian cancer, lung cancer. It induces DNA damage by

interacting with purine bases on DNA and eventually

induces cancer cell apoptosis (Ghosh, 2019). Table 6

presented the top 50 miRNA associations associated with

cisplatin, 6 miRNAs of the top 10, 25 miRNAs of the top

30 and 37 miRNAs of the top 50 were documented confirmed

by the literature.

Imatinib is a potent drug for chronic myeloid leukemia,

which inhibits the rapid division of cancer cells by inhibiting

specific tyrosine kinases (Peng et al., 2005). Table 7 showed the

TABLE 6 Validation of the top 50 predicted miRNAs related to
Cisplatin (DB00515).

miRNA Evidence miRNA Evidence

hsa-mir-302b 26,623,722 hsa-mir-26a 26,458,859

hsa-mir-181a-2 34,815,714 hsa-mir-22 30,537,795

hsa-mir-186 32,284,740 hsa-mir-26b 31,686,855

hsa-mir-452 Unconfirmed hsa-mir-30b 33,779,882

hsa-mir-9-3 Unconfirmed hsa-mir-328 30,221,716

hsa-mir-191 32,803,782 hsa-mir-326 26,239,225

hsa-mir-29b-2 Unconfirmed hsa-mir-320 Unconfirmed

hsa-mir-1-1 Unconfirmed hsa-mir-144 31,017,720

hsa-mir-24 30,787,983 hsa-mir-145 31,821,542

hsa-mir-34b 33,720,323 hsa-mir-140 32,765,679

hsa-mir-193b 27,918,099 hsa-mir-134 Unconfirmed

hsa-mir-194 32,534,701 hsa-mir-132 31,906,769

hsa-mir-200a 32,256,108 hsa-mir-125a 33,777,215

hsa-mir-206 27,014,910 hsa-mir-127 Unconfirmed

hsa-mir-139 33,300,085 hsa-mir-210 30,957,179

hsa-mir-143 33,090,550 hsa-mir-212 Unconfirmed

hsa-mir-495 34,747,666 hsa-mir-193a 30,485,589

hsa-mir-7 33,072,745 hsa-mir-15a 26,314,859

hsa-mir-99b 30,984,249 hsa-mir-483 Unconfirmed

hsa-mir-10b 32,892,697 hsa-mir-486 32,527,702

hsa-mir-1 32,377,691 hsa-mir-99a 27,994,509

hsa-mir-122 27,874,954 hsa-let-7f-2 Unconfirmed

hsa-let-7a 29,565,706 hsa-let-7g Unconfirmed

hsa-mir-92-1 Unconfirmed hsa-let-7d 30,816,441

hsa-mir-25 27,743,413 hsa-let-7f 26,458,859

TABLE 7 Validation of the top 50 predictedmiRNAs related to Imatinib
(DB00619).

miRNA Evidence miRNA Evidence

hsa-mir-34a 31,923,418 hsa-mir-26b 31,273,251

hsa-mir-155 30,459,357 hsa-let-7b Unconfirmed

hsa-mir-21 28,190,319 hsa-let-7c Unconfirmed

hsa-mir-221 30,516,071 hsa-mir-191 Unconfirmed

hsa-mir-145 Unconfirmed hsa-mir-93 Unconfirmed

hsa-mir-125b-2 Unconfirmed hsa-mir-99b 28,544,907

hsa-mir-204 Unconfirmed hsa-mir-197 Unconfirmed

hsa-mir-107 Unconfirmed hsa-mir-127 Unconfirmed

hsa-mir-92a-1 Unconfirmed hsa-mir-27a 26,458,312

hsa-let-7i 28,512,058 hsa-mir-151a 28,544,907

hsa-mir-223 32,597,702 hsa-let-7e 33,066,614

hsa-mir-224 26,458,312 hsa-mir-424 25,697,481

hsa-mir-24 Unconfirmed hsa-mir-30b Unconfirmed

hsa-mir-18a 26,458,312 hsa-mir-222 30,396,237

hsa-mir-125b Unconfirmed hsa-mir-205 28,861,326

hsa-let-7a Unconfirmed hsa-mir-206 Unconfirmed

hsa-mir-148a Unconfirmed hsa-mir-373 Unconfirmed

hsa-mir-25 Unconfirmed hsa-let-7 Unconfirmed

hsa-mir-27b 28,942,039 hsa-mir-494 28,533,480

hsa-mir-200a 28,942,039 hsa-mir-483 34,638,938

hsa-mir-19a 28,942,039 hsa-mir-34c Unconfirmed

hsa-mir-1 Unconfirmed hsa-mir-125b-1 Unconfirmed

hsa-mir-152 Unconfirmed hsa-mir-200b Unconfirmed

hsa-mir-15b Unconfirmed hsa-mir-22 Unconfirmed

hsa-mir-29b-1 31,923,418 hsa-mir-214 28,942,039
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top 50 miRNA associations associated with imatinib, 5 miRNAs

of the top 10, 15 miRNAs of the top 30 and 22 miRNAs of the top

50 were confirmed by the literature.

In summary, through the case studies of 5-FU, Cisplatin

and Imatinib, the majority of novel associations with the

highest probability has been confirmed by the PubMed

literatures, and it is enough to illustrate the outstanding

performance of SMMA-HNRL in predicting potential SM-

miRNA associations.

Discussion

Numerous studies proved that many human complex

diseases are closely related to the dysregulations of related

key miRNAs, and miRNAs have been recognized as a potential

class of drug targets. Predicting novel SM-miRNA

associations is important to help researchers find effective

drugs, understand the molecular basis of diseases and reduce

experimental costs. Nowadays, it has become a trend to

construct heterogeneous networks to predict potential SM-

miRNA associations by integrating multiple biological

entities. In this work, we proposed a novel model SMMA-

HNRL based on an integrated heterogeneous network

representation learning algorithm. By building a

heterogeneous information network with the HeGAN

algorithm based on the generative adversarial network and

the HIN2Vec algorithm based on the random walk of the

meta-path, richer feature information of the heterogeneous

network was accessed, which overcame the data sparsity due

to few known associations. Validated by the experiments,

SMMA-HNRL exhibited high robustness. Compared with

three state-of-the-art predicting models, our model

achieved the best performance under the same dataset

evaluated by 10-fold cross validation. Case studies of three

common drugs showed that the model had good application

significance. Otherwise, SMMA-HNRL can be regarded as an

open framework, and users can adopt more heterogeneous

information related with SM-miRNA association prediction

for improving prediction accuracy.

Although SMMA-HNRL has achieved satisfactory

results in predicting potential SM-miRNA associations,

there is still room for improvement in the experiments.

First, due to the current biological limitations, we do not

exactly find negative samples of SM-miRNA associations,

so future research will introduce more effective negative

sample screening methods. Second, although this study

introduced multi-source heterogeneous data for network

construction, it still cannot fully reflect the comprehensive

and complex interaction network. The more data

integrated, the higher the accuracy and robustness of the

model will be. In the future, more biological data will be

introduced for processing, such as lncRNA and gene

related data.
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