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Background: Head and neck squamous cell carcinoma (HNSCC) is a malignant

tumor with a very high mortality rate, and a large number of studies have

confirmed the correlation between inflammation andmalignant tumors and the

involvement of inflammation-related regulators in the progression of HNSCC.

However, a prognostic model for HNSCC based on genes involved in

inflammatory factors has not been established.

Methods: First, we downloaded transcriptome data and clinical information

from patients with head and neck squamous cell carcinoma from TCGA and

GEO (GSE41613) for data analysis, model construction, and differential gene

expression analysis, respectively. Genes associated with inflammatory factors

were screened from published papers and intersected with differentially

expressed genes to identify differentially expressed inflammatory factor-

related genes. Subgroups were then typed according to differentially

expressed inflammatory factor-related genes. Univariate, LASSO and

multivariate Cox regression algorithms were subsequently applied to identify

prognostic genes associated with inflammatory factors and to construct

prognostic prediction models. The predictive performance of the model was

evaluated by Kaplan-Meier survival analysis and receiver operating

characteristic curve (ROC). Subsequently, we analyzed differences in

immune composition between patients in the high and low risk groups by

immune infiltration. The correlation between model genes and drug sensitivity

(GSDC and CTRP) was also analyzed based on the GSCALite database. Finally,

we examined the expression of prognostic genes in pathological tissues,

verifying that these genes can be used to predict prognosis.

Results: Using univariate, LASSO, and multivariate cox regression analyses, we

developed a prognostic risk model for HNSCC based on 13 genes associated

with inflammatory factors (ITGA5, OLR1, CCL5, CXCL8, IL1A, SLC7A2, SCN1B,

RGS16, TNFRSF9, PDE4B, NPFFR2, OSM, ROS1). Overall survival (OS) of HNSCC

patients in the low-risk group was significantly better than that in the high-risk

group in both the training and validation sets. By clustering, we identified three
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molecular subtypes of HNSCC carcinoma (C1, C2, and C3), with C1 subtype

having significantly better OS than C2 and C3 subtypes. ROC analysis suggests

that our model has precise predictive power for patients with HNSCC.

Enrichment analysis showed that the high-risk and low-risk groups showed

strong immune function differences. CIBERSORT immune infiltration score

showed that 25 related and differentially expressed inflammatory factor

genes were all associated with immune function. As the risk score increases,

specific immune function activation decreases in tumor tissue, which is

associated with poor prognosis. We also screened for susceptibility between

the high-risk and low-risk groups and showed that patients in the high-risk

group were more sensitive to talazoparib-1259, camptothecin-1003,

vincristine-1818, Azd5991-1720, Teniposide-1809, and Nutlin-3a

(-) −1047.Finally, we examined the expression of OLR1, SCN1B, and PDE4B

genes in HNSCC pathological tissues and validated that these genes could be

used to predict the prognosis of HNSCC.

Conclusion: In this experiment, we propose a prognostic model for HNSCC

based on inflammation-related factors. It is a non-invasive genomic

characterization prediction method that has shown satisfactory and effective

performance in predicting patient survival outcomes and treatment response.

More interdisciplinary areas combining medicine and electronics will be

explored in the future.

KEYWORDS

HNSCC, inflammatory factor-related gene, immune pathway, prognosis,
bioinformatics

1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is a

tumor located above the clavicle and below the base of the

skull. It includes tumors of the neck, otorhinopharynx, and

the oral and maxillofacial regions. Squamous cell carcinoma

accounts for approximately 90% of all head and neck

malignancies (Thompson and Franchi, 2018). HNSCC is the

sixth most common malignancy worldwide, with over

930,000 new cases and 460,000 deaths reported in 2020 (Sung

et al., 2021). In the United States, head and neck cancer accounts

for 3% of all malignancies andmore than 1.5% of deaths (Mourad

et al., 2017). It is the most common type of head and neck tumor

(up to 90%) (Rahman et al., 2019). Furthermore, its prognosis is

poor (Pi et al., 2017) with a general 5-year survival rate of less

than 40% and a 5-year survival rate of only 39.1% in patients with

metastases (Anand et al., 2021; Muzaffar et al., 2021). Previous

etiological studies suggested that smoking and alcohol use are

common risk factors (Leemans et al., 2018). Despite

improvements in standard treatments, supportive care, overall

survival (OS) times, and the quality of life for patients, the

prognosis for HNSCC remains poor with a global 5-year

survival rate of approximately 50% as of 2011. Therefore,

studying the molecular mechanisms underlying HNSCC

development has important clinical implications for the

exploration of more effective treatment strategies.

Inflammation is the “seventh hallmark of cancer” (Bonomi

et al., 2014) and many studies have shown that it plays a vital role

in the development and progression of cancer (Kris et al., 2014;

Man and Kanneganti, 2015). The role of inflammation in the

development and progression of cancer has been a significant

focus of cancer research since the relationship between

inflammation and cancer was first reported in 1863 (Wang

et al., 2009; Khandia and Munjal, 2020). The relationship

between tumors and inflammatory responses can be reflected

by the levels of specific substances in blood or tumor specimens

(Allen et al., 2007), including interleukin-6, IL-8, growth-

associated oncogene -1, vascular endothelial growth factor,

hepatocyte growth factor, and cytokines, and elevated levels of

growth factors associated with tumor progression and recurrence

(Karki et al., 2017). Whereas these cytokines may lead to co-

occurring immune stimulation and immunosuppression in

cancer patients, concentrations of cytokines MIF, TNFα,
interleukin 6, interleukin 8, interleukin 10, interleukin 18, and

TGFβ are increased (Lippitz, 2013; Wang et al., 2017). This

specific cytokine pattern appears to have a prognostic effect, as

high interleukin 6 or interleukin 10 serum concentrations are

associated with poor prognosis in independent cancer types

(Lippitz, 2013). Although immunostimulatory cytokines are

involved in local cancer-related inflammation, cancer cells

appear to be under cytokine-mediated local

immunosuppression (Miller et al., 1994). Inflammatory
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cytokines produced by tumors may play a critical role in this

immunodeficiency. Further studies have shown that the

polymorphic expression of inflammation-related genes (IRGs)

is associated with the development of squamous cell carcinoma of

the nasopharynx (Brunotto et al., 2014). This suggests that IRGs

play an essential role in nasopharyngeal carcinoma development.

As a secondary role, the tumor microenvironment is also

associated with tumor promotion and progression, which may

be related to IRGs, and to some extent, reflected in immune cells.

In recent years, rapid advances in sequencing technology and

statistics have enabled researchers to investigate the role of

signature genes in cancer prognosis (Ren et al., 2021; Yuan

et al., 2022a). Increasing studies have shown that IRGs play

an important role in specific cancer prognosis, such as

hepatocellular carcinoma and colon cancer (17, 18). However,

few studies have used IRGs as prognostic markers in head and

neck squamous cell carcinoma (Liang et al., 2021; Lin et al.,

2021). However, few studies have used IRGs as prognostic

markers in nasopharyngeal carcinoma.

This study aimed to develop a transcriptomics-based

approach to reveal the immune cell activation status and

predict the survival outcomes of patients with HNSCC. We

collected two sets of transcriptional profiling data and

corresponding clinical information from the cancer genome

atlas (TCGA) and GEO databases, obtained differential genes

based on expression level, explored the level of immune cell

activation in HNSCCs, and constructed a prognostic model for

HNSCC. We also identified several differential genes associated

with immune activation as potential biomarkers. Additionally,

we performed a comprehensive analysis of the risk model,

including functional enrichment, immune activation, and

immune infiltration. Our findings reveal the critical role

played by immune activation in HNSCC and we propose a

convenient approach to help diagnose and predict survival

outcomes in patients with HNSCC.

2 Materials and methods

The flow chart of this article was shown in Figure 1.

2.1 Data sources

Gene expression data from TCGA database were

downloaded from 505 patients with HNSCC and there were

44 partially matched paracancerous tissue samples. Clinical data

for the HNSCC samples, including age, sex, survival time,

survival status, tumor stage, and TNM staging, were also

downloaded. The microarray dataset GSE41613, which

explores the gene expression profile of human HNSCC, was

obtained by searching the GEO (https://www.ncbi.nlm.nih.gov/

geo/) database for “HNSCC.” The GSE41613 microarray data,

which is based on the GPL570 platform, contained 98 HNSCC

patients that were subsequently used for external validation of the

model. A total of 198 inflammatory response-related genes

FIGURE 1
Flowchart.
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(IRGs) were included based on the MSigDB database and

previous studies, which were displayed in Supplementary

Table S1. The data were preprocessed as follows: the probes

were corresponded to the genes, null probes were removed, and

multiple probes corresponded to the same gene. Then, the

median gene expression level was selected.

2.2 Extraction of relevant differentially
expressed genes (DEGs)

Because different data came from different platforms, PCA

plots before and after batch effect elimination were performed

using each data from the ComBat method in the sva package to

eliminate batch effects. Differential analysis between tumor

samples and standard samples from the TCGA-HNSCC

dataset was performed using the R package edgeR. The limma

package in R was used to screen DEGs. Screening criteria were

abs | logFC | > 0.1 and p < 0.05. Venn diagrams were drawn by

intersecting differentially expressed genes with genes involved in

inflammatory responses via the Rvenn “package. To visualize

gene expression, a reciprocal network of differentially expressed

IRGs was constructed using the GeneMania database to draw a

heat map of differential expression. Differentially expressed IRGs

were subsequently subjected to univariate, LASSO and

multivariate Cox regression analysis for model construction.

2.3 Consensus clustering of subtypes
based on differentially expressed IRGs

We performed non-negative matrix factorization (NMF)

clustering analysis to develop molecular subtypes based on

differentially expressed IRGs expression profiles. For the NMF

method, the standard “brunet” option was selected and

10 iterations were performed. The number of clusters was set

from 2 to 9, and the average profile width of the common

membership matrix was determined by the R package ‘NMF’

with a minimum membership of 10 for each subclass. The

optimal number of clusters was determined to be 3 by co-

occurrence, dispersion and contour indices. Heat maps,

principal component analysis (PCA) maps between subgroups,

and prognostic KM curves were plotted for the correlation

between gene expression levels and clinicopathological

characteristics between subcategories.

2.4 Cluster analysis

The “c2.cp.kegg.v7.5.1. symbols” gene set was downloaded

from the MSigDB database and a gene set variation analysis

(GSVA) was performed between subgroups. R package GSVA

was used to calculate the scores of the relevant pathways using the

single-sample gene set enrichment analysis (ssGSEA) method

based on each sample’s gene expression matrix. In addition, the

enrichment functions (or pathways) were screened for

differences using the limma package. The degree of immune

infiltration was also assessed using ssGSEA, and box-line plots

were drawn to demonstrate the immune profiles of the different

subclasses. Inflammatory factor-related genes selected by

univariate Cox regression analysis algorithm were included in

multivariate Cox regression, disordered multivariate categorical

variables and rank data were set dumb variables, 95% confidence

intervals of HR were tested, independent factors affecting

prognosis were screened, and LASSO cox regression analysis

was used to establish a prognostic model. Patients with TCGA-

HNSCC were divided into high-risk and low-risk groups

according to the median value area.

2.5 Multivariate cox prognostic regression
model validation

The PCA plots and t-SNE plots showed that the model

differentiated sufficiently between high- and low-risk groups. The

KM curves showed significant differences in prognosis between

high- and low-risk groups. Then, receiver operating characteristic

(ROC) curves were used to assess survival prediction and the area

under the ROC curve (AUC) values were calculated using the

timeROC R package to measure prognosis or prediction

accuracy. The GSE41613 cohort was used as the validation set

for model validation and the median risk score was used to

differentiate between the high- and low-risk groups.

2.6 Enrichment analysis

Gene ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG), GSEA, and GSVA functional enrichment

analyses were performed. The GO annotation analysis was

performed using R package “clusterProfiler” (version 4.0.5) with

a false discovery rate (FDR)< 0.05 to identify significantly enriched

pathways. A KEGG enrichment analysis was also performed.

GSEA software version 4.1.0 (Broad Institute, Cambridge, MA,

United States) was used to identify genomic cohorts that were

significantly altered between predefined high- and low-risk groups

during consensus clustering. p-values <0.05 and an

FDR <0.25 were considered statistically significant.

2.7 Immuno-infiltration analysis

We uploaded the gene expression matrix data (TPM) to

CIBERSORTx for further CIBERSORTx immune infiltration

analysis, combined it with the LM22 immune gene set, and

filtered the samples with the criterion set at p < 0.05 to
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produce an immune cell infiltration matrix. The correlations

between the risk score, essential genes, and the immune cell

infiltration level were analyzed. The ESTIMATE R package

allows gene expression profiles to predict stromal and

immune cell scores and then calculates their values. We

analyzed the correlation between the ESTIMATE score and

high- and low-risk groups.

2.8 Drug sensitivity analysis

The relationship between model genes and drug sensitivity

(GSDC and CTRP) was analyzed using the GSCALite database

(http://bioinfo.life.hust.edu.cn/GSCA/#/drug) (Figures 7A, B)

and drug sensitivity was analyzed using the oncoPredict

package to compare drug sensitivity in patients in the high-

and low-risk groups.

2.9 Organize validation

Five pairs of laryngeal cancer and adjacent tissues from the

Affiliated Hospital of Guizhou Medical University, approved by

the ethics committee, were used in our investigation. Each

participant was informed of the study protocol. None of the

patients received other treatments prior to surgery, such as

immunotherapy or radiation. Total RNA was extracted from

the tissues using TRIzol and stored in liquid nitrogen until

required. A Revert Aid First Strand cDNA Synthesis Kit

(Thermo Fisher Scientific, Waltham, MA, United States) was

used to reverse-transcribe the extracted RNA into cDNA for

further analysis. The cDNA concentration was measured to

ensure that the required standards were met. GAPDH was

used as the internal reference.

2.10 Statistics

All statistical analyses were performed in R. The Cox

regression analyses were performed using R package survival

and survminer for one-way Cox regression and multi-way Cox

regression where a p-value <0.05 showed that the prognostic

variable was significant.

3 Results

3.1 Identification and correlation analysis
of DEGs

The DEGs were identified in the skin of HNSCC patients and

healthy controls. A total of 10,274 differential genes were

obtained from the tumor samples, intersecting

198 inflammatory response-related genes. A reciprocal

network for the 57 differentially expressed IRGs obtained

(Figure 2A) was mapped using the GeneMania database

(Figure 2B), and then, differential expression (Figure 2C) and

correlation heat maps (Figure 2D) were plotted for the genes. We

further performed a univariate Cox regression analysis on the

differentially expressed IRGs and screened 25 inflammatory

factor-related genes for prognostic model construction

(Figure 2E).

3.2 Molecular subtypes associated with
inflammation

An unsupervised consensus clustering analysis based on the

57 differentially expressed IRGs was used to classify 505 patients

with HNSCC into different subtypes (k = 2, 3, 4, 5, 6, 7, 8, and 9).

Molecular typing was then performed on TCGA-HNSCC

samples (Figures 3A–C). Three subclasses were identified by

the cumulative distribution function (CDF), delta area plot, and

tracking plot in the consensus cluster analysis (k = 3) as the

optimal number of clusters (Figures 3D–F). Heat maps of the

association between gene expression levels and the

clinicopathological features between subclasses were plotted

(Figure 3G). The differences were distinguishable and a PCA

analysis was performed to reduce dimensionality and validate the

assignment of subtypes. The two-dimensional PCA distribution

pattern was confirmed to be consistent with the CDF curve

(Figure 3H). This suggested that the two sample groups had been

successfully separated. We also explored the differences in

survival information between the two groups. The survival

curves demonstrated significant differences in OS between the

two groups (p < 0.0001). Cluster 2 group had a significantly worse

prognosis (Figure 3I), suggesting that differentially expressed

IRGs can be used to predict patient prognosis.

3.3 Construction of the multivariate cox
prognostic regression model

The enrichment function results showed that there were

significant differences between the three cluster groupings,

and these differences were mainly based on immune-related

pathways (Figures 4A–C). The degree of immune infiltration

was assessed using ssGSEA. Box plots were drawn to demonstrate

the immune profile of the different subgroups, and they showed

that there was significant variability in both immune cell and

immune function activation. Clusters 1 and 3 showed more

robust immune function activation than Cluster 2, suggesting

that immune function may be prognostically associated with

increased immune activation and that it was an improved

prognosis method for HNSCC patients (Figure 4D). Based on

the 25 genes obtained from the single gene Cox screen (Figures
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FIGURE 2
Extraction of correlated DEGs.(A) Venn diagram of inflammatory response-related genes versus differentially expressed genes in TCGA-HNSC.
(B) Interaction network map of 57 differentially expressed genes, (C)Heatmap of differentially expressed genes (D)Heatmap of correlation between
differentially expressed genes. (E) Forest plot of the prognostic value of inflammation-associated genes tested.
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FIGURE 3
Identification of inflammatory factor gene-associated HNSCC subtypes in the TCGA cohort. (A–C)Heatmap depicting the consensusmatrix at
k= 2, 3, and 4 in the TCGA cohort. (D–F)Cumulative distribution function (CDF), delta area plot and tracling plot in the consensus cluster analysis. (G)
Shows the association of gene expression levels and clinicopathological features between subclasses. (H) PCA plots showing good differentiation. (I)
Prognostic KM curve plot showing significant differences in prognosis among the three.

Frontiers in Genetics frontiersin.org07

Zhu et al. 10.3389/fgene.2022.1085700

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1085700


FIGURE 4
Univariate COX, lasso and multivariate COX regression analysis of overall survival-related inflammation-associated genes using R software.
(A–C) Heat map showing differences in enrichment function between the 3 subclusters. (D) The degree of immune infiltration was assessed using
ssGSEA and box-line plots were drawn to demonstrate immunity in different subclasses. (E) LASSO regression analysis to calculate the coefficients of
inflammation-related genes. (F) Thirteen genes were selected as active covariates for cross-validation of LASSOmode. (G) Forest plot showing
the 13 genes which were selected by stepwise forward and backward regression methods for the Cox proportional hazard model.
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4E, F), 13 genes were selected from the 25 relevant genes

identified by the LASSO regression analysis. A prognostic

model was constructed using the following risk score

calculation formula: ITGA5*0.0823 + OLR1*0.12103 +

CCL5*-0.08642 + CXCL8*0.03798 + IL1A* 0.04907 +

SLC7A2*-0.06588 + SCN1B*0.24403 + RGS16*0.16125 +

TNFRSF9*-0.10820 + PDE4B*-0.40763 + NPFFR2*0.08028 +

OSM*0.10854 + ROS1*-0.12802. The results, based on the

median value, were used to distinguish between high- and

low-risk groups (Figure 4G).

FIGURE 5
Identification and validation of 13 risk marker genes for prognosis in the TCGA cohort and GSE41613 using R software. (A) PCA in the TCGA
cohort. (B) tSNE analysis of the TCGA cohort. (C,G) Risk score distribution in TCGA cohort (C) and GSE41613 (G). (D,H) Distribution of survival time
and survival status in TCGA cohort (D) and GSE41613 (H). (E,I) Kaplan-Meier curves for the probability of overall survival in the risk group in TCGA (E)
and GSE30219 (I). (F,J) AUC curves for the three groups in TCGA (F) and GSE41613 (J).
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3.4 Multivariate cox prognostic regression
model validation

The PCA and t-SNE plots showed that the model sufficiently

differentiated between the high- and low-risk groups (Figures 5A,

B). The reliability of the IRGs in the independent cohort was tested

by dividing TCGA cohort into low- and high-risk groups based on

the cut-off values (Figure 5C). The KM curves showed significant

differences in prognosis between the high- and low-risk groups;

ROC curves, calculated using the timeROC R package, were used

to assess survival prediction. The areas under the curve (AUC)

were used to measure prognosis or predictive accuracy. The results

showed that patients in the high-risk group were worse off than

those in the low-risk group and had shorter survival times than

those in the low-risk group (Figures 5D, E), with AUC values of

0.639, 0.731, and 0.715 at 1, 3, and 5 years, respectively (Figure 5F).

Model validation was performed using the GSE41613 cohort as the

validation set, and the high- and low-risk groups were

distinguished using the median risk score (Figure 5G).

Consistent with previous results for TCGA cohort, patients in

the GSE41613 cohort were worse off in the high-risk group than in

the low-risk group and had shorter survival times than those in the

low-risk group (Figures 5H, I), with AUC values of 0.693, 0.75, and

0.716 at 1, 3, and 5 years, respectively, indicating that the risk score

can be used to reliably predict the prognosis of patients with

HNSCC (Figure 5J).

3.5 Enrichment analysis

We then performed GO, KEGG, GSEA, and GSVA functional

enrichment analyses between the high- and low-risk groups to

identify the significantly enriched activation pathways. As shown

in the figure, the results indicated that the upregulated DEG in the

high-risk group compared to the low-risk group, GO BP, was

mainly enriched in calcium ion homeostasis, T Cell activation, and

cytokines. In contrast, GO MF was mainly enriched in receptor

ligand activity, carbohydrate binding, and cytokine activity

(Figure 6A). The KEGG pathway analysis revealed that the

main classifications were neuroactive ligand-receptor

interaction, cytokine-cytokine receptor interaction, and natural

killer cell-mediated cytotoxicity (Figure 6B). The above details

were found in Supplementary Table S2. The ridge plot, GSEA, and

GSVA enrichment analyses showed that the main differences

between the high- and low-risk groups were immune-related

(Figures 6C–E), which was consistent with previous results, the

details were found in Supplementary Table S3.

3.6 Evaluation of the microenvironment

Although the results of this study can predict the prognosis

for HNSCC patients, they are based on patient populations,

which means that they cannot accurately predict the immune

activation status of individual patients. Therefore, we performed

a CIBERSORTx immune infiltration analysis and uploaded the

gene expression matrix data (TPM) to CIBERSORTx.We filtered

the output p < 0.05 samples to produce an immune cell-

infiltration matrix. The results showed that the differential

gene expression levels of the 25 relevant inflammatory factors

were associated with immune function (Figure 7A) and the risk

scores increased. The T_cells_CD4_memory_resting,

Macrophages_M0, Mast_cells_activated, and Dendritic_cells_

activated expression levels were elevated, whereas T_cells_

follicular_helper, T_cells_CD8, T_cells_CD4_memory_

activated, Macrophages_M1, T_cells_regulatory_(Tregs), and

B_cells_naive decreased (Figure 7B), suggesting a decrease in

specific immune function activation in tumor tissue with

increasing risk score (Figures 7C, D), which correlates with a

poor prognosis.

3.7 Drug sensitivity relationship with the
multivariate cox prognostic regression
model

The relationship between model genes and drug sensitivity

(GSDC and CTRP) was analyzed using the GSCALite database

(http://bioinfo.life.hust.edu.cn/GSCA) (Figures 8A, B). In

addition, drug sensitivity was analyzed using the oncoPredict

package to compare the drug sensitivity of patients in the high-

and low-risk groups. The results showed that patients in the high-

risk group were more sensitive to talazoparib-1259,

Camptothecin-1003, Vincristine-1818, Azd5991-1720,

Teniposide-1809 and Nutlin-3a (-) −1047.Mitoxantrone-1810,

Cdk9-5038-1709, Docetaxel-1819, and Gemcitabine-1190 were

not significantly different between patients in the high and low

risk groups. (Figure 8C).

3.8 In vitro validation

qRT-PCR analysis was used to examine the transcription

levels of these genes in the tissues. The SCN1B and FDE4B

expression levels are shown in Supplementary Figure S1. The

SCN1B transcription level increased in laryngeal cancer tissues,

whereas FDE4B transcription levels decreased. OLR1 showed no

significant difference. This may be related to the small number of

samples tested and the fact that we validated the tissue as a single

laryngeal cancer.

4 Discussion

HNSCC is a tumor type that poses a severe threat to human

health as most of the early symptoms are not significant and
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FIGURE 6
Functional enrichment analysis with GSE41613 cohort risk score grouping. (A) GO signaling pathway analysis. (B) KEGG signaling pathway
analysis. (C) Ridge plot. (D,E) GSEA enrichment analysis and GSVA enrichment analysis.
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FIGURE 7
Differences in immune function between high- and low-risk subgroups. (A) Relationship between crucial cluster genes and immune infiltration.
(B) Relationship between various types of immune cells and risk scores. (C,D) Comparison of Stromal, Immune, Estimate scores between high- and
low-risk groups.
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most patients are already in the middle to late stages when

detected. This means that the 5-year survival rate is still below

65% (Miller et al., 2016). Therefore, identifying potential

biomarkers and elucidating the molecular mechanisms

underlying their development can improve tumor early

diagnosis and prognosis. Existing bioinformatic analyses can

be powerful tools for identifying biomarkers and therapeutic

targets relevant to tumor progression and treatment. Previous

studies have shown that novel serum biomarkers, including

circulating tumor cells (Bates et al., 2018) and circulating

nucleic acids (Tao et al., 2021), are good predictors of

HNSCC prognosis. In addition, inflammatory response-

related serum biomarkers, such as the neutrophil ratio,

platelet-lymph-like ratio, and lymph-monocyte ratio, are also

good predictors of HNSCC prognosis (Millrud et al., 2012).

However, the use of inflammatory response-related genetic

FIGURE 8
Analysis of drug sensitivity. (A,B) Relationship between Spearman correlation analysis (GSDC and CTRP) of 13 predicted model genes for drug
sensitivity. (C) Differences in drug sensitivity between high and low risk groups of patients.

Frontiers in Genetics frontiersin.org13

Zhu et al. 10.3389/fgene.2022.1085700

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1085700


markers as prognostic markers for HNSCC has not been

reported.

In recent years, changes in inflammation-related factors have

been found to play a crucial role in regulating the progression of

various cancers and can influence disease prognosis. Zhao et al.

(2021) showed that inflammation-related genes are directly

associated with immune infiltration and can improve

prognosis prediction in gastric cancer (Zhao et al., 2021),

which makes them a promising strategy for cancer treatment.

Many studies have shown that inflammation-related factors play

a crucial role as emerging genetic and molecular biomarkers in

the biology of HNSCC (Lu and Jia, 2022). However, there have

been no studies on the relationship between inflammatory factor-

related genes and HNSCC prognosis. Based on the above

research background, we investigated how genes encoding

inflammation-related factors regulate the immune process,

and thus, influence tumor progression and the prognosis for

HNSCC patients.

Bioinformatic analyses were performed on normal skin and

HNSCC samples based on TCGA and GSE41613 datasets. In

this study, a differential analysis was performed on tumor

samples taken from TCGA-HNSCC and standard samples. A

total of 10,274 differential genes were obtained from the tumor

samples and 57 differentially expressed IRGs were obtained by

intersecting the differential inflammatory factor-related genes.

We further performed a single-gene Cox regression analysis,

and a total of 25 differential genes were obtained. The

associated inflammatory factor differential genes were used

for subsequent prognostic model construction. The

57 differentially expressed IRGs were used to divide

505 HNSCC patients into three different subgroups.

Heatmaps linking gene expression levels and

clinicopathological features among the three subgroups

showed that there were significant differences, with survival

curves indicating significant differences in OS between the two

groups (p < 0.0001). Cluster 2 group had a significantly worse

prognosis, suggesting that clinical classification based on

differentially expressed IRGs could be used to predict patient

prognosis. The functional enrichment results for the three

subgroups showed that there were significant differences

among the three cluster subgroups and these were mainly

focused on immune-related pathways. The degree of

immune cell infiltration was assessed using ssGSEA. Box

plots were drawn to demonstrate the immune profiles of the

different subclasses with the results showing that Cluster 1 and

Cluster 3 had more robust activation of immune function than

Cluster 2. This suggested that immune function may correlate

with prognosis, with increased immune activation improving

the prognosis for patients with HNSCC. Using univariate,

LASSO, and multivariate cox regression analyses, we

developed a prognostic risk model for HNSCC based on

13 genes associated with inflammatory factors (ITGA5,

OLR1, CCL5, CXCL8, IL1A, SLC7A2, SCN1B, RGS16,

TNFRSF9, PDE4B, NPFFR2, OSM, ROS1).The results were

consistent with those of previous studies showing that

CXCL1, CXCL2, CXCL3, CXCL8, and CXCL12 can be used

as prognostic markers and potential therapeutic targets for

patients with HNSCC (Jiang et al., 2020). Tian et al. (2020)

showed that high expression of RGS16, LYVE1, snRNPs,

ANP32A, and AIMP1 promotes cell proliferation and tumor

progression, which are associated with the risk of death (Tian

et al., 2020). Han et al. (2021) successfully developed a

prognostic model consisting of COL4A1, PLAU, and ITGA5,

and a survival analysis showed that the prognostic model could

robustly predict OS (Han et al., 2021). The OLR1 gene mainly

encodes a low-density lipoprotein receptor, and it has been

shown that OLR1 promotes pancreatic cancer metastasis by

increasing c-Myc expression and HMGA2 transcription (Yang

et al., 2020). In addition, ORL1 also plays a role as a prognostic

gene in the prognostic model of head and neck squamous cell

carcinoma based on lipid metabolism-related genes (Gao et al.,

2021). It has been shown that PDE4B in our prognostic model

gene induces epithelial-mesenchymal transition in bladder

cancer cells and is transcriptionally repressed by CBX7

(Huang et al., 2021). These results suggest that our

prognostic genes play an important role in cancer,

demonstrating that our model is of interest.The PCA and

t-SNE plots showed that the model differentiated sufficiently

between high- and low-risk groups. The patients in TCGA

cohort were classified into low- and high-risk groups based on

cut-off values, and survival prediction was assessed using KM

and ROC curves. The results showed that patients in the high-

risk group were worse off and had shorter survival times than

those in the low-risk group. Furthermore, when the model was

validated using the GSE41613 dataset as the validation set, the

results similarly suggested that differentiating the high- and

low-risk groups by the median risk score can be used to predict

the prognosis of HNSCC patients.

Then, we performed a functional enrichment analysis

between the high- and low-risk groups. The results showed

that DEGs and GO BP were mainly enriched in calcium ion

homeostasis, T Cell activation, and cytokines in the high-risk

group, compared to the low-risk group. Membrane GO MF was

mainly enriched in receptor ligand activity, carbohydrate

binding, and the following cytokine activity KEGG pathway:

neuroactive ligand-receptor interaction. These results suggest

that the main differences between the high- and low-risk

groups are immune-related, which was consistent with

previous results (Yuan et al., 2022b; Konuthula et al., 2022).

Therefore, we further performed a CIBERSORT immune

infiltration analysis, which showed that the differential gene

expression levels of the 25 relevant inflammatory factors were

associated with immune function and increased the risk scores.

T_cells_CD4_memory_resting, Macrophages_M0, Mast_cells_

activated, and Dendritic_cells_activated expression levels were

elevated. At the same time, T_cells_follicular_helper, T_cells_
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CD8, T_cells_CD4_memory_activated, Macrophages_M1, T_

cells_ regulatory_(Tregs), and B_cells_naive decreased,

suggesting that when the risk scores are higher, specific

immune function activation in the tumor tissue is reduced

and that this is associated with a poor prognosis (Taverna and

Franchi, 2022). The relationship between the model genes and

drug sensitivity (GSDC and CTRP) was analyzed using the

GSCALite database. Our study showed that CXCL8, SCN1B,

ITGA5, and IL1A were more sensitive to drugs, whereas RGS16,

OS, and CCL5 were resistant to most drugs. We also screened for

susceptibility between the high-risk and low-risk groups and

showed that patients in the high-risk group were more sensitive

to talazoparib-1259, camptothecin-1003, vincristine-1818,

Azd5991-1720, Teniposide-1809, and Nutlin-3a

(-) −1047.Finally, we examined the expression of OLR1,

SCN1B and PDE4B genes in HNSCC pathological tissues and

validated that these genes could be used to predict the prognosis

of HNSCC.

Our experiments still have some limitations. First, due to

missing data, we may have wider thresholds for the analysis

process, so our prognostic model may reduce its applicability.

Second, we need further in vitro validation of the role of genes in

head and neck squamous cell carcinoma in prognostic models.

Finally, because conditions are limited, although we performed

pathological tissue validation for three genes in the model gene, it

is better to perform further validation for all genes.

5 Conclusion

This study investigated the predictive role of immune

pathways in the prognosis of HNSCC. We constructed a

prognostic prediction model for HNSCC based on immune

pathway genes using data related to HNSCC patients in

TCGA database. The results from this study have the

potential to help improve the diagnosis and treatment

strategies for HNSCC.
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