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Despite the recent increase in the use of immune checkpoint blockade (ICB), no ICB

medications have been approved or are undergoing large-scale clinical trials for

glioma. T cells, themainmediators of adaptive immunity, are important components

of the tumor immune microenvironment. Depletion of T cells in tumors plays a key

role in assessing the sensitivity of patients to immunotherapy. In this study, the

bioinformatics approach was applied to construct T cell depletion-related risk

assessment to investigate the impact of T cell depletion on prognosis and ICB

response in glioma patients. The Cancer Genome Atlas (TCGA) and

GSE108474 glioma cohorts and IMvigor210 immunotherapy datasets were

collected, including complete mRNA expression profiles and clinical information.

Weused cell lines to verify thegeneexpression and theR3.6.3 tool andGraphPad for

bioinformatics analysis and mapping. T cell depletion in glioma patients displayed

significant heterogeneity. The T cell depletion-related prognostic model was

developed based on seven prognostic genes (HSPB1, HOXD10, HOXA5, SEC61G,

H19, ANXA2P2, HOXC10) in glioma. The overall survival of patients with a high

TEXScore was significantly lower than that of patients with a low TEXScore. In

addition, high TEXScore scores were followed by intense immune responses and a

more complex tumor immune microenvironment. The “hot tumors” were

predominantly enriched in the high-risk group, which patients expressed high

levels of suppressive immune checkpoints, such as PD1, PD-L1, and TIM3.

However, patients with a low TEXScore had a more significant clinical response

to immunotherapy. In addition,HSPB1 expressionwas higher in theU251 cells than in

the normal HEB cells. In conclusion, the TEXScore related to T cell exhaustion

combined with other pathological profiles can effectively assess the clinical status of

glioma patients. The TEXScore constructed in this study enables the effective

assessment of the immunotherapy response of glioma patients and provides

therapeutic possibilities.
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Introduction

Despite aggressive treatment, gliomas are among the least

successful primary tumors of the central nervous system, with a

5-year survival rate of less than 5% (Miller et al., 2021). Loss of

effector function and increase in immunosuppressive molecules

are the main features of T cell exhaustion (Dominguez-Villar

et al., 2019; Choe et al., 2021). Indeed, it is common for CD4+ and

CD8+ T cell numbers to be reduced within the tumor and in

circulation among patients with glioma (Wang et al., 2017;

Levite, 2021). As checkpoint inhibitors are witnessing an

expanded range of indications, an increasing number of

patients are receiving them (Zeng et al., 2013; Giles et al.,

2018). Although PD-1 antibodies have been found to produce

durable clinical responses in advanced melanoma, bladder

cancer, liver cancer, and other types of cancer, it is unclear

whether this treatment is feasible in glioma, suggesting the

necessity to further investigate the mechanisms of T cell

depletion in glioma (Farhood et al., 2019; Hu et al., 2019;

Zheng et al., 2020; Laumont et al., 2021; Ye et al., 2021).

Various subtypes of T cells have been shown to play different

roles in gliomas, primarily by mediating adaptive immune

responses (Flores-Toro et al., 2020; Choi et al., 2021). Among

them, T-regs and Th2 cells suppress antitumor immunity,

whereas CD8+ and CD4+ T cells act as cytotoxic antitumor

immune cells. Indeed, the tumor-killing capacity of many

T cells of this kind may be suppressed in gliomas; as the

tumor microenvironment becomes more complex, the

prognosis becomes more inferior. It has been shown to be

closely related to the tumor microenvironment,

immunotherapy, and tumor prognosis (Du Four et al., 2016;

Lowther et al., 2016; Jahan et al., 2018). With a large body of

studies currently investigating the mechanism of T cell depletion

on tumor progression and the causes of T cell

immunosuppression in tumors, the overall relationship

between T cell depletion and prognosis in glioma, as well as

between the tumor microenvironment and immunotherapy

sensitivity, remains unclear.

In our investigation, risk assessment related to T cell

depletion in glioma, an independent factor for clinical

outcomes, was developed using large-scale bioinformatics

analysis. Patients with glioma were also examined for the

relationship between clinical progression and T cell depletion

to uncover the underlying mechanisms driving tumor

progression.

Materials and methods

Data collection

Gene transcriptome data for low-grade gliomas (LGGs) and

glioblastomas (GBMs) were collected from The Cancer Genome

Atlas (TCGA), GSE108474 was downloaded as background

corrected and RMA-normalized data, and the IMvigor

210 cohort was used as an immunotherapy cohort to verify

clinical treatment outcomes. Among them, TCGA-LGG included

a total of 515 samples’ transcriptome and clinical data, and

TCGA-GBM included a total of 599 samples’ transcriptome

and clinical data.

All transcriptome profiles were converted to transcripts per

million (TPM) prior to analysis. Transcriptome data obtained

from different platforms were corrected using the

normalizeBetweenArrays function. Finally, transcriptome

matrix data were screened to calculate the average value of

duplicated genes.

Assessment of immune cell infiltration

CIBERSORTx is a suite of machine learning tools for

assessing cell abundance and cell-type-specific gene

expression patterns from a large set of tissue transcriptome

profiles (Steen et al., 2020). QuanTIseq is a method to

quantify the tumor immune background as determined by

the type and density of tumor-infiltrating immune cells

(Finotello et al., 2017). TIMER explores the association

between immune infiltration and a wide range of factors

by performing predictive calculations of the levels of

tumor-infiltrating immune subsets of cancer types with a

comprehensive study of the molecular characteristics of

tumor-immune interactions (Li et al., 2017).

CIBERSORTx, QuanTiseq, and TIMER were employed to

analyze the cell infiltration in TCGA samples, and the

immune cell infiltration from TCGA data was investigated

to identify the relationship between infiltrated immune cells,

especially CD4+ and CD8+ T cells, and overall survival (OS) of

glioma patients, with p < 0.05 being the entry for further

analysis.

Gene set enrichment analysis

The Gene Set Enrichment Analysis (GSEA) algorithm was

applied to perform biological pathway enrichment between the

two groups with Hallmark, Gene Ontology (GO), and Kyoto

Encyclopedia of Genes and Genomes (KEGG) reference

gene sets.

Weighted correlation network analysis

Weighted correlation network analysis (WGCNA) can be

used to describe the correlation between candidate features and

gene sets. WGCNA was conducted using the R package

WGCNA, and to ensure scale-free topological networks, the
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power value was set to β = 3 and the soft threshold parameter of

scale-free networks to R2 = 0.9. Sevenmodules were retrieved as a

result, with the green module displaying the closest relationship

to the clinic for further study.

Construction of TEXScore model

Random forest analysis was first performed on the selected

genes, with the initial nTree = 1,000. When the error rate

FIGURE 1
(A) Unsupervised clustering classification. (B) Heatmap showed the expression of IL2/IFNG/TNFA pathway in different subtypes and clinical
pathology. (C) Bar chart showed the proportion of LGG and GBM in different molecular subtypes. (D) K-M analysis of four subtypes. (E) The effect of
different immune cell subsets in tumor microenvironment on the clinical outcome of glioma. (F) Effect of infiltration level of T cells CD4 memory
resting on clinical outcome.
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reached the minimum at nTree = 859, seven genes with

relative importance greater than 0.2 were extracted for

analysis. LASSO regression analysis was applied to the

model equation, as follows:

risk score � Coef1 × Gene expression1＋Coef2

× Gene expression2＋/Coefn × Gene expressionn
Coef represents the importance index for each gene in the

analysis random forest analysis. Gene expression values

FIGURE 2
(A) Network topology analysis of various soft threshold power. (B) Module-clinical feature association: Each row corresponded to a module
feature gene, and each column corresponded to a clinical feature. (C) Survival random forest analysis was conducted to assess the importance of
variables. (D) Seven genes were most related to survival. (E) K-M analysis showed the predictive performance of the model. (F) The ROC curve
showed the accuracy of the prediction model in predicting 1-, 3-, and 5-year survival status.
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represent the expression values of the corresponding genes.

For the assigned risk score, patients above the median risk

score were defined as the high-risk group, whereas those

below the median risk score were defined as the low-risk

group. ROC and KM curves were used to assess model

performance.

Cell culture

GBM cell lines (U251) and normal human astrocyte cell lines

(HEB) were obtained from Dr. Cai and Dr. Chen, respectively. The

cells were seeded in RPMI-1640/DMEM supplemented with 10%

fetal bovine serum (Gibco, China) at 37°C in a 5% CO2 atmosphere.

FIGURE 3
(A) Multivariate COX regression analysis demonstrated that RiskScore was an independent predictor. (B) K-M analysis showed the predictive
performance of the model in external cohort. (C–E) Biological function analysis based on GO dataset.
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Quantitative real-time PCR

Cells were treated with TRIzol reagent (Takara, Japan). We

then extracted all RNA and reverse-transcribed it into cDNA.

qRT-PCR was used to analyze the relative expression of HSPB1,

and data were normalized to GAPDH. The primers used are

listed in Supplementary Table S1.

Statistical analysis

All data analysis results in our investigation were processed

using R software. For continuous variables with normal

distribution, we conducted Student’s t-test, while non-

normally distributed continuous variables were calculated

using the Mann–Whitney U test. Differential expression

FIGURE 4
(A–C) Biological function analysis based on HALLMARK dataset. (D,E) Biological function analysis based on KEGG dataset.
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analysis was conducted with a threshold set at |logFC| > 0.5 and

p < 0.05.

Results

T cell-related model construction

First, the three pathways of IL2, IFN-γ, and TNFα were

assessed for their Gene Set Variation Analysis (GSVA) scores

according to the HALLMARK gene set, based on which

unsupervised clustering analysis was conducted. The delta

results showed that grouping into four clusters yielded the

best results (Figure 1A). The heat map illustrates the

expression levels of IL2, IFN-γ, and TNFα pathways in

different subtypes, and we found that the pathways of IL2,

IFN-γ, and TNFα all presented a state of high expression in

cluster B (Figure 1B). Subsequently, the proportion of glioma and

LGG patients in different TEXcluters was examined, with GMB

patients accounting for the highest proportion (50%) in Cluster B

FIGURE 5
(A)Heatmap showed the enrichment of GSVA analysis (The enrichment degree of each patient in tumor formation and other related pathways).
(B) Correlation between TEXScore and pathways. (C) Immunomodulator expression levels in different TEXScore groups.
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and only 1% in Cluster D (Figure 1C). Meanwhile, the predictive

efficacy of their TEX groupings was tested, all of which showed

that patients in Cluster D had the best survival status, whereas

patients in Cluster B had the worst survival (Figure 1D). The

immune cell infiltration component of the tumor

microenvironment of the four cluster patients was assessed

using the CIBERSORTX algorithm, and Cox regression

analysis was performed to investigate the prognostic value of

a wide range of cells in each TEXCluster patient. Among them,

resting T cell memory was found to be a protective factor in both

TEXb and TEXc (Figure 1E). Therefore, resting T cell memory

was grouped according to its level of infiltration and tested to

predict clinical outcomes in glioma patients. Intriguingly,

patients with high T cell memory resting infiltration had

FIGURE 6
(A,B) Infiltration levels of immune cell subsets in different TEXScore groups. (C–F) High and low TEXScore patients with its mutation landscape.
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poorer survival prognosis (Figure 1F). Therefore, further analysis

was conducted.

Identification of T cell exhausted related
genes

Differential expression analysis was performed on patients

with TEXCluster 4, and concatenation was performed for

WGCNA analysis. The WGCNA method was used to screen

for clinically relevant genes, and a weighted gene co-expression

network was constructed using the following parameters: power

of β = 4 and scale-free R2 = 0.9. Consequently, seven color

modules were finally obtained by merging similar modules, and

theMEgreen group was found to be themost relevant to survival-

related information, after which MEgreen was selected for

subsequent analysis (Figures 2A,B).

Construction of TEXScore prediction
model

Based on the selected gene sets and corresponding clinical

outcomes, we performed survival random forest analysis, an

algorithm was used to process right-censored survival data.

When Ntree = 859, the error rate was the lowest, and the

seven genes most associated with clinical outcomes were

HSPB1, HOXD10, HOXA5, SEC61G, H19, ANXA2P2, and

FIGURE 7
(A) Comparison of clinical outcomes between high and low TEXScore patients. (B) Bar chart showed the effectiveness of immunotherapy in
patients with high and low TEXScore. (C,D) TEXScore corresponding to the clinical response of patients to immunotherapy.
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HOXC10 (Figure 2C). The importance of these genes in

predicting the clinical outcome of patients with glioma is

shown in Figure 2D. The LASSO regression algorithm was

used to construct the model.

risk score � ″0.4956 × HSPB1 + 0.1231 × HOXD10

+ 0.0697 × HOXA5 + 0.0037 × SEC 61G

+ 0.0911 × H19 + 0.145 × ANXA2P2

+ 0.064 × HOXC10

As shown by the Kaplan–Meier curve, patients with a low

TEXScore had a significantly higher OS rate than those with a

high TEXScore (p < 0.001), suggesting that the overall

survival time of patients would decrease with increasing

risk score (Figure 2E), and the ROC curve indicated that

its performance in predicting survival rate at 1, 3, and 5 years

was 0.870, 0.887, and 0.843, respectively (Figure 2F). It was

found by the multivariate COX regression analysis that

TEXSore was an independent factor for prognosis with a

Hazard ratio of 2.014 (Figure 3A). An external dataset was

used to validate the predictive performance of the TEXScore

model, and the Kaplan–Meier survival results were in

agreement with the training set (Figure 3B). We then

detected the expression of HSPB1, the most important

gene, in the normal human astrocyte cell line (HEB) and

GBM cell line (U251), and found significant differences.

HSPB1 was expressed at higher levels in U251 cells than

in HEB cells (Supplementary Figure S1). These results

indicated that HSPB1 plays an important role in glioma

progression.

Exploration of the correlation between
TEXScore and biological function

Based on the HALMARK, KEGG, and GO datasets, we

explored the correlation between TEXScore and biological

function in patients with glioma. First, we found that the

TEXScore was correlated with tumor pathways, including

positive regulation of cell activation, focal adhesion, and the

JAK-STAT signaling pathway. The TEXScore was also highly

correlated with toll-like receptor signaling, granulocyte

migration pathway, adaptive immune response, and other

immune pathways (Figures 3C–E). Both the HALMARK and

KEGG gene sets confirmed these results (Figure 4).

The levels of pathway enrichment in patients with high and

low TEXScore are illustrated in the heatmap (Figure 5A). Based

on the above GSEA results, several gene sets were selected for

GSVA analysis, and a negative correlation was found between

TEXScore and tumor formation and other pathways, such as the

ERBB signaling pathway and WNT signaling pathway, but a

positive correlation with mismatch repair, antigen processing,

and presentation (Figure 5B).

Correlation of TEXScore with immune
checkpoints

To check the effectiveness of the TEXScore in predicting the

clinical response to immunotherapy in glioma patients, the

expression of immune checkpoints in patients with high and

low TEXScore was examined. The results showed that immune

checkpoint expression was higher in patients with a high

TEXScore than in those with a low TEXScore (Figure 5C).

Subsequently, the degree of immune cell infiltration in

patients in the high and low TEXScore groups was calculated

using quanTlseq and TIMER algorithms. The quanTlseq

algorithm revealed that the M2 macrophage component was

significantly enriched in the high TEXScore patients, whereas

immune effector cells were predominant in the low-risk group

(Figure 6A).

The TIMER algorithm showed a higher proportion of both

immune effector cells andMmacrophages in the high-risk group,

which sheds light on the subsequent analysis of whether the

immune effector cells in the high-risk group were in a state of

immune depletion (Figure 6B). The mutations in LGG and

glioma are shown in Figure 6C. Figures 6D,E present the

mutation landscape of the high and low TEXScore patients,

respectively, with the high TEXScore group having a lower

mutation rate than the low TEXScore group. The overall

mutation landscape is illustrated in Figure 6F, including

variant classification, mainly composed of missensemutation,

variant type, mainly composed of SNPs, SNV class, mainly

composed of C > T, and variants per sample, Mediant:32.

Data from IMvigor210 were then obtained to validate the

performance of the TEXScore model in predicting the effect of

immunotherapy. First, the patients were categorized into high-

and low-risk groups according to the TEXScore formula. The

Kaplan–Meier survival model proved the effectiveness of

TEXScore in predicting the clinical outcome of patients, with

patients with a high TEXScore experiencing worse survival status

than those with a low TEXScore (Figure 7A). Following this, the

bar chart demonstrates that patients with low TEXScore

responded more significantly to immunotherapy (Figure 7B),

suggesting that the lower the TEXScore, the better the patients

responded to immunotherapy, with PR and CR patients having

the lowest TEXScore (Figures 7C,D).

Discussion

A growing body of research suggests that rather than being

an immune-privileged organ, there are many innate and adaptive

immune responses within the central nervous system (von

Roemeling et al., 2020; Broekman et al., 2018; Schmitt et al.,

2021). A complex tumor immune microenvironment in gliomas

is formed by tumor cells, stromal cells, immune cells, and

extracellular matrix (Hambardzumyan et al., 2016; De Boeck
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et al., 2020). T cells, a class of immune cells that are essential for

the immune response in gliomas, play a key role in tumorigenesis

and progression (Quail and Joyce, 2017; O’Rourke et al., 2017).

As a result, T cells appear to be key to glioma immunotherapy.

Reportedly, significant heterogeneity in T cell depletion exists

between different grades of gliomas and between samples of the

same grade (Woroniecka et al., 2018; Sadik et al., 2020;

Kreatsoulas et al., 2022). To this end, seven T cell depletion-

related genes with prognostic value in gliomas were filtered out,

based on which a TEXScore model was constructed. As the

results suggest, significant differences exist in the risk assessment

of gliomas of different grades, subtypes, and molecular

characteristics. In particular, a more complex tumor immune

microenvironment in glioma patients usually predicts a far more

interior prognosis. According to this study, higher risk

assessment scores were associated with stronger immune

responses, a more complex tumor immune microenvironment,

and a worse prognosis for glioma patients. It has been indicated

in several studies that while TEXScore positively correlates with

certain immunotherapeutic targets and is enriched in hot tumors

(positively correlated with immune cell infiltration), it also

correlates with T cells depletion markers, such as HSPB1 and

HOXA5, suggesting that the stronger the suppression of

antitumor immunity, the greater the depletion of T cells in

gliomas. Recent studies have also revealed the failure of

depleted T cells to recover their tumor-killing capacity. The

findings of this study were further validated in the IMvigor

210 immunotherapy dataset, as patients with a low TEXScore

proved to significantly benefit from immunotherapy.

Consequently, the development of a TEXScore model would

contribute to the effective prediction of prognosis and

immunotherapy effects in patients with glioma.

Random forest analysis and LASSO regression analysis were

employed to construct the risk assessment related to T cell

depletion in glioma, a pioneering practice. The generated

TEXScore may provide a promising assessment of the

prognosis and tumor immune microenvironment among

glioma patients, and because of its well-validated performance

in other cohorts, it may serve well for clinical translation. Heat

shock protein beta-1 (HSPB1) is a negative regulator of iron

cancer cell death, and HSPB1, as a new regulator of iron cancer

cell death in previous experiments, plays an important role in

iron-mediated cancer therapy (Sun et al., 2015). HOXD10,

HOXA5, and SEC61G have all been shown to play an

important role in breast tumorigenesis and were identified as

potential biomarkers for the diagnosis of breast cancer

(Stasinopoulos et al., 2005; Vardhini et al., 2014; Ma et al.,

2021). In addition, SEC61G was identified as a novel

prognostic marker to predict survival and treatment response

in glioblastoma patients in recent studies (Liu et al., 2019).

H19 has been shown to play an important role in the

tumorigenicity and stemness of glioblastoma and may be a

therapeutic target for the treatment of glioblastoma in the

future (Jiang et al., 2016). In a cell experiment, pseudogene

ANXA2P2 knockdown showed its tumor suppressor function

by inhibiting the PI3K/PKB pathway in glioblastoma cells (Ni

et al., 2021). HOXC10 belongs to the homeobox gene family,

which encodes a highly conserved family of transcription factors

that play an important role in morphogenesis in all multicellular

organisms. Similarly, HOXC10 overexpression promotes

angiogenesis in human gliomas through interaction with

PRMT5 and upregulation of VEGFA expression in vitro (Tan

et al., 2018; Guan et al., 2019). These results suggest that our

selected prognostic genes play an important role in glioma or

cancer and are sufficient to demonstrate the stability of

prognostic models. Currently, the efficacy of immunotherapy

for glioma remains unclear, and there are no clinical trials on the

potential benefits of immunotherapy in glioma patients. With

our TEXScore, the T cell depletion levels of glioma patients can

be effectively assessed with differentiated immunotherapy-

predicted outcomes, as validated by the validation cohort and

IMvigor 210 immunotherapy dataset. Furthermore, the

TEXScore provides certain predictive values for

immunotherapy treatment of glioma patients, which may

serve as a fundamental basis for the treatment of glioma

patients for further clinical applications in the future.

In the present study, TEXScore was found to be correlated

with positive regulation of cell activation, focal adhesion, JAK

STAT signaling pathway, and other tumor pathways, and

significantly correlated with Toll-like receptor signaling,

granulocyte migration pathway, adaptive immune response,

and other immune pathways. In addition, there was a negative

correlation between TEXScore and pathways, such as tumor

formation, including ERBB signaling pathway and WNT

signaling pathway, and a positive correlation with mismatch

repair, antigen processing, and presentation, indicating the

effectiveness of risk assessment scores in describing the

relative status of tumor activation pathways and antitumor

immune depletion in glioma samples. The risk assessment

score was effective in describing the relative status of tumor

activation pathways and antitumor immune depletion in glioma

samples. Although several previous studies have been conducted

on the prediction of immunotherapy response among glioma

patients, hundreds of genes were used as test subjects. However,

with our TEXScore, the response of patients in the IMvigor

cohort to immunotherapy could be predicted by detecting only

seven T cell depletion-related genes. We are convinced that the

TEXScore may lead to promising clinical applications to facilitate

the development of new glioma immunotherapies.

However, this study has several limitations. First, this was a

retrospective study and no prospective study was performed for

validation. Second, there is no public dataset of immunotherapy

for glioma patients to validate immunotherapy outcomes. In

addition, the interaction between T cell depletion and tumor cells

should be further investigated in combination with single cell

sequencing. Finally, while we validated the relative expression of
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HSPB1 using qRT-PCR analysis, it is necessary to thoroughly

investigate the mechanisms by which these seven genes modulate

T cell depletion in gliomas in order to better integrate risk

assessment and clinical practice. But our experiment remains

somewhat superior, and we identify a reliable model composed of

genes involved in T cell depletion, unlike other common

prognostic models, by assessing global gene expression

profiles, and the model is of great value in predicting glioma

patient outcomes.

Conclusion

In brief, upon the assessment of global gene expression

profiles, a reliable TEXScore model consisting of seven genes

related to T cell depletion was identified, which is of great value in

predicting the prognosis of glioma patients and may help set

targets for treating glioma patients.
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