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By predicting ERα bioactivity and mining the potential relationship between

Absorption, Distribution, Metabolism, Excretion, Toxicity (ADMET) attributes in

drug research and development, the development efficiency of specific drugs

for breast cancer will be effectively improved and the misjudgment rate of R&D

personnel will be reduced. The quantitative prediction model of ERα bioactivity

and classification prediction model of Absorption, Distribution, Metabolism,

Excretion, Toxicity properties were constructed. The prediction results of ERα
bioactivity were compared by XGBoot, Light GBM, Random Forest and MLP

neural network. Two models with high prediction accuracy were selected and

fused to obtain ERα bioactivity prediction model from Mean absolute error

(MAE), mean squared error (MSE) and R2. The data were further subjected to

model-based feature selection and FDR/FPR-based feature selection,

respectively, and the results were placed in a voting machine to obtain

Absorption, Distribution, Metabolism, Excretion, Toxicity classification

prediction model. In this study, 430 molecular descriptors were removed,

and finally 20 molecular descriptors with the most significant effect on

biological activity obtained by the dual feature screening combined

optimization method were used to establish a compound molecular

descriptor prediction model for ERα biological activity, and further

classification and prediction of the Absorption, Distribution, Metabolism,

Excretion, Toxicity properties of the drugs were made. Eighty variables were

selected by the model ExtraTreesClassifier Classifie, and 40 variables were

selected by the model GradientBoostingClassifier to complete the model-

based feature selection. At the same time, the feature selection method

based on FDR/FPR is also selected, and the three classification models

obtained by the two methods are placed into the voting machine to obtain

the final model. The experimental results showed that the model‘s evaluation

indexes and roc diagram were excellent and could accurately predict ERα
bioactivity and Absorption, Distribution, Metabolism, Excretion, Toxicity

properties. The model constructed in this study has high accuracy, fast

convergence and robustness, has a very high accuracy for Absorption,

Distribution, Metabolism, Excretion, Toxicity and ERα classification

prediction, has bright prospects in the biopharmaceutical field, and is an

important method for energy conservation and yield increase in the future.
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1 Introduction

With the development of the times, more and more people

began to pay attention to their own health problems. In today’s

society, breast cancer is one of the most common and lethal

cancers. Estrogen receptors have a close correlation with the

development of breast cancer, and according to related studies,

estrogen receptor alpha (ERα) in estrogen has a strong promoting

effect on the dominant characterization of breast cancer

(Lempereur et al., 2016).

At present, the main treatment for breast cancer patients is to

inhibit the expression of ERα gene using anti-hormone therapy,

and then control the estrogen level in patients through the

modulation of estrogen receptor activity, so as to achieve the

inhibition of breast cancer spread and malignant trend, and

gradually combine drugs and radiochemotherapy to achieve

effective treatment of breast cancer (Ali and Coombes, 2002;

Mohla et al., 2009; Huang et al., 2015). Drugs developed based on

the corresponding compounds have been widely used in clinical

treatment.

Drug R&D involves the discovery and development of new

drugs, and the difference between these two stages is the

determination of candidate drugs, candidate drugs represent

active compounds involved in clinical research, so it is

necessary to screen active compounds for drug research and

development. Active compounds are compounds with certain

biological or pharmacological activities obtained through various

ways and methods, in the screening process, we should do

research on biological activity, pharmacokinetics, toxicity

analysis, etc. while synthesizing, so as to find the molecules

needed for drug development. Then it is necessary to conduct

tests related to biological activity and pharmacological data, that

is, the quantitative structure activity relationship (QSAR) model

(Bolboaca and Jäntschi, 1900; Singh et al., 2013; Ezugwu et al.,

2021) of the compound. After the screening work is completed,

in order to avoid the late risk of drug development (Samuel et al.,

2021; Sun et al., 2022), also needs to verify whether it has

ADMET (Absorption, Distribution, Metabolism, Excretion,

Toxicity) properties. In the compound database, the

construction vector can select compounds with excellent

ADMET properties and biological activities (Deng, 2013).

Mining tacit knowledge in drug data and using machine

learning prediction can reduce the R&D cost of

pharmaceutical processes (Guo et al., 2022), and deep learning

algorithms accelerate drug target recognition efficiency (Fenglei

et al., 2021). Construction of prediction models for protein

hotspot residues based on machine learning algorithms can

assist drug development (Hu, 2019). Further mining the

activity of drugs against tumor therapeutic targets and the

sensitivity of tumor cell lines can efficiently develop novel

tumor drugs (Li, 2021). The ADMET classification prediction

model has good performance in predicting the properties of anti-

breast cancer drugs (Yaqin et al., 2022). Scholars have found that

some genes as well as core TFs can evaluate the efficacy of

adjuvant therapy for breast cancer, of which E2F1 can regulate

MAPK signaling pathways involved in pharmaceutical processes

(Ye et al., 2022). Recognizing that AI is a very effective tool in

disease assessment, patient data are collected through machine

learning to develop mathematical models and predict outcomes

(Suh and Lee, 2017; Fu et al., 2022; Zheng et al., 2022), a large

number of researchers have investigated interpretable disease

diagnostic models (Casteleiro-Roca et al., 2020; Tjoa and Guan,

2021; Xu et al., 2022).

Jiang and other scholars established an easy to understand

OPLS-DAmodel based on only two descriptors, and the accuracy

of the model was as high as 93% and 79% (Matsson et al., 2007;

Jiang et al., 2020). Pan and other scholars trained 79, 99 and

780 compounds respectively, and achieved high accuracy (Jiang

et al., 2020). Although good results have been achieved, there is

still room for optimization in terms of descriptors and the

number of compounds. Based on 1974 compounds (samples)

and 729 molecular descriptors (variables) provided by candidate

compound data set, this paper solves the problem of low

reliability caused by previous model development based on

relatively small data set. In addition, the application value of

the existing ADMETmodel in specific drug screening work is still

unclear, based on this, this study, first, a dual feature screening

combination method is proposed to screen data variables; then,

the combination of Bagging algorithm and random forest

algorithm is used to realize ERα’ Bioactivity prediction; finally,

different target values are introduced to test the performance of

the prediction model, so as to improve the development

efficiency of breast cancer specific drugs, as well as reducing

the error judgment rate of R&D personnel.

2 Materials and methods

2.1 Data acquisition

The main ways to obtain drug data include laboratories,

online public publications, biochemical databases, and so on.

In this paper, the optimized modeling (2021) dataset of anti-

breast cancer drug candidates provided by the China

Association for Science and Technology is used as the

candidate compound dataset.

Taking anti-breast cancer drugs as an example to test the

prediction framework for the following reasons: First, breast

cancer is the largest cancer in the world, and breast cancer

patients in China account for a relatively large proportion;
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second, researchers have accumulated a large number of R&D

data of anti-breast cancer drugs over the years, laying the

foundation for further machine-learning-based prediction

research; third, predecessors have left sufficient literature

data on breast cancer characteristic targets, which plays a

guiding role in the establishment of the validation prediction

framework.

2.2 Data processing

According to the data of 1974 compounds (samples) and

729 molecular descriptors (variables) provided by the candidate

compound dataset, 20 main variables were screened, which made

the selected main variables have a good effect on ERα biological

activity. Data preprocessing is performed first, and column

variables (molecular descriptors) are cleaned. Different

screening algorithms were used to analyze the distribution

characteristics of the cleaned data. In order to obtain more

accurate screening results, gray relational degree method and

Spearman rank correlation coefficient analysis are selected to

reduce the dimension of the data and data screening, and the two

are further combined analysis, and a dual feature screening

combined optimization method is proposed. The specific

analysis is divided into k steps, and the flow chart is shown in

Figure 1.

Step 1. Relevance calculation. The data were processed using

Algorithm I (grey correlation analysis) and Algorithm III

(Spearman rank correlation analysis) to obtain the

corresponding correlation coefficient sequences X(i) and Y(j).
Grey correlation analysis method, which takes the

difference value between curves as the correlation degree.

There are several comparison sequences (x1, x2,. . ., xn) for a

reference sequence x0, correlation coefficient of each

comparison sequence and reference sequence at each time

(i.e., each point in the curve) β(xi) can be calculated by the

following formula: ρ is the resolution coefficient, generally

between 0 and 1, usually taken as 0.5. Δmin represents the

second level minimum difference, Δmax represents the

maximum difference between two levels. Δoi(k) represents

the absolute difference between each point on the

comparison series xi curve and each point on the reference

series x0 curve. Therefore, the correlation coefficient β(xi) can

also be simplified as follows:

βoi �
Δ min( ) + ρΔ max( )
Δoi k( ) + ρΔ max( ) (1)

Because the correlation coefficient is the value of the correlation

degree between the comparison sequence and the reference sequence

at each time (i.e., each point in the curve), it has more than one

number, and the information is too scattered to facilitate the overall

comparison. Therefore, it is necessary to centralize the correlation

coefficient of each time (i.e., each point in the curve) into one value,

that is, to calculate its average value, as a quantitative expression of

the correlation degree between the comparison sequence and the

reference sequence, the formula of correlation degree ci is as follows:

ci � 1
N

∑N
k�1

βi k( ) (2)

Spearman rank correlation coefficient is generally considered

as Pearson linear correlation coefficient between ranked

variables, in actual calculation, there are simpler calculation

methods. Assume that the original data xi, yi has been

arranged from large to small, put x’i, y’i as the location of the

original xi, yi data after arrangement, then di = x’i−y’i represents

the difference of rank between xi, yi.

If there is no same rank, Spearman rank correlation

coefficient can be expressed as:

spc � 1 − 6∑d2
i

n n2 − 1( ) (3)

If the same rank exists, it is necessary to calculate Pearson’s

linear correlation coefficient between ranks:

spc � ∑i xi − x′( ) yi − y′( )��������������������∑i xi − x′( )2∑i yi − y′( )2√ (4)

Step 2. Take absolute value. Because the correlation degree

derived by the two algorithms may be positive or negative, but in

fact the correlation degree is similar to the concept of “distance,”

FIGURE 1
Flow chart of combined optimizationmethod for dual feature
screening.
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neither positive correlation nor negative correlation affects the

judgment of the correlation size. Therefore, the correlation

degree is taken as the absolute value to more clearly

represent the correlation between variables. The formula is

shown below.

X i( ) � X i( )| |
Y j( ) � Y j( )∣∣∣∣ ∣∣∣∣ (5)

Step 3.Data normalisation. As two different correlation analysis

methods are used in this paper, the correlation values X(i) and
Y(j) derived from the two algorithms need to be normalised in

order to obtain the final screening results. The normalisation

algorithm used in this paper is (0, 1) normalisation and the

formula is shown below.

xnormalization � x −Min

Max −Min
(6)

Step 4. Assignment of weights. By comparing the magnitude

and distribution of correlation under the two analysis methods, it

is approximated that the screening process of the data set by

Algorithm 1 (grey correlation analysis method) can obtain a

FIGURE 2
Framework of ERα bioactivity prediction model.

FIGURE 3
Schematic diagram of the classification prediction model
framework.

TABLE 1 Evaluation metrics for regression problems.

Full name Abbreviations Meaning

Mean squared error MSE Mean square error

Mear absolute error MAE Mean absolute error

Coefficient of determination R2 Decidability factor

Frontiers in Genetics frontiersin.org04

An et al. 10.3389/fgene.2022.1087273

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1087273


higher correlation value. Therefore, a weight of 0.6 was assigned

to sequence X(i) and a weight of 0.4 to sequence Y(j). By
assigning weights, the final correlation degree sequence is

obtained. The calculation formula is shown below.

Z k( ) � 0.6X k( ) + 0.4Y k( ) (7)

Step 5. Sorting. The normalised variable data is sorted according

to the magnitude of the correlation values to produce the top

20 most significant sub-descriptors for biological activity.

2.3 Data modelling

The 20 main variables (i.e., molecular descriptors)

obtained from data processing were used to model the

prediction of ERα biological activity by molecular

descriptors of compounds. Data standardisation was first

performed to achieve uniformity of magnitude. The dataset

was then partitioned by K-fold cross-validation to achieve

adequate use of the dataset to fit the prediction model. Finally,

integrated learning is used to combine the Bagging and

Random Forest algorithms through the Stacking method to

build the entire prediction model framework. In summary, the

immediate ERα bioactivity prediction model framework is

shown in Figure 2.

In order to make further classification predictions of the

ADMET properties of the drug, the original 729 molecular

descriptor variables were processed for data in this paper, and

a total of 300 molecular descriptor variables were retained for

data analysis. After normalizing the data, the data were

subjected to model-based feature selection and FDR/FPR-

based feature selection, respectively. After the two model

selections, the classification models obtained from the two

methods were placed into a voting machine to obtain the final

model, and the entire prediction model framework was

constructed. In summary, the classification prediction

model framework for the five specific compound classes is

shown in Figure 3.

2.4 Evaluation of the ERα bioactivity
prediction model

For the ERα bioactivity prediction model, three evaluation

metrics shown in Table 1 are used in this paper.

The mean squared error (MSE) reflects the degree of

correlation between the independent and dependent

variables; the MSE evaluates the degree of variation in

the data.

Mean absolute error (MAE) is the average of the absolute

errors and is often used to reflect the reality of the error in the

predicted values.

FIGURE 4
Scatter plot of ALogP.

TABLE 2 The 20 most significant sub-descriptors (i.e., variables) for
biological activity.

Molecular
descriptors

Grey
correlation

Spearman’s
rank

correlation
coefficient

Normalised
and

weighted
score values

MDEC-23 0.7997 0.5491 0.9999

MLogP 0.7943 0.5452 0.9872

LipoaffinityIndex 0.7954 0.5249 0.9707

CrippenLogP 0.7861 0.4738 0.9081

SwHBa 0.7895 0.4457 0.8883

nC 0.7641 0.4868 0.8821

nT6Ring 0.7809 0.4383 0.8668

n6Ring 0.7861 0.4281 0.8665

BCUTp-1h 0.7821 0.4329 0.8639

SP-5 0.7764 0.4427 0.8631

C2SP2 0.7686 0.4430 0.8499

SP-6 0.7775 0.4201 0.8444

ATSp4 0.7642 0.4444 0.8437

ATSp2 0.7601 0.4443 0.8365

ATSp5 0.7537 0.4514 0.8321

ATSp3 0.7648 0.4296 0.8312

maxsOH 0.7460 0.4619 0.8284

ATSp1 0.7550 0.4439 0.8274

nHaaCH 0.7632 0.4226 0.8221

naaCH 0.7632 0.4226 0.8221
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This coefficient is often used to reflect the degree of reliability

of changes in the dependent variable in a regression model. The

higher the value, the better the predicted value fits the true value.

2.5 Evaluation of classification prediction
models for ADMET properties of
compounds

The experimental data was designed to reduce the rate of

misclassification by drug developers, in order to ensure

robustness. In this paper, five performance comparison

metrics were selected: accuracy, precision, recall, F1 value,

Cohen’s Kappa coefficient and ExtraTreesClassifier accuracy.

The formulae for each evaluation metric are shown below.

The accuracy rate is calculated as shown in Table 2.

Accuracy � TP + TN

TP + TN + FP + FN
(8)

where TP is a positive example judged to be positive, FP is a

negative example judged to be positive, TN is a negative example

judged to be negative and FN is a positive example judged to be

negative.

The accuracy rate is calculated by the formula:

Pr ecision � TP

TP + FP
(9)

The recall is calculated as:

Recall � TP

TP + FN
(10)

The F1 value is calculated using the formula:

F1 � 2TP
2TP + FP + FN

(11)

The Cohen’s Kappa coefficient is calculated as:

k � p0 − pe

1 − pe
(12)

Where, p0 represents the observed compliance rate and pe
represents the opportunity compliance rate.

2.6 ROC curve

Horizontal axis FPR: 1-TNR, 1-Specificity. The larger the

FPR, the more actual negative classes in the predicted positive

classes. Vertical axis TPR: Sensitivity. The larger the TPR, the

more actual positive classes in the predicted positive classes. The

closer the ROC curve is to the (0, 1) point, the more it deviates

from the 45° diagonal, the better.

3 Results

3.1 Dataset description

The optimized modelling of anti-breast cancer drug candidates

(2021) dataset provided by CCSA was used. The 729 molecular

descriptors of 1974 compounds in it were used as dependent

variables to find the molecular descriptors among them that

could significantly affect ERα activity as feature variables for

subsequent questions. Inevitably, there are some anomalies in the

data used as dependent variables, which will interfere with the

selection of the characteristic variables and have a collateral negative

impact on the solution of the subsequent problem. For example, a

large proportion of the numerical columns of the molecular

descriptors have null (0) or almost null (0) values.

If there are too many null values, the data reliability of the

variable will be low, and it is considered that the molecular

descriptors corresponding to these data are unlikely to become

feature variables and will waste arithmetic power in the subsequent

screening of the feature vectors. Therefore, in this step, the

numerator descriptors with 95% of the data items being null are

eliminated. The data visualisation also revealed some outliers in the

data, and a scatter plot of one of the columns is shown in Figure 4.

The raw data was normalised and after noise and

dimensionality reduction to form the experimental dataset.

Using the KS test, the study found that the data samples did

not satisfy a normal distribution, which in turn led to the use of

an outlier treatment based on box plot analysis.

TABLE 3 Descriptions of null-valued columns (e.g., nB).

Count 1974

Mean 0

Std 0

Min 0

25% 0

50% 0

75% 0

Max 0

TABLE 4 Evaluation data of the dual feature screening combination
optimisation method.

Weighted score MAE MSE R2

MLPRegressor 1.3723 3.2465 −0.6000

GradientBoostingRegressor 0.6828 0.8280 0.5900

RandomForestRegressor 0.6104 0.6873 0.6607

AdaBoostRegressor 0.8500 1.1100 0.4500
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After sorting each column of data from smallest to largest, the

interval between the values of the first and third quartiles is taken

as the acceptable range, where the upper bound is the third

quartile—IQR (IQR = third quartile–first quartile) and the lower

bound is the first quartile—IQR, and numbers outside this value

area are considered outliers. These outliers are taken to

correspond to the element values, with outliers over the upper

bound being taken to the upper bound and those over the lower

bound being taken to the lower bound, otherwise they remain as

they are. Then go back to Step 1 and clear the column with the

higher number of null values. As shown in Figure 5.

Through the above data processing, a total of 430 molecular

descriptors were removed. The final 20 molecular descriptors

(i.e., variables) with the most significant impact on bioactivity as

a result of the dual feature screening combined optimisationmethod

are shown in Table 3.

The results of the Spearman rank correlation coefficient

processing for this study are shown in Figures 6, 7

3.2 Data set variable screening
combination optimisation

The 20 features derived from the dual feature screening

combination optimisation method, Spearman’s algorithm and

the grey correlation algorithm were substituted into the

correlation regression model and the MAE, MSE and R2 were

used to evaluate the advantages and disadvantages of the three

methods. The table below shows the results of the above

experiments. From the data in the table, it is analysed that the

dual feature screening combination optimisation method used in

this paper has better results. As shown in Table 4.

3.3 Model performance

3.3.1 ERα bioactivity prediction model evaluation
By analysing the various algorithm evaluationmetrics, we found

that the MLP performed poorly regardless of the metrics, and the r2

value of AdaBoostRegressor was consistently below 0.5, so it was also

out of our selection range. The final model is the result of fusing the

random forest and GradientBoostingRegressor after tuning the

parameters through a grid search. As shown in Figure 8.

The results in Table 5 show that the model after stacking

performs better than the original two models in all three scoring

metrics, and also that this model is realistic in the field of machine

learning when the R2 value is greater than 0.7 and the fitted

function is more realistic.

3.3.2 Evaluation of classification prediction
models for the ADMET properties of compounds

For the classification prediction models of the ADMET

properties of compounds, the results of the evaluation of the

five target value related classification models are given below. It

FIGURE 5
Schematic diagram of the box line diagram.

FIGURE 6
Statistical results of 20 bioactive molecules based on Grey
correlation analysis.

TABLE 5 Evaluation metric values for each algorithm.

MAE MSE R2

GradientBoostingRegressor 0.6732 0.7927 0.6087

RandomForestRegressor 0.6180 0.6752 0.6600

Stacking 0.5940 0.6436 0.7002
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can be seen that in most cases, the model set up in this paper

prevails. Of course, the effect is not significant due to the

inherently low scores of the initial models. As shown in Table 6.

In the following results, the roc diagram about the two

toxicity indicators is given. Figures 9, 10, it can be seen that

the classification effect for these two indicators is good.

The resulting three classification models were placed into the

voting machine, which is the final model. Five final models were

obtained onfive validation sets with accuracy: 0.92,0.95,0.91,0.76,0.96;

F1 values: 0.91,0.96,0.92,0.80,0.97 respectively.

4 Discussion

In today‘s society, breast cancer is the most common and lethal

cancer and is the leading cause of cancer death in women (Desantis et

al., 2015), and related studies have confirmed that breast cancer is

genetically risky (Lilyquist et al., 2018). The expression of estrogen

receptor ERα is closely related to the development of breast cancer,

and this gene is involved in the proliferation and differentiation of

breast cancer cells (Geng, 2016). Currently ERα is considered an

important target for the treatment of breast cancer (Xu, 2018).

Researchers have found that the ADMET module ensures that the

corresponding compound becomes a candidate with good

pharmacokinetic properties and safety (Dejun et al., 2018). Thus,

machine learning can effectively reduce the cost of drug research and

development and improve the stability and accuracy of prediction

models (Wang et al., 2006). Scholars have determined that the optimal

cut-off values for E2 and FSH in serumcan assess CIA in breast cancer

populations in southern China (Yang et al., 2022). Estrogen receptors

alpha (ERα) in estrogen has been found to be an important target for

the treatment of breast cancer (Chang et al., 2013).

We collected data on anti-breast cancer drug candidates

provided by the China Association for Science and Technology,

which provided 974 compounds (samples) and 729 molecular

descriptors (variables) information. The dataset is therefore

highly representative and generalizable. In this study, random

forest algorithm and Bagging regression algorithm were used to

construct a quantitative prediction model of ERα bioactivity by

compounds, and two model selection features, ExtraTreesClassifier

and GradientBoostingClassifier, were selected. According to the

actual situation, taking into account the properties of target

value, fdr-based method is adopted to improve F1 value in

feature selection. At the same time, the feature selection method

based on model also has high accuracy. Both vote to ensure the

accuracy of the final model.

It is shown that the weighted scores obtained by grey correlation

and Spearman coefficient are more suitable for the data distribution

characteristics of anti-breast cancer candidates. In this study,

20 molecular descriptors with strong antagonistic effects were

selected from 729 molecular descriptors. These are MDEC-23,

MLogP, LipoaffinityIndex, etc. Random forest algorithm and

Bagging regression algorithm were selected to construct the

model, and then Stacking model fusion method was used to

establish the prediction model framework. The model showed

good performance in MAE, MSE and three scoring indexes after

Stacking, and the predicted result value of the model on the

validation set was 0.7, which proved that the model could

accurately predict. According to the classification prediction

model of ADMET properties of compounds, two feature

selection methods were used to screen the features, and three

classification models obtained by the two methods were placed

into the voting machine to obtain high accuracy and F1 values.

Therefore, the model established in this study is of great significance

in assisting prediction of ERα biological activity and improving the

development efficiency of specific drugs for breast cancer.

TABLE 6 Evaluation of classification models for each algorithm with CYP3A4 as the target value.

Algorithms Accuracy Accuracy Recall rate F1 value Cohen’s Kappa coefficient

LogisticRegression 0.9367 0.9626 0.9529 0.9577 0.8321

ExtraTreesClassifier 0.9367 0.9564 0.9596 0.9580 0.8298

RandomForestClassifier 0.9468 0.9600 0.9697 0.9648 0.8560

Integrated learning models based on Stacking methods 0.9538 0.9668 0.9581 0.9634 0.8816

FIGURE 7
Statistical results of 20 bioactive molecules based on
Spearman rank correlation coefficient analysis.
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Despite the good results, there are limitations in this study.

In future anti-breast cancer drug screening efforts, this study

should attempt to collect more datasets for machine learning

training, draw on expert opinion, and continuously optimise

the feature generation tools to improve the accuracy and

stability of the model. Through the interdisciplinary

FIGURE 9
Classification model roc curve with hERG as the target value.

FIGURE 8
Feature variables and pIC50 fit results.
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collaboration between machine learning and

biopharmaceuticals, we can reduce the cost of

pharmaceuticals, reduce the error rate of drug developers,

and provide a reference for similar drug development work.

5 Conclusion

A quantitative prediction model for ERα bioactivity and a

classification prediction model for ADMET properties of

compounds were developed, which can assist in the

development of specific drugs for breast cancer. With the high

accuracy of the models, the cost of drug development and the rate

of misclassification by developers can be effectively reduced.
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