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Metabolism of an organism underlies its phenotype, which depends onmany factors,
such as the genetic makeup, habitat, and stresses to which it is exposed. This is
particularly important for the prokaryotes, which undergo significant vertical and
horizontal gene transfers. In this study we have used the energy-intensive Aromatic
Amino Acid (Tryptophan, Tyrosine and Phenylalanine, TTP) biosynthesis pathway, in a
large number of prokaryotes, as a model system to query the different levels of
organization of metabolism in the whole intracellular biochemical network, and to
understand how perturbations, such asmutations, affects themetabolic flux through
the pathway - in isolation and in the context of other pathways connected to it. Using
an agglomerative approach involving complex network analysis and Flux Balance
Analyses (FBA), of the Tryptophan, Tyrosine and Phenylalanine and other pathways
connected to it, we identify several novel results. Using the reaction network analysis
and Flux Balance Analyses of the Tryptophan, Tyrosine and Phenylalanine and the
genome-scale reconstructed metabolic pathways, many common hubs between
the connected networks and the whole genome network are identified. The results
show that the connected pathway network can act as a proxy for the whole genome
network in Prokaryotes. This systems level analysis also points towards designing
functional smaller synthetic pathways based on the reaction network and Flux
Balance Analyses analysis.
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1 Introduction

Biochemical pathways in cells underlie cellular functions, and hence its phenotype. These
are regulated by many direct and indirect, and hardwired and transient factors. Evolution of
multi-step biochemical pathways in any species depends upon how natural selection shapes the
evolution of a set of enzyme-coding genes catalysing the constituent chemical reactions, such
that the required end-product is made (Flowers et al., 2007; Invergo et al., 2013). However, the
genes, enzyme and pathways do not function independently. In each species, they exist in the
context of a large biochemical network, consisting of other genes, enzymes and pathways
interacting with each other, and with the intra- and extra-cellular environments. Hence in order
to understand the interactions and effects in functionally related pathways, we need to study the
properties of subsets of metabolic networks at different levels.

To study how pathways regulate their function with respect to each other, we chose the
highly branched aromatic amino acid (Tryptophan-Tyrosine-Phenylalanine, TTP) biosynthesis
pathway as an example. This pathway is responsible for the production of three aromatic amino
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acids; Tryptophan, Tyrosine and Phenylalanine–all requiring high
energy for their synthesis. The TTP pathway has been studied
previously for its role in the production of secondary metabolites
(Herrmann 1995; Herrmann andWeaver 1999), and its usage as target
for several antibiotics, fungicides and herbicides (Roberts et al., 2002;
Abell et al., 2005; Webby et al., 2005). The TTP pathway is present in
most of the prokaryotes, but is lost in higher eukaryotes and mammals
(Xie et al., 2003), thus requiring higher organisms to get some of these
amino acids as food additives. Even in the TTP prototrophs, the
evolutionary history of the pathway is convoluted due to instances of
horizontal gene transfer and is characterized by many isozymes, bi-
functional enzymes and gene fusions (Bentley and Haslam 1990; Xie
et al., 2003; Richards et al., 2006; Priya et al., 2014).

Traditionally, specific pathways such as, the Tryptophan
biosynthetic pathway, have been studied in depth both
experimentally and theoretically using mathematical models
(Yanofsky et al., 1987; Sinha 1988; Santillan and Mackey 2001;
Castro-López et al., 2022). However, in the post-genomic era, most
of the studies have focussed on network modelling and analysis of the
whole cellular metabolism (Fairlamb 2002; Ma and Zeng 2003; Gerlee
et al., 2009). In recent times, the principles of Systems Biology have
been used extensively to study metabolic pathways at different scales
(Nielsen 2017), and reconstruction of whole genome metabolic
networks from their genome sequences has been an active area of
study (Khodayari et al., 2016; Norsigian et al., 2018; Bagheri et al.,
2019).

From the perspective of the intracellular biochemical network, the
maze of neighbouring pathways, that are connected through sharing
one or more metabolites, can influence the function and evolution of
each other. Yet, study of pathways in the context of each other is rarely
done across species. Hence in order to study the contextual influence
of the inter-connected pathways, we use complex network analysis on
the TTP pathway reactions network in 29 Bacteria and Archaea.
Several FBA and network models have shown how various
reactions are connected and used smaller subsystems to improve
production or for finding new drug targets. But in these networks,
the pathways present in one particular organism were studied, for
example the network for disease associated pathway cluster for
Huntington disease (Kakouri et al., 2019) or the network of
interacting pathways to find drug targets (Raman et al., 2005; Chen
et al., 2016). Our study is different from these since we are using data
from 29 species of free-living Bacteria and Archaea from diverse
environments and metabolic activities and we have formed a network
of pathways that are connected to the TTP pathway that is common
across the 29 species. This is a novel method to understand how the
pathways are interconnected and function in context to each other.
We have assessed the variations in the topological properties of the
TTP reaction network nodes after adding the neighbouring pathways,
in the combined reaction networks. Our results show the contextual
variations of the topological properties of the TTP reaction network
nodes in the combined network, and study their similarity across
bacteria and archaea.

Network representation and analysis of metabolic pathways offers
a convenient and useful mode for understanding the role of the
connectivity patterns of the reaction nodes in interconnected
pathways. However, the chemical reactions at each step decide the
function of the pathway. Flux Balance Analysis (FBA), a constraint-
based approach to model organisms based on mass-energy balance,
and flux limitations (Kauffman et al., 2003) are used to understand

how the reaction product flux functioned in the pathway. The FBA has
been used previously for representing and modeling the growth of
many organisms such as, E. coli (Edwards and Palsson 2000; Burgard
and Maranas 2001), L. lactis (Flahaut et al., 2013), S. coelicolor A3(2)
(Borodina et al., 2005), G. oxydans (Wu et al., 2014), etc.We used the
FBA to study the effect of mutation or deletion of genes/reactions,
present in the TTP pathway and other connected pathways - on the
flux through the TTP pathway. This study yielded information on
those reaction steps that have a direct effect on the production of
aromatic amino acids, in the context of the larger reaction network.
Comparing the network and FBA analysis results, we show that, at the
systems level, the pathway activities are dependent on a smaller set of
reactions that are important for its biochemical activities. This also
indicates that a smaller reaction network of the important reactions
and enzymes may be chemically engineered for a functional pathway
instead of the existing whole metabolic pathway that has evolved
through a step-by-step evolutionary historical contingency.

2 Results

The TTP Pathway:A reconstructed common TTP pathwaymodel
for Bacteria and Archaea is shown in Figure 1. The pathway is divided
into four sections (see Figure 1 legend) where the additional reactions
specific to bacteria are shown in red and that for Archaea in blue
boundaries at the top.

2.1 Network analysis

The directed reaction networks were constructed for the TTP
pathway for 29 organisms (Supplementary Table S1), and their
network properties such as Degree, Clustering Coefficient,
Closeness Centrality and Betweenness Centrality were studied.

2.1.1 TTP pathway network and its network
properties

The TTP reaction pathway is a linear network (Figure 2) with very
few connections other than due to consecutive dependence. The
Archaeal and Bacterial TTP networks are topologically similar.
Figure 2 shows E. coli and N. pharaonis TTP networks as examples
for the Bacterial and Archaeal organisms. The major difference
between the two networks lies in the input region, since in many
Archaea the DKFP pathway provides the precursors for the formation
of 3-dehydroquinate, whereas in Bacteria it is from the Pentose
phosphate pathway and Glycolysis (see Figure 1). The number of
reaction nodes and edges varies among both bacterial and archaeal
species. For example, in Bacteria, the reaction nodes vary between 18
(for S. thermophilus) and 25 (for E. coli), and the number of edges
between 30 (S. thermophilus) and 50 (E. coli).

The difference in the number of nodes between the organisms is
because there are multiple reactions that provide different paths for
the production of the same metabolite. Due to this, the number of
connected pathways also differs across the organisms under study.
For further analysis, only those reactions and pathways are chosen
that are common across all the 29 organisms (Supplementary Table
S2 and S3).

The average Degree in these TTP networks is between 2.86
(Synechocystis sp. PCC 6803) and 4 (E. coli), which further shows
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how sparsely connected the network is. Based on these properties, the
Bacteria and Archaea networks do not differ much. Amongst the
Bacteria, the Proteobacteria tend to have higher number of nodes and
edges. The Gamma-proteobacteria, E. coli and P. putida has the
highest number of nodes, edges and average degree for their TTP
pathway network (Figure 3).

Connected Pathway of TTP:A connected pathway is one in which
at least one reaction of that pathway either produces or consumes a
metabolite that is either consumed or produced by the TTP pathway.
Even though there is a slight difference between the bacterial and the
archaeal TTP pathway, the entire metabolic network of these
organisms may differ greatly from each other. This may cause the
pathways associated with the TTP pathway to differ between
organisms. Therefore, only the reactions and associated pathways
that are common among all the 29 organisms under study are
discussed here (Supplementary Table S2 and S3).

2.1.2 Network properties of connected pathway
networks

The average network properties of the connected networks, i.e., the
TTP network combined with each of the connected networks (as given
in Supplementary Tables S2 and S3), were calculated for all organisms.
First the global properties of the connected pathway networks are
given, and then local node-level properties are discussed.

Global properties of connected networks
Nodes: The number of nodes of the combined pathways are

significantly different from their TTP network in all the Bacteria
and Archaea (Wilcoxon test, p-value <.05) (Supplementary Figure S1).
The highest number of nodes is in Microbial metabolism in “diverse
environments” (map01120), Biosynthesis of Amino Acids
(map01230), Purine metabolism (map00230) and Carbon
metabolism (map01200). Except for the 2-Oxocarboxylic acid
metabolism (map01210) and Methane metabolism networks
(map00680) all the other connected networks of Archaea have
lower number of nodes than its Bacterial counterpart. In Bacteria,
the highest variation in the number of nodes is in map00330,
map01120, map00230 and map00240.

Bacterial networks show larger variation (std dev range:
1.67–16.18) in node numbers than Archaeal networks (std dev
range: 1.34–8.49), and the main contributor to this are the
Proteobacteria. Except for TTP, and the other 7 out of
17 connected pathways (e.g., map00340, map01230, map00020,
map01200, map00010 and map00260), the rest of the connected
networks differ significantly between Bacteria and Archaea
(Wilcoxon test, p-value <.05). Bacterial networks have significantly
higher number of nodes compared to the Archaeal networks in few
pathways, but in map01210 and map00680 they are significantly more
in Archaea (Wilcoxon test, p-value <.05).

FIGURE 1
The TTP Pathway studied with the sections indicated. Red and blue shapes are specific to Bacterial and Archaeal TTP pathway. The Green substrates are
part of the Shikimate section. Orange is for Tryptophan and Blue and Pink are for the Phenylalanine and Tyrosine parts. INPUT SECTION: In bacteria; E4P
(D-Erythrose-4-phosphate), PEP (Phosphoenol pyruvate), DAHP (2-Dehydro-3-deoxy-D-arabino-heptonate 7-phosphate), QA (Quinate), DKFP (6-deoxy-5-
ketofructose-1-phosphate). In archaea; ASPSA (Aspartate semi aldehyde). SHIKIMATE SECTION: DHQ (3-dehydroquinate), SHK (Shikimate), SHKP
(Shikimate 3-phosphate), 3PSME (5-O-(1-Carboxyvinyl)-3-phosphoshikimate), CHA (Chorismate). TRYPTOPHAN SECTION: AA (Anthranilate), PRAA (N-(5-
Phospho-D-ribosyl)anthranilate), CPAD5P (1-(2-Carboxyphenylamino)-1-deoxy-D-ribulose 5-phosphate), IGP (Indoleglycerol phosphate), INDOLE, Trp
(Tryptophan). PHENYLALANINE AND TYROSINE SECTION: PHEN (Prephenate), PHPYR (Phenylpyruvate), 4HPP (4-Hydroxyphenylpyruvate), AGN
(L-Arogenate), Phe (Phenylalanine), Tyr (Tyrosine).
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Edges: A similar distribution is seen in the edge numbers and
degree in both Bacteria and Archaea (Supplementary Figure S2 and
S3). In Archaea, for example, the Glycolysis pathway adds a higher
number of edges than in Bacteria, suggesting larger number of
connections between the nodes in Archaea. The addition of
connected pathways significantly changes the degree in all the
pathways, except map00330 and map00051 in Bacteria, and
map00970 and map00051 in Archaea. Here also the variation is
more in Bacteria than in Archaea. Contrary to all the other
properties, the variation in the degree is slightly more in Archaea
(std. dev. range: .03–.99) than in Bacteria (std. dev. range: .1–.87), and

significant differences are observed in map00970, map01120,
map01210, map00020, map00010, map00680, map00230,
map00240 and map00030 between Bacteria and Archaea
(Wilcoxon test, p-value <.05). Furthermore, addition of sparsely
connected map00340, map00970 and map00270 decreases the
average degree of the combined networks (Supplementary Figure S3).

Average Path Length: Addition of new nodes to the existing TTP
pathway does not always increase the average path length of the
network proportionately (Supplementary Figure S4), except for the
addition of map00020 in Bacteria and map01210, map00020,
map00010, map00260, map00270 and map00051 in Archaea. For
all other pathways, the addition significantly changes the Average Path
Length (APL) of the network (Wilcoxon test, p-value<.05). There are
significant differences in the APL between Bacteria and Archaea in
map01120, map01210, map01230, map00010, map00680,
map00240 and map00030.

These results indicate that as the metabolic networks expand, due
to addition of nodes, the network properties do not change
proportionately–they depend on the connection point to the TTP
pathway, and the topology of the added pathway. They also differ
between and within Bacterial and Archaeal species for the same
connected pathway even though the basic TTP pathway do not
differ much between the two types of Prokaryotes.

Local properties of connected networks
The addition of the connected networks to TTP pathway network

not only changes the global properties of the combined pathway
networks, but also the properties of the individual TTP network nodes.

Degree: The comparison of Degree across the different
connected networks show that there is no consistent difference
between Bacterial and Archaeal networks. The 3 out of
15 common reactions showed no variations in degree, while 5 out
of 15 have significantly different Degree in connected networks
(>2 std dev) across different organisms in the connected
pathways. Addition of certain pathways such as the
map01230 introduces fairly large variations in the Degree for
E. coli. (shown in Supplementary Figure S5), and C. glutamicum,
C. acetobutylicum, M. barkeri, R. perfringens in the TTP reaction
network nodes. The same in H. turkmenica show the least variability

FIGURE 2
TTP network in (A) bacteria E. coli and (B) Archaea N. pharaonis. The double edges indicate reversible reactions.

FIGURE 3
Number of Nodes, Edges (left Y-axis) and average degree (right
Y-axis) of TTP pathway network in (A) Bacteria and (B) Archaea. See
Supplementary Table S1 for the three lettered species names.
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in their degree across all pathways. This result, interestingly, clearly
demonstrates that individual reactions change their connectivity
pattern on addition of pathways, and this is not necessarily due
to direct attachment of the connecting pathway to that node. It could
also be due to changes in their biochemical interactions facilitated
due to the new pathway topology in different organisms.

Clustering Coefficient (CC): The CC of the TTP pathway
reactions also change due to the addition of the connected
networks (see Supplementary Figure S6). Although, out of
17 connected pathways, the CC of 4 remain the same, but 3 show
significant differences (>2 std dev). These are for the addition of
map01230, map00230, and map01120 as the addition of new nodes
in these networks reduces the CC of these nodes. Bacteria and
Archaea show similar variation in their CC. A summary of
changes in Degree and Clustering Coefficient in TTP nodes are
shown in Table 1.

Closeness centrality: Addition of pathways tends to change the
path length, which is reflected in the parameter Closeness centrality.
The TTP pathway has a high Closeness centrality, and the addition of
other pathways increase the number of Nodes and the Closeness
centrality of the overall network. Analysis showed that most of the
connected networks, with the exception of map00970, have a
significantly different Closeness centrality when compared to the
isolated TTP pathway. Addition of map01230 increases Closeness
centrality while addition of map00250, map00330, map01120,
map01210, map01200, map00260, map00230 - decreases it for the
TTP nodes. The pathways, such as, map01120 and map01200 have
varying results in different organisms due to the diverse
environments in which these organisms survive. This increase
and decrease in the network parameter Closeness centrality
indicates that the local network properties of the TTP pathway
reactions nodes can change in a non-consistent manner even
when the network is expanding due to the addition of nodes (see
Supplementary Figure S7).

Betweenness centrality (BC): BC of a node is an important
property, as it signifies the central position of the node in the
network in terms of transfer of information from all other nodes.
There is a general decrease in this network parameter for most
connected pathways across all TTP nodes. However, the addition of
map01230 and map00970 also significantly alter the BC of the
common reactions (z-score >3) across all organisms. R00674 show
almost no variation in its BC among the combined pathways of

different organisms, since it is at the terminal end of the network.
The analysis of the change in BC in TTP nodes showed that, across
organisms, most of the variation is observed in the map00030. The
addition of this pathway to TTP changes the topology of the
combined network in such a manner that it induces changes in
the BC in several nodes. The reaction node R01073 in TTP pathway
shows considerable increase in BC on addition of map00030 and
map00340 due to the addition of pathways that are linear. BC of the
terminal reactions, such as R00674 and R02722 in the TTP
pathway, increases significantly due to the addition of the
connected pathways which occur in very few cases. BC of a
node being an important property in terms of transfer of
information from all other nodes, our results show that only
those pathways change the BC of the TTP nodes, which change
the topology of the combined network based on where the added
pathway is connected to the TTP network (Supplementary
Figure S8).

2.1.3 Combined Connected Network (CCN) of TTP
Till now the network properties of the TTP pathway network, in

combination with each of the connected pathways (as in
Supplementary Table S2 and S3), have been studied. The Combined
Connected Network (CCN) is the combined network of the TTP
pathway with all the connected pathways added together. It gives
an integrated view of the TTP pathway embedded in the metabolic
network of the 17 reaction pathways directly connected to it for each of
the organisms under study. The question addressed here is how the
network properties of the individual nodes of the TTP pathway
network change in such a combined network, because of the

TABLE 2 Average Betweenness and average Closeness values (for 29 organisms)
for the nodes in the TTP pathway - in isolation and in the Combined Connected
Network (CCN). The standard deviations are not shown as the values are
very low.

Betweenness Closeness

TTP CCN TTP CCN

R02412 .156 .007 .012 1.16 × 10−05

R03460 .183 .008 .014 1.16 × 10−05

R01373 .084 .007 .013 1.16 × 10−05

R01714 .205 .009 .016 1.17 × 10−05

R01715 .18 .017 .016 1.17 × 10−05

R00674 0 0 .008 1.17 × 10−05

R02722 .011 .047 .009 1.17 × 10−05

R02340 .05 .001 .009 1.17 × 10−05

R03508 .15 .045 .011 1.17 × 10−05

R03509 .178 .045 .012 1.17 × 10−05

R01073 .196 .065 .014 1.17 × 10−05

R00985 .102 .015 .016 1.17 × 10−05

R00986 .102 .015 .016 1.17 × 10−05

R03084 .085 .006 .009 1.16 × 10−05

R02413 .116 .006 .01 1.16 × 10−05

TABLE 1 Changes in Degree and Clustering Coefficient in nodes.

Degree Clustering coefficient

No significant variation R03508 R03460

R03509 R03508

R02340 R03509

R02340

R02722

Significant variation (Std. dev. >2) R02722 R01073

R01073

R03460 R01373

R01714

R00674 R01714

R01073

Frontiers in Genetics frontiersin.org05

V. K and Sinha 10.3389/fgene.2022.1084727

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1084727


change in the topology and connectivity patterns in the CCN.
Combining the connected pathway networks to TTP added new
nodes and edges to the TTP pathway. As will be shown below,
some of these additions significantly change the topological
properties of the TTP pathway reactions (Table 2). For example,
the TTP reaction node R02722 is the only one that shows increase in
Betweenness Centrality in the CCN. This is due to the addition of the
highly interconnected Glycine, Serine and Threonine pathway in the
CCN through that node. The addition of the highly interconnected
pathways, such as the amino acid biosynthesis pathway, or addition of
a few nodes, as in the case of map00970, could significantly alter the
properties of the TTP nodes (Figure 4).

Figure 4 shows the comparison of a few network properties
among each connected pathway in all organisms (see
Supplementary Table S2 for pathway names) and the CCN.
Network size (number of Nodes), total number of Edges, and
the average Degree of each connected networks are shown along
with that of the CCN. Figure 5 shows the topology of the TTP
reaction network (Yellow nodes) when connected with A)
Aminoacyl t-RNA biosynthesis pathway (map00970), B)
Alanine, Aspartate and Glutamate metabolism (map00250), and
C) Combined Connected Network (CCN). It is clear that
increasing the number of Nodes does not necessarily increase
the average Degree of the network (Figure 4; Figure 5).

FIGURE 4
Network size (number of Nodes), Number of Edges, and the Average Degree of each connected networks and the CCN (Refer Supplementary Table S2
for pathway names).

FIGURE 5
Network of TTP (with Yellow Nodes) with connected networks of (A) Aminoacyl tRNA biosynthesis pathway (map00970), (B) Alanine, Aspartate and
Glutamate metabolism (map00250) and (C) Combined Connected Network (CCN).
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For CCN, the average degree is 4.15 - quite low even though the
average network size is large (321 Nodes). The number of Edges, though
not additive, is also quite large (1479). This indicates, as is seen in Figures
5A–C also, that the CCNhas a topology that is largely branchedwithmany
linear sections. The TTP pathway is largely linear and is a non-redundant
network. Hencemost of the nodes are equally important for the pathway to
function, even though each of them has different network properties (as
mentioned in the previous sections). Addition of other pathways can cause
nodes to change their local network properties. Low Centrality measures
point towards the fact that theCCNhas a non-compact topologywith large
linear sections. This is due to the underlying chemical basis of the network,
where substrate-product reactions are quite specific to their chemical
nature, and the same chemical species cannot be obtained through
different chemical reactions.

The “hubs” of the network parameters - Degree, Betweenness
Centrality and Closeness Centrality - are reaction nodes in the
network with the highest value of the respective parameters. We use a
cut off for selecting Hubs as the “Nodes in top 20%” of each of the
measures. The CCN have few Degree hubs, since these networks are
characterized by a large number of Nodes with low degrees, and very
small number of Nodes with high degrees, and non-redundant routes for
metabolism. There are 66 reaction nodes in the CCN that are found as
hubs common to all organisms. Most of them are either Betweenness
Centrality or Closeness Centrality hubs (Supplementary Table S4). Since
these hub reactions in the CCN are important for the network, these
might also be important for the functioning of the TTP pathway in the
integrated network. It is clear that many (9 of 15) of the TTP reactions
have now increased their Betweenness Centrality andCloseness Centrality
when in the context of other connected pathways. The nature of these
networks is generally linear sequence of chemical reactions leading to
formation of specific products. However, these specific reaction pathways
interact to facilitate cross-talk to promote coordinated response of the cell.
Therefore, increasing the centrality measures seems to be a functionally
suitable strategy, since increasing degree may not be chemically possible.
The changed network parameters of the TTP nodes in the combined
network (CCN) points towards their role in changing/modifying their
function when in context of other pathways. This can lead to change in
their biochemical attributes (such as, reaction velocity, flux,
regulation, etc.).

2.2 Flux balance analysis (FBA)

FBA is done in order to analyze the flux passing through the reaction
steps of the TTP pathway during wild-type growth, and after perturbations

(e.g., loss of reaction due to deletion mutation, or lowering of efficiency of
the reaction), in order to understand the influence of different reactions on
the working of the TTP pathway. The flux analysis (see Methods section),
for the TTP pathway was done on the complete genome scale models of
E. coli (Feist et al., 2007) and M. barkeri (Gonnerman et al., 2013). The
genome scale E. coli model, considered here, consisted of a total of
2382 reactions, 1261 genes, and 1668 metabolites; and, the M. barkeri
model consisted of 815 reactions, 750 genes, and 718 metabolites.

2.2.1 Flux analysis in TTP pathway
Production of aromatic amino acids (TTP) in the cell is a high

energy consuming process (Akashi and Gojobori 2002). This energy
cost is reflected in their low usage in the polypeptide chain, and in the
flux passing through the TTP pathway in almost all the organisms. All
the flux mentioned here on will be in mmolgDW−1h−1. The
Tryptophan section has the least amount of flux passing through it:
.0418 for E. coli, and .0013 for M. barkeri. The Phenylalanine section
(.1296 for E. coli and .0041 for M. barkeri), and Tyrosine section
(.1018 for E. coli and .0035 for M. barkeri) have higher fluxes
(Supplementary Figure S9 and S10). The list of reactions present in
E. coli and M. barkeri is given in Supplementary Table S5.

Fluxes through the TTP pathway for E. coli and M. Barkeri are
different

1) In both the organisms, fluxes through the Input and Shikimate
section are higher than the rest of the sections, because the flux is
undivided in these sections. At Chorismate synthase reaction
(CHORS), the flux is distributed between the two branches
depending on the coefficients of Trp and Phe-Tyr in the
biomass equation. All the flux passes through TRPAS2 of the
Trp section in E. coli. InM. barkeri, it takes the reaction TRPS1 to
produce the same metabolite Tryptophan.

2) Compared to Bacteria E. coli, the Archaea M. barkeri has a lower
flux. It may be noted that the growth rate for E. coli is higher than
that of M. barkeri, which also shows up in the differences in the
media and biomass equations of the two organisms. Out of
1339 unique reactions (as mentioned in section 2.2 of CCN of
E. coli) present in the whole FBA, deletion of 175 reactions was
found to be adversely affecting the production of the aromatic
amino acids. We reduced the efficiency of the E. coli TTP pathway
genes to find the effect of such changes in the production of the
aromatic amino acids. A 100% reduction (deletion) of the TTP
pathway genes is shown in (Supplementary Figure S11;
Supplementary Table S8). Deletion of genes in the TTP
pathway leads to no flux through any of the reactions except
for TRPAS2, TRPS1, TRPS2 and TRPS3 which are alternate
pathways to each other. If the bounds of the flux of the
reactions are reduced to 90% of the flux one by one through
the reactions, then a marked reduction is seen in the flux through
the network (Supplementary Table S9). Suggesting that even
though the amount of flux passing through the reactions are
very low, they still play a major role in the biomass formation
of the organisms. For example, constraining the flux through
PHETA1 to −.117 (reversible reaction) leads to a reduction of
the flux through the Input and Shikimate section to .247 (.274 in
Wild type-WT) and .038 through the tryptophan section (.042 in
WT) and .117 in Phenylalanine (.13 in WT) and .092 through
Tyrosine (.102 in WT) (Supplementary Figure S12).

TABLE 3 Percentage of Network hub reactions from CCN, which were shown to be
essential in the FBA models. Organism specific: hubs of E. coli and M. barkeri;
Common: common hubs of 29 Bacteria and Archaea).

Network Organism Degree
hubs

Betweenness
Centrality
hubs

Closeness
Centrality
hubs

Organism
specific

E. coli 0% 19.6% 8.26%

M. barkeri 62.5% 72.72% 45.45%

Common E. coli 16.7% 25.50% 24.4%

M. barkeri 16.7% 41.18% 39%
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In M. barkeri, out of the 815 reactions present in the FBA model,
the deletion of 250 reactions shows adverse effect on the production
of TTP. Many of these pathways are common between E. coli and
M. barkeri, but some of them are unique to either Bacteria or
Archaea, as the metabolism of these two organisms are different–in
some cases. For example, the pathway for Glycerophospholipid
biosynthesis pathway influences TTP production in E. coli, while
the Methanofuran B biosynthesis and Methanogenesis pathways
influences TTP production in Archaea M. barkeri.

3) Reducing single gene efficiency does not significantly affect TTP
production in M. barkeri because there are alternative reactions
for some reactions, which provide other routes for producing the
same metabolite. This indicates that the TTP pathway is more
robust in this organism in terms of random gene/reaction
deletions. Deletion of genes involved in all reactions, except
ANS, ANS2, TRPS1, TRPS2, TRPS3, leads to no flux through
the TTP pathway (Supplementary Table S10; Supplementary
Figure S13). The reactions ANS has the alternate path
ANS2 and TRSP1 has the alternate route formed by
TRSP2 and TRSP3 because of which the flux flows through
the pathway even in case of deletion of any one of them.
Constraining the flux through the TTP reactions to 90% of
the flux through those reactions has an effect on the growth
rate and flux through the reactions (Supplementary Table S11).
In the E. coli pathway, reduction in the efficiency of the input and
shikimate pathway affects the flux, but not for the reactions ANS,
ANS2, TRSP1, TRSP2 and TRSP3 due to the alternate routes, as
previously mentioned. Decrease in the efficiency of reactions in
the Phe and Tyr section also reduce the flux, out of which the
reaction CHORM (chorismate mutase) affects the most, since the
flux for the synthesis of Phe and Tyr pass through it. Reduction to
90% of the flux through the reaction has interesting results, for
example, when the flux through CHORM is .0072 (.0077 in WT),
the flux through the input and Shikimate section is .0084 (.009 in
WT), through the Tryptophan section is .0012 (.0013 in WT) and
through Phenylalanine is .0039 (.0042 in WT) and Tyrosine is
.0033 (.0035 in WT) (Supplementary Table S11; Supplementary
Figure S14).

2.3 Comparison of network analysis and FBA
studies for the TTP pathway

Deletion of hubs can cause a network to lose its structural and
functional integrity (Barabási and Oltvai, 2004). Our results
(Supplementary Table S4) yielded TTP Network hubs (Nodes
having high Degree, Betweenness Centrality, and Closeness
Centrality). The reaction deletion studies using FBA analysis
also provided a set of the reactions that, when deleted
individually, affects the flux through the TTP pathway
(Supplementary Table S7 and S12). These two results obtained
using different theoretical approaches were compared with each
other to find if the Network hubs (of high Degree, BC, and
Closeness Centrality) and the essential genes (obtained from
FBA reaction deletion analysis) overlap. Table 3 shows the
percentage of Degree hubs, BC hubs and Closeness Centrality
hubs that were identified using network analysis and also found to
be essential reactions for TTP pathway using FBA. Organism
specific reactions are those hubs that were identified from the

CCN of either E. coli or M. barkeri. The Common hubs are the
hubs that were identified to be common across all the
29 organisms that were used in the network analysis. The
reactions that are common between Network hubs and the
essential reactions from FBA mostly belong to Purine and
Pyrimidine biosynthesis, Threonine and Lysine biosynthesis
and TTP pathway.

The Network analysis of the CCN can predict some of the
important nodes obtained from FBA analysis. It may be kept in
mind that the CCN takes into account only 18 pathways and the
reactions present in them, and gives equal weightage to all the
reactions and connections. Whereas, in the genome scale FBA, the
flux does not flow through all the reactions equally, and hence those
reactions and the connections are not reflected in the essential
reactions. This indicates that a reduced collection of connected
networks can be used to find essential reactions. The list of
common hubs across the 29 organisms can be used as a reference
list for further studies for finding reactions essential for functioning of
TTP pathway and to increase its productivity, since they provide
similar result to organism-specific hubs. The list of Network hubs that
were shown to be essential by the FBA analysis is given in
Supplementary Table S6.

3 Discussion

The important role of “context” has been of long-standing
empirical and theoretical interest in biological systems because of
their multi-scale and interacting modular structures. Understanding
context representations and its interaction with functional outcome in
behaviour is an area of immense interest to both neurobiologists and
in psychology (Rudy, 2009). In an interesting article, the multi-scale
and modular structure of metabolic network was analysed to identify
the context in which evolutionary processes may occur (Spirin V et al.,
2006).

Studies involving molecular interactions of single genes or
proteins in the context of their downstream partners and gene
context-based modules have been done to evaluate their role in
cellular response mechanisms in signalling, amino acids and
carbohydrate metabolism pathways (Lan et al., 2013; Bhatt et al.,
2018). We started with a general question; do the topological features
(as studied using network analysis) of a metabolic pathway vary when it
is embedded in the larger network of other connected pathways, and
does this variation affect the pathway function? We approached to
answer this query from a different perspective using two systems
biology methods - topological properties (network analysis) and
metabolic activity (Flux Balance Analysis) - of the aromatic amino
acid biosynthesis (TTP) pathway in many species of Bacteria and
Archaea. This pathway consists of quite high energy consuming
reactions in the cell. It takes an equivalent of 52, 50 and 74.3 high-
energy phosphate bonds for the production of Phenylalanine,
Tyrosine and Tryptophan, respectively (Akashi and Gojobori
2002). This energy cost is thus reflected in their usage in the
polypeptide chain, and in the metabolic flux passing through the
TTP pathway.

The control of the production of aromatic amino acids is
traditionally done by means of metabolic engineering in
organisms such as E. coli and C. glutamicum (Katsumata and
Ikeda 1993; Ikeda 2006). In these studies, systematic control of
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genes in the TTP pathway (such as, aroG, aroF, aroH, anthranilate
synthase, pheA etc.), which respond to the production of the end
products, were mutated to increase the production of the aromatic
amino acids. Here we have looked at the TTP pathway individually,
as well as, when embedded at the larger metabolic network in
Bacteria and Archaea. Such studies require various sources of
genetic and biochemical information, such as, stoichiometry,
structure of reaction pathways and alternative routes of
reactions, along with genes and genomes of different organisms.
The results presented highlight the fact that functioning of a
biochemical reaction in the cell is intimately connected to its
“context” (i.e., position of the pathway in the total biochemical
network), and the topology of its connectivity to the larger set of
reactions - both in the pathway and in the larger biochemical
network.

Based on these analyses we are able to arrive at several
conclusions. The Network analysis was undertaken to analyse
the changes in network properties of TTP pathway reaction
network in isolation and in combination with other pathways
directly connected to it through sharing of metabolites as
incoming or outgoing reactants. The TTP pathway, which is a
predominantly linear and a sparse network, shows a low average
degree in all organisms. The nodes in the centre of the network
possess high Betweenness and high Closeness Centrality values,
while the nodes at the extremities show the opposite
characteristics. Out of the many pathways that are connected
to the TTP pathway, the 17 pathways that were common among
the 29 organisms were considered in this study. The network
analysis with all connected pathways in all the organisms
showed that - changes in the properties of the 15 TTP
reaction network nodes not only depended on the topology of
the added network, but also on the nodes to which the pathway
was added. The Complete Combined Network (CCN),
consisting of the TTP pathway and all the 17 connected
networks, showed that the properties of the TTP nodes is not
the same when considered in the context of the larger connected
network. Nodes with low Degree, Betweenness Centrality or
Closeness Centrality, either acquire more connections, or by
virtue of the new connections that alter the resulting topology,
change their network properties, and become hubs in the CCN.
The different Degree, Betweenness Centrality and Closeness
Centrality hubs were found for the CCN for all the
organisms, and the common hubs were ascertained from
them. Hence, analyzing pathways in isolation, and in
combination with other networks, gives varying properties to
the nodes in the network. How these changes in network
topology and parameters of the TTP nodes
influence the chemical activity leading to end
product formations was analyzed using the Flux Balance
Analysis.

The Flux Balance Analysis was done to study the flow of
metabolites through the metabolic reaction network of the TTP
pathway, and to compare it between Bacteria and Archaea, by
taking E. coli and M. barkeri as representatives from the two
phyla. The flux through TTP is very low in both the organisms
with M. barkeri being lower than E. coli. In silico gene deletion
studies of TTP pathway genes showed that fluxes inM. barkeri is
more resistant to random attack than E. coli, due to the presence
of isozymes. In both the organisms, the deletion or reduction of

efficiency of the gene for Phenylalanine and Tyrosine
production greatly affected the overall flux though the
network. Deletion of reactions in the whole network showed
that many pathways such as, Glycolysis, Histidine metabolism,
etc, affect the production of these aromatic amino acids in both
the groups of organisms. There are also differences in the
pathways, affecting TTP between Bacteria and Archaea, due
to their differences in metabolism, such as the Methanogenesis
pathway.

A comparison between the network analysis and flux balance
analysis of the isolated TTP and CCN of TTP pathways showed
that many of the important reaction nodes or “hubs” (in terms of
higher network parameters) in the TTP network were common
with the essential reactions found by FBA. This points towards
identifying a smaller set of reaction steps that can be used for
experimental manipulation of the TTP pathway in the cell. This
combined Network-FBA approach can be used to predict
important reaction steps before attempting any engineering
of any pathway for increase or suppression of functionality.
Until now, whole genome metabolic networks have been studied
by breaking them down into modules using network science
(Alcalá-Corona, et al., 2021). This study endeavored to give an
integrative view of pathway function and evolution across many
prokaryotes, both at a single reaction pathway level, and also
when embedded in the larger scheme of biochemical networks.
Both the static network approach and the dynamic flux balance
analysis offered different perspectives of the same pathway
function by arriving at important reaction sets (hubs and
essential reactions) that promises to have important
applications. Thus, even though the proximate goal of this
study (with the PPT pathway as an example) is to understand
the contextual role of a specific pathway - in isolation and when
embedded in the larger biochemical network of the cell - this
approach to study biochemical pathways to understand their
systemic properties in the context of biochemical functions
inside the cell, may also offer better insight for
identifying essential genes, reactions for drug targets,
and mutations for improving pathway functions in any
organism.

4 Materials and methods

4.1 Organisms under study

29 Archaeal and Bacterial species (Supplementary Table S1) were
considered for the analysis, which consist of Proteobacteria,
Halobacteria and Methanomicrobia. Details are given in
Supplementary Information.

4.2 Division of the pathway

The TTP pathway was broken down into different levels; the
lowest level being the individual reactions, thus at individual gene
level. The next level was created by dividing the pathway into
individual branches or sections that end with the production of
important compounds, and the final level was the whole pathway.
Figure 1 shows the schematic of a typical TTP pathway. For the
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ease of understanding and analysis, the TTP pathway is divided
into four sections. The first section is the Input section, where the
genes for the enzymes that catalyze the reactions for the
conversion of the initial precursors to 3-dehydroquinate is
present. In bacteria, the pathway begins from Erythrose-4-
phosphate and Phospho-enol-pyruvate. In many archaea, due
to the absence of the oxidative Pentose Phosphate Pathway in
several archaeal species (Soderberg 2005), the 3-dehydroquinate
necessary for the initial steps of TTP production is produced by
DKFP (Porat et al., 2006; Gulko et al., 2014). The second section is
the Shikimate section of the pathway (Green substrates) which
consists of five steps, in which dehydroquinate gets converted to
chorismate. The third section is the Tryptophan section (Orange
substrates), which converts Chorismate, the end product of
Shikimate section to Tryptophan. The last section is the
Phenylalanine and Tyrosine section (Purple and Pink
substrates), which consist of genes for the enzymes that
sequentially convert Chorismate to Phenylalanine and Tyrosine
(Dosselaere and Vanderleyden 2001).

4.3 Network analysis

In this analysis, 29 organisms (Bacteria and Archaea) were
selected for the study. The details of forming the reaction
networks and the list of organisms is given in Supplementary
Table S1. The networks were generated using in-house Perl
programs. Network parameters such as Degree, Clustering
Coefficient, Closeness centrality, Betweenness Centrality
(Oldham et al., 2019) were calculated using the igraph package
(Csardi and Nepusz 2006) of R (R Core Team 2014). Statistical
analysis of the networks was carried out using R and in-house Perl
programs.

4.4 Flux balance analysis

Flux balance analysis was conducted on E coli whole genome
model (Feist et al., 2007), as a representative of Bacteria, and, the M.
barkeri whole genome model (Gonnerman et al., 2013), as a
representative of Archaea. The E. coli model (iAF1260) consists of
1261 metabolism associated genes, 2382 reactions, and
1668 metabolites. The M. barkeri model (iMG746) consists of
746 metabolism associated genes, 815 unique reactions and
718 metabolites. Both the models were simulated in minimal
media. The FBA analysis was carried out using Cobrapy .26.0
(Ebrahim et al., 2013), Cobra package for MATLAB and
calculations were carried out using in-house python and perl
programming. All the data used in this study are available on request.
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