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Mandarin fish (Siniperca chuatsi) is one of the most economically important fish in
China. However, it has the peculiar feeding habit that it feeds solely on live prey fish
since first-feeding, while refuses dead prey fish or artificial diets. After the specific
training procedure, partial individuals could accept dead prey fish and artificial diets.
The genetic basis of individual difference in artificial diet feeding habit is still
unknown. In the present study, the resequencing was performed between
10 individuals which could be domesticated to accept artificial diets and
10 individuals which could not. Through the selective sweep analysis based on
heterozygosity (Hp) and population differentiation coefficient (Fst), 57 candidate
windows were identified as the putative selected regions for feeding habit
domestication of mandarin fish, involved in 149 genes. These genes were related
to memory, vision and olfaction function, which could be potential targets of
molecular marker assistant breeding of artificial diet feeding trait. Beside of the
DNA sequence, we also explored the potential role of DNA methylation in feeding
habit domestication in mandarin fish. Whole-genome bisulfite sequencing was
performed between the individuals which could be domesticated to accept
artificial diets and those could not. 5,976 differentially methylated regions were
identified, referring to 3,522 genes, such as the genes involved in cAMP signaling
pathway. The DNA methylation changes of these genes might contribute to the
adaption of artificial diets in mandarin fish. In conclusion, the putative selected
regions and the differentially methylated regions were identified in the whole
genome, providing new insights into the feeding habit domestication from live
prey fish to artificial diets in mandarin fish. And the involved genes were identified
as the candidate genes for molecular breeding of artificial diet utilization in
mandarin fish.
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Introduction

Mandarin fish (Siniperca chuatsi) is one of the most economically
important fish in China. The annual yield has been over
300,000 tonnes, and the output value has been more than three
billion US dollars since 2015 (FAO). However, due to its special
feeding habit of live prey fish (Liang et al., 2001; Liang et al., 2008), the
stable supply of palatable live prey fish resulted in high farming cost
for mandarin fish. After the specific training procedure (Liang et al.,
2001), some individuals could accept dead prey fish and artificial diets,
but there are still some individuals could not. The genetic basis of
individual difference in artificial diet feeding habit is still unknown.

In our previous studies, we have identified several single nucleotide
polymorphisms (SNPs) in functional genes through PCR product
sequencing. One SNP was identified in the appetite regulatory gene
npy (Sun et al., 2015) and two SNPs were identified in the digestive
enzyme gene pepsinogen (pep) (Yi et al., 2013) related to dead prey fish
feeding trait, two SNPs were identified in the learning andmemory gene
protein phosphatase 1 (pp1) related to artificial diet feeding trait (Cheng
et al., 2015). Whole-genome resequencing has been applied in fish to
identify candidate genes associated with traits of biological and
commercial interest, such as genes associated with growth, early
development and immunity traits in Nile tilapia (Cádiz et al., 2020),
genes associated with body color and fin morphology in Siamese
fighting fish (Kwon et al., 2022). However, the large-scale screening
of selected genes and molecular markers associated with feeding habit
domestication trait from the whole genome is in urgent need to research.

DNA methylation as one of the most studied epigenetic
modifications, has been reported to play important roles in fish,
including feeding (Cai et al., 2018; Dou et al., 2018), metabolism
(Cai et al., 2020; Kumkhong et al., 2020; Zhu et al., 2020), growth
(Zhong et al., 2014; Si et al., 2016; Huang et al., 2018), sex
determination and gonadal differentiation (Navarro-Martín et al.,
2011; Shao et al., 2014; He et al., 2020a), and environmental
adaptation (Morán et al., 2013; Pierron et al., 2014; Veron et al.,
2018). During the feeding habit transition from carnivory to herbivory
in grass carp, the DNA methylation level of umami receptor t1r1
increased and the mRNA expression level decreased (Cai et al., 2018).
In our previous study, we found that DNA methylation could regulate
the mRNA expression of t1r1, further contributed to the feeding habit
domestication from live prey fish to dead prey fish in mandarin fish
(Dou et al., 2018). Whole-genome DNA methylation patterns have
been characterized in fish, and differential methylation analyses
identified key genes related to feeding, such as genes involved in
diet response in Nile tilapia (Podgorniak et al., 2022), and genes
involved in foraging in grass carp (Li et al., 2021). However, little is
known about the whole-genome DNAmethylation assay related to the
feeding habit domestication in mandarin fish.

Chromosome-level reference genome assembly of mandarin fish
(He et al., 2020b) allowed us to identify genome-wide variants and
DNA methylation changes between mandarin fish with different
performance in accepting artificial diets. In the present study, the
whole-genome resequencing and bisulfite sequencing were performed
between the individuals which could be domesticated to accept
artificial diets and those could not. The putative selected regions
and the differentially methylated regions were identified in the
whole genome, and the involved genes were identified as the
candidate genes for molecular breeding of artificial diet utilization
in mandarin fish.

Materials and methods

Fish

Mandarin fish (Siniperca chuatsi) (Huakang No. 1) used in the
present study were obtained from the Chinese Perch Research
Center of Huazhong Agricultural University (Wuhan, China), and
kept in tanks with continuous system of water filtration and
aeration at constant temperature (25°C ± 1 C). Mandarin fish
(50 ± 5 g) were trained to accept artificial diets according to
our previously published training procedure (Liang et al., 2001;
He et al., 2021). The composition of artificial diets was reported in
our previous study (He et al., 2021). This study was approved by
the Institutional Animal Care and Use Ethics Committee of
Huazhong Agricultural University (Wuhan, China) (HZAUFI-
2020-0020).

Whole-genome resequencing and mapping

10 individuals which could be domesticated to accept artificial
diets and 10 individuals which could not were sampled. To
minimize possible suffering, the fish were anesthetized with MS-
222 (200 mg/l) (Redmond, WA, United States) until loss of
equilibrium. Pelvic fins were dissected, and genomic DNA was
extracted following the standard phenol-chloroform extraction
procedure. DNA integrity was evaluated by agarose gel
electrophoresis. DNA purity was checked using the
NanoPhotometer® spectrophotometer (IMPLEN, CA,
United States). DNA concentration was determined by Qubit®
2.0 Flurometer (Life Technologies, CA, United States) with a
Qubit® DNA Assay Kit. Paired-end sequencing library was
constructed for each of the 20 samples according to the
manufacturer’s instructions (Illumina Inc., San Diego, CA,
United States). The libraries were sequenced on Illumina HiSeq
X Ten platform (PE150). Library construction and sequencing were
performed by Tianjin Novogene Bioinformatic Technology Co.,
Ltd. (Tianjin, China).

The raw data was filtered to remove the adapters, reads containing
more than 10% unknown bases, and reads with more than 50% low-
quality bases (Phred score ≤5). Then the clean reads were aligned
against our mandarin fish reference genome (version: sinChu7) (He
et al., 2020b) using Burrows-Wheeler Aligner software (bwa mem -t
4 -k 32 -M) (Li and Durbin, 2009). The output SAM files were
converted into BAM files, then sorted according to genome
coordinates. Subsequently, PCR duplicates were removed using
SAMtools software (Li et al., 2009).

Single nucleotide polymorphism calling and
annotation

SNP calling was performed using SAMtools software (Li et al.,
2009). SNPs were filtered by Perl script with the parameters: read
depth ≥4, missing rate <0.1, minor allele frequency (MAF) ≥ 0.05, and
genotype quality score ≥10. SNPs were annotated using ANNOVAR
software (Wang et al., 2010) based on the GFF3 file of our mandarin
fish reference genome. Synonymous and non-synonymous variants
were predicted.
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Selective sweep analysis

A sliding window method (the window size of 100 kb and the step
size of 50 kb) was applied for the selective sweep analysis.
Heterozygosity (Hp) and population differentiation coefficient (Fst)
were calculated. Windows with top 10% Hp values and top 10% Fst
values were considered to be candidate selected regions. To know the
biological function of genes within candidate selected regions, Gene
Ontology (GO) (http://geneontology.org/) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway (https://www.genome.jp/kegg/
pathway.html) enrichment analyses were performed.

Whole-genome bisulfite sequencing (WGBS)

According to our previous study, the mandarin fish did not eat
artificial diets during domestication processes were named GroupW (n =
56), and the mandarin fish ate artificial diets were named Group X (n =
24) (He et al., 2021). Three fish were randomly selected from each group,
anesthetizedwithMS-222 (200 mg/l) and euthanized. GenomicDNAwas
isolated from liver tissue with a standard phenol-chloroform method.
DNA integrity and purity were evaluated by agarose gel electrophoresis.
DNA concentration was determined by Qubit® 2.0 Flurometer with a
Qubit® DNA Assay Kit (Life Technologies). DNA was randomly
fragmented by sonication. The fragments with an average size of
200–400 bp were purified according to the manufacturer’s instructions
of Agencort AMPure XP-Medium Kit (Beckman Coulter, United States),
followed by DNA-end repair, 3′-dA overhang and ligation of methylated
sequencing adaptors. Then bisulfite conversion was performed with
ZYMO EZ DNA Methylation-Gold Kit (Zymo Research, Irvine, CA,
United States). After desalting, size selection, PCR amplification and size
selection again, qualified libraries were sequenced on Illumina HiSeq X
Ten platform (PE150). Library construction and sequencing were
performed by Beijing Genomics Institute (BGI, Wuhan, China).

Identification of differentially methylated
regions and differentially methylated genes

WGBS reads mapping to our mandarin fish reference genome
(version: sinChu7) (He et al., 2020b) (bismark --bowtie2), deduplication
(deduplicate_bismark) and methylation calling (bismark_methylation_
extractor --ignore 10 --ignore_r2 10) were performed with Bismark
(Krueger and Andrews, 2011). Data were filtered so that only sites with
read depth ≥10 were retained. Sites that were in the 99.9th percentile of
coverage were also removed from the analysis to account for potential PCR
bias. Differentially methylated regions were identified by methylKit (tiling
windows, win. size = 200 bp, step. size = 200 bp) (Akalin et al., 2012), with
themethylation difference larger than 25% and q-value<0.01. To know the
biological function of differentially methylated genes, GO and KEGG
pathway enrichment analyses were performed.

Results

Whole-genome resequencing and mapping

Resequencing was performed between 10 individuals which
could be domesticated to accept artificial diets and 10 individuals

which could not. A total of 169.45 Gb raw data was generated.
After filtering, 169.29 Gb clean data was obtained. The effective
rates (the ratio of clean data to raw data) were 99.81%–99.94%.
The Q20 (sequencing error rate <1%) and Q30 (sequencing error
rate <0.1%) were 97.03%–97.84% and 91.78%–93.64%,
respectively. The GC contents were 40.64%–41.77%
(Supplementary Table S1). The average sequencing depth
was 8.57–10.19×. Of the clean reads, 99.65%–99.79% were
mapped to our mandarin fish reference genome (version:
sinChu7). 97.75% reference genome bases had at least 1 ×
coverage, and 92.69% had at least 4 × coverage (Supplementary
Table S2).

Variation discovery

A total of 1,132,712 SNPs were identified, of which 1,119,169
(98.80%) were located on 24 assembled chromosomes of mandarin
fish, with the highest density on LG05 and LG21 (Figure 1). 93,684
(8.27%) SNPs were in exonic regions, 613,568 (54.17%) SNPs were in
intronic regions, and 425,460 (37.56%) SNPs were in intergenic
regions (Table 1). In exonic regions, 216 stop-gain SNPs, 11 stop-
loss SNPs, 26,765 synonymous SNPs and 22,414 non-synonymous
SNPs were identified, respectively. The ratio of transition to
transversion (ts/tv) was 1.461.

Selective sweep analysis

To identify selected regions for feeding habit domestication,
selective sweep analysis based on heterozygosity (Hp) and
population differentiation coefficient (Fst) was performed. A
total of 15,023 windows were analyzed. The Fst values of
751 windows were above the threshold of 0.220615 (top 5% of
Fst values) (Figure 2). 57 candidate windows were identified as
putative selective regions for feeding habit domestication, involved
in 149 genes (Figure 3). GO enrichment analysis revealed that
these genes were significantly enriched in 162 GO items, including
88 GO terms in biological process, 11 GO terms in cellular
component, and 63 GO terms in molecular function
(Figure 4A, Supplementary Table S3). KEGG enrichment
analysis revealed that these genes were significantly enriched in
three KEGG pathways, including metabolic pathways, MAPK
signaling pathway, and fatty acid metabolism (Figure 4B,
Supplementary Table S4).

Whole-genome bisulfite sequencing and
mapping

In the present study, the hepatic DNA methylation of
mandarin fish with different performance in accepting artificial
diets were sequenced with whole-genome bisulfite sequencing
(WGBS). A total of 225.34 Gb clean data were obtained. The
Q20 (sequencing error rate <1%) were 97.75%–97.97%
(Supplementary Table S5). 80.74%–91.22% read pairs could be
mapped to our mandarin fish reference genome (version:
sinChu7), and 76.93%–87.55% read pairs were uniquely
mapped (Supplementary Table S6).
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FIGURE 1
The distribution of SNPs on the chromosomes of mandarin fish genome.

TABLE 1 Statistics of SNP detection.

Category Number of SNPs

Upstream 29,584

5′UTR 7,842

Exonic Stop gain 216

Stop loss 11

Synonymous 26,765

Non-synonymous 22,414

Intronic 613,436

Splicing 132

3′UTR 35,376

5′UTR/3′UTR 1,060

Downstream 26,046

Upstream/Downstream 4,347

Intergenic 365,483

ts 672,401

tv 460,311

ts/tv 1.461

Total number of SNPs 1,132,712

Note: Upstream: the variations located within 1 kb upstream of gene; Splicing: the variations located at the splicing site (near the exon/intron boundary); Downstream: the variations located within

1 kb downstream of gene; Upstream/Downstream: the variations located within 1 kb upstream of a gene, and also within 1 kb downstream of another gene; ts: transition; tv: transversion.
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FIGURE 2
The distribution of Fst values between the mandarin fish which could be domesticated to accept artificial diets and those could not.

FIGURE 3
Selective sweep analysis. The regions were considered to be selected when both conditions are met: top 10% heterozygosity (Hp) and top 10%
population differentiation coefficient (Fst).
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FIGURE 4
Functional enrichment analyses of potential selected genes. (A). GO enrichment terms; (B). KEGG enrichment pathways.

FIGURE 5
Differentially methylated genes in cAMP signaling pathway. Red: genes were hypermethylated; green: genes were hypomethylated; yellow: genes were
both hypermethylated and hypomethylated.
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DNA methylation patterns

The percentage of methylated cytosines to reference genomic
cytosines were 6.96% and 6.44% in mandarin fish which could be
domesticated to accept artificial diets and those could not. Methylated
sites were counted in CG, CHG, and CHH contexts. Most methylated
cytosines were in the CG dinucleotide context. The methylation levels of
cytosines in CG context were 76.95% and 77.10% in mandarin fish which
could be domesticated to accept artificial diets and those could not,
respectively. The methylation levels of cytosines in CHG context were
0.60% and 0.55%, respectively. The methylation levels of cytosines in
CHH context were 0.60% and 0.55%, respectively (Supplementary
Table S7).

Identification of differentially methylated
regions and differentially methylated genes

5,976 differentially methylated regions (DMRs) were identified
between mandarin fish with different performance in accepting
artificial diets, of which 2,941 were hypermethylated and
3,035 were hypomethylated in mandarin fish which could be
domesticated to accept artificial diets. A total of 3,522 differentially
methylated genes were identified. GO enrichment analysis revealed
that these genes were significantly enriched in 63 GO items, including
16 GO terms in biological process, 41 GO terms in cellular component,
and 6 GO terms in molecular function (Supplementary Table 8). The
representative KEGG pathway was cAMP signaling pathway, involved
differentially methylated genes including cAMP-dependent protein
kinase catalytic subunit beta (prkacba), cyclic AMP-responsive
element-binding protein 5 (creb5b) and brain-derived neurotrophic
factor (bdnf) (Figure 5). The region located within 2 kb upstream of
prkacba gene, and the regions located in the 5′UTR introns of creb5b
and bdnf genes were hypomethylated in mandarin fish which could be
domesticated to accept artificial diets. In addition, the region located
within 2 kb upstream of lipoprotein lipase gene (lpl) was
hypomethylated in mandarin fish which could be domesticated to
accept artificial diets.

Discussion

To identify candidate genomic regions and genes for feeding
habit domestication from live prey fish to artificial diets, the whole-
genome resequencing was performed between mandarin fish which
could be domesticated to accept artificial diets and those could not.
Through the selective sweep analysis based on heterozygosity (Hp)
and population differentiation coefficient (Fst), 57 candidate
windows were identified as the putative selective regions for
feeding habit domestication of mandarin fish, involved in
149 genes. These genes were related to memory, vision and
olfaction function. Asparagine synthetase (ASNS) catalyses the
synthesis of asparagine which is essential for brain development
and function (Lomelino et al., 2017). Mutations in human ASNS gene
caused a severe neurological condition, and the deficiency of Asns
leads to brain structural abnormalities and memory deficits in mice
(Ruzzo et al., 2013). In our previous study, comparative genomics
analysis for four species of mandarin fish (Sinipercidae) indicated
that asns gene was positively selected in S. scherzeri, which is the

easiest to wean onto dead prey fish or artificial diets (He et al.,
2020b), and the RNA-seq data also showed the lower mRNA
expression level of asns in the mandarin fish which could accept
dead prey fish than those could not (He et al., 2013). In the present
study, asns gene was identified in the selected regions of mandarin
fish which could be domesticated to accept artificial diets. And SNPs
were identified within 2 kb upstream transcription start sites, 5′UTR,
Exon 4 and introns of asns gene related to the artificial diet feeding
habit. These results suggested that the asns gene might play an
important role in the feeding habit domestication of mandarin fish.
Microfibrillar associated protein 4 (MFAP4) is an extracellular
matrix protein, contributing to innate immune defense in teleosts
(Mohammadi et al., 2022), and mfap4 was reported to be
significantly up-regulated in the stomach of artificial diet
domesticated mandarin fish (Shen et al., 2021). In the present
study, mfap4 gene was identified in the selected regions of
mandarin fish which could be domesticated to accept artificial
diets, suggesting that the mfap4 gene might play an important
role in the feeding habit domestication of mandarin fish through
improving innate immunity.

Vision and olfaction are the most important sensory modalities,
which are essential for the recognition of food in many fish species
(DeBose and Nevitt, 2008; Konishi et al., 2022). Our previous study
found that vision was the major sensory modality for mandarin fish
to detect and catch prey (Liang et al., 2001). T-box transcription
factor 2a (tbx2a) plays important roles in determination of
photoreceptor fate (Angueyra et al., 2022) and expression
regulation of opsins (Sandkam et al., 2020). TBC1 domain family
member 20 (TBC1D20) gene encodes a key regulator of
autophagosome maturation (Sidjanin et al., 2016). Mutations in
human TBC1D20 gene cause Warburg Micro syndrome, and one
of the main symptoms is visual impairment (Liegel et al., 2013).
tbc1d20 was identified as a candidate adaptive allele in Caribbean
pupfishes (Richards et al., 2021), and a candidate gene for
domestication in rainbow trout (Oncorhynchus mykiss) (Cádiz
et al., 2021). In the present study, tbx2a and tbc1d20 were
identified in the selected regions of mandarin fish which could be
domesticated to accept artificial diets, suggesting that potential
adaptive changes of vision might contribute to the feeding habit
domestication from live prey fish to artificial diets in mandarin fish.
Trace amine-associated receptor 13c (taar13c) is a member of
olfactory receptor family, the encoded protein product was
reported to have high-affinity for cadaverine (Hussain et al., 2013;
Dieris et al., 2017). Cadaverine which is produced by
decarboxylation of basic amino acids, is considered to be death-
associated odor (Hussain et al., 2013). Cadaverine was detected
during fishmeal processing, including raw materials and fishmeal
(Nguyen et al., 2022). In the present study, taar13c was identified in
the selected regions of mandarin fish which could be domesticated to
accept artificial diets, indicating that they might have higher
tolerance to cadaverine in the fishmeal, thus displaying higher
acceptance in artificial diets.

Our previous studies indicated that DNA methylation might
contribute to the feeding habit transformation in grass carp and
mandarin fish (Cai et al., 2018; Dou et al., 2018). In the present study,
the whole-genome bisulfite sequencing was performed between
mandarin fish with different performance in accepting artificial
diets. 5,976 differentially methylated regions were identified,
involved in 3,522 genes. The representative KEGG pathway was
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cAMP signaling pathway, which could facilitate lipid metabolism in
liver (Ravnskjaer et al., 2016). cAMP is an intracellular second
messenger, and cAMP-dependent protein kinase (PKA) is
essential for intracellular signal transduction (London and
Stratakis, 2022). Cellular cAMP accumulation triggers the
activation of PKA, then induces the phosphorylation of cAMP-
response element binding protein (CREB), further activates the
expression of BDNF (Wahlang et al., 2018). Brain-derived
neurotrophic factor (BDNF) is a highly conserved member of
neurotrophin family, playing important roles in synaptic plasticity
and cognitive function (Lu et al., 2014). Except for the functions in
nervous system, BDNF was reported to improve lipid and glucose
metabolism in type-2-diabetic mice (Tsuchida et al., 2002). Impair of
BDNF signaling might lead to metabolic syndrome (Marosi and
Mattson, 2014). In the present study, differentially methylated
regions were identified in genes involved in cAMP signaling
pathway, including cAMP-dependent protein kinase catalytic
subunit beta (prkacba), cyclic AMP-responsive element-binding
protein 5 (creb5) and bdnf. The region located within 2 kb
upstream of prkacba gene, and the regions located in the 5′UTR
introns of creb5b and bdnf genes were hypomethylated in mandarin
fish which could be domesticated to accept artificial diets. The
hypomethylation of the regions located in upstream or 5′UTR
intron of genes might increase the mRNA expression level of
prkacba, creb5 and bdnf, activating PKA-CREB-BDNF signaling,
further improving lipid metabolism of mandarin fish which could
accept artificial diets. This would be beneficial for mandarin fish to
adapt to the artificial diets. In addition, the region located within 2 kb
upstream of lpl gene was hypomethylated in mandarin fish which
could be domesticated to accept artificial diets. Lipoprotein lipase
(LPL) catalyzes the hydrolysis of triglycerides from circulating
chylomicrons and very low density lipoproteins (Mead et al.,
2002), playing important roles in lipid utilization and storage
(Olivecrona, 2016). Loss-of-function mutations in LPL caused
type I hyperlipoproteinemia in human, characterized by very
severe hypertriglyceridemia (Caddeo et al., 2018). The DNA
methylation change of placental LPL gene influenced fetal growth
and fat accretion in childhood, which might further influence the
metabolism in later life (Gagné-Ouellet et al., 2017). In the present
study, due to the higher fat content of artificial diets than that of the
live prey fish, the hypomethylation of the region located within 2 kb
upstream of lpl gene might increase the mRNA expression of lpl
gene, improving the lipid utilization. And our previous study found
the differential metabolites related to lipid metabolism between
mandarin fish which could be domesticated to accept artificial
diets and those could not (He et al., 2021). These results
suggested that lipid metabolism might play an important role in
the adaption of artificial diets in mandarin fish.

In conclusion, we identified the selective genomic regions and
genes, and the differentially methylated regions and genes for feeding
habit domestication by whole-genome resequencing and bisulfite
sequencing, respectively. These candidate genes could be critical for
understanding the feeding habit domestication from live prey fish to
artificial diets in mandarin fish, and further research is needed to
clarify the roles of these candidate genes in feeding habit
domestication.
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