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Background: Tumor stem cells (TSCs) have been widely reported to play a critical
role in tumor progression andmetastasis. We explored the role of tumor stemness in
intrahepatic cholangiocarcinoma (iCCA) and established a prognostic risk model
related to tumor stemness for prognosis prediction and clinical treatment guidance
in iCCA patients.

Materials andMethods: The expression profiles of iCCA samples (E-MTAB-6389 and
GSE107943 cohorts) were used in the study. One-class logistic regression algorithm
calculated the mRNA stemness index (mRNAsi). The mRNAsi-related genes were
used as a basis for the identification of mRNAsi-related molecular subtypes through
consensus clustering. The immune characteristics and biological pathways of
different subtypes were assessed. The mRNAsi-related risk model was
constructed with differentially expressed genes (DEGs) between subtypes.

Results: The patients with high mRNAsi had longer overall survival than that with low
mRNAsi. Two subtypes were identified with that C2 had higher mRNAsi and better
prognosis than C1. Tumor-related pathways such as TGF-β and epithelial-
mesenchymal transition (EMT) were activated in C1. C1 had higher enrichment of
cancer-associated fibroblasts and tumor-associated macrophages, as well as higher
immune response and angiogenesis score than C2. We screened a total
98 prognostic DEGs between C1 and C2. Based on the prognostic DEGs, we
constructed a risk model containing three genes (ANO1, CD109, and CTNND2)
that could divide iCCA samples into high- and low-risk groups. The two groups had
distinct prognosis and immune characteristics. Notably, the risk score was negatively
associated with mRNAsi (R = −0.53). High-risk group had higher enrichment score of
T cell inflamed GEP, INF-γ, and cytolytic activity, and lower score of estimated
IC50 of 5-fluorouracil and cisplatin than low-risk group.

Conclusions: This study clarified the important role of tumor stemness in iCCA and
developed an mRNAsi-related risk model for predicting the prognosis and
supporting the clinical treatment in iCCA patients. The three genes (ANO1,
CD109, and CTNND2) may serve as potential targets for iCCA treatment.
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Introduction

Tumor stem cells (TSCs) are the cells with the properties of stem
cells that enable self-renewal and differentiation, which are responsible
for the heterogeneity of tumor cells (Friedmann-Morvinski and
Verma, 2014). However, TSCs are not always originated from
normal tissue stem cells (Visvader, 2011). The differentiated
phenotype of cells was lost during tumor progression, but replaced
by the progenitor-like and stem cell-like features, and they are
redefined as TSCs. The different status of TSC differentiation in
tumor results in intratumoral and intertumoral heterogeneity, and
thus shapes the phenotypic heterogeneity. Multiple evidences have
demonstrated that TSCs contribute an important role in tumor cell
migration, progression, poor prognosis, and the resistance to clinical
therapy in different tumors (Shibue and Weinberg, 2017; O’Conor
et al., 2018; Pirozzi et al., 2013; Mohanta et al., 2017). Therefore, the
classification of different subtypes according to TSC status (tumor
stemness) is a viable strategy to identify different prognosis and
determine the sensitivity to clinical therapy.

In the majority of solid tumors, the proportion of TSCs less than
3% in whole tumor mass. Surprising, in cholangiocarcinoma (CCA),
over 30% of TSCs are existed (Cardinale et al., 2015), suggesting that
TSCs contribute a critical role in CCA. CCA is classified into three
anatomic subtypes according to the primary, including intrahepatic
CCA (iCCA), perihilar CCA (pCCA) or distal CCA (dCCA) (Blechacz
et al., 2011). The global age-standardized mortality rates for iCCA
increased in the past decades (1-2 per 100,000 in most countries)
(Bertuccio et al., 2019). The survival of iCCA patients with lymph node
metastasis is poor and benefit little from surgical resection (Kizy et al.,
2019). Targeted therapy based on specific gene mutations shows a
promising efficiency in some iCCA patients. For example, iCCA
patients with isocitrate dehydrogenase (IDH) one mutations have
an improved survival after receiving IDH1 inhibitors (ivosidenib)
(Hazard ratio, HR = 0.37) in a phase III randomized controlled trial
(Abou-Alfa et al., 2020). However, many iCCA patients have no
specific gene mutations of IDH1 or fibroblast growth factor
receptor (FGFR). Immunotherapy such as immune checkpoint
blockade (ICB) has been examined to have a positive efficiency in
lines of clinical trials in various tumors. Nivolumab, a programmed
cell death protein 1 (PD-1) inhibitor, was administrated in advanced
refractory biliary tract cancer and 22% CCA patients showed an
objective response (Kim et al., 2020). Identification of CCA subtype
with different sensitivity to immunotherapy is essential in the effort to
improve the efficiency and outcomes of clinical therapy.

The crosstalk between TSCs and immune microenvironment has
been illustrated to affect the efficiency of chemotherapy. Cancer-
associated fibroblasts (CAFs) and tumor-associated macrophages
(TAMs) are involved in the TSC-induced tumorigenesis and drug
resistance through releasing downstream factors (Zhang et al., 2015;
Valenti et al., 2017; Ren et al., 2018; Aramini et al., 2021). Malta et al.
(2018) dig out transcriptomic (mRNAsi) and epigenetic (mDNAsi)
feature sets using used a one-class logistic regression (OCLR)
machine-learning algorithm in pan-cancer, and revealed a
relationship between immune microenvironment and tumor
stemness. Therefore, this study sought to identify tumor stemness-
related molecular subtypes and develop an mRNAsi-based risk model.
We revealed an association of tumor stemness with prognosis, immune
infiltration, and the response to immunotherapy and chemotherapeutic
drugs. Negative correlation was found between risk score and mRNAsi.

The mRNAsi-based risk model was effective to distinguish the risk of
each iCCA patient and manifested a favorable performance in
predicting the prognosis of iCCA patients. Especially, the risk model
was potential to indicate different response of iCCA patients to
immunotherapy and chemotherapy.

Materials and methods

Acquisition and preprocessing of iCCA data

E-MTAB-6389 cohort containing microarray data of iCCA samples
was obtained from the European Bioinformatics Institute (EBI) webpage
(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6389/).
GSE107943 (Ahn et al., 2019) cohort containing gene expression data of
iCCA samples was downloaded from Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE107943). E-MTAB-6389 cohort was used as the training cohort
and GSE107943 was determined as the validation cohort.

For E-MTAB-6389 cohort, samples without survival information
were excluded. Probes were transferred to gene symbol according to
annotation information. The probes matching to multiple genes were
removed. The averaged gene expression level was selected when one
gene matched multiple probes. After preprocessing, a total of
76 samples were included for analysis.

For GSE107943 cohort, samples without survival information
were removed. Fragments per kilobase million (FPKM) format was
transferred to transcripts per million (TPM) format. We transformed
Ensembl ID into gene symbol. When one gene had multiple gene
symbols, we selected the averaged expression. After preprocessing, a
total of 30 samples were included for analysis.

Evaluation of tumor stemness

According to the stemness index model trained from the
Progenitor Cell Biology Consortium database, tumor stemness was
calculated by one-class logistic regression (OCLR) algorithm (Malta
et al., 2018; Wang et al., 2021). Gelnet (v1.2.1) R package was applied
to analyze the mRNA stemness index (mRNAsi) of stem cells.
Spearman correlation analysis was performed between mRNA
expression of tumor samples and the weight vectors of the
stemness signature. The stemness index (mRNAsi) reflecting the
similarity of tumor cells to stem cells was normalized to range
from 0 to 1 through a linear transformation (Malta et al., 2018).

Identification of mRNAsi-related molecular
subtypes

Firstly, mRNAsi-related genes were identified based on the
Spearman correlation analysis between mRNAsi and protein-
coding genes under criterions of p < 0.01 and |correlation
coefficient (cor)| > 0.4. To screen mRNAsi-associated genes
correlated to cholangiocarcinoma patients’ overall survival, we
performed univariate Cox regression analysis. p < 0.01 was
determined to screen the prognostic mRNAsi-related genes.
According to the expression profiles of prognostic mRNAsi-related
genes, ConsensusClusterPlus R package (Wilkerson and Hayes, 2010)

Frontiers in Genetics frontiersin.org02

Yue et al. 10.3389/fgene.2022.1089405

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6389/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107943
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE107943
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1089405


was applied to conduct unsupervised consensus clustering. PAM
algorithm was selected and “1 - Spearman correlation” was used to
measuring distance. 500 bootstraps were carried out with each
bootstrap including 80% samples of the training cohort. For
determining the optimal cluster number k, cumulative distribution
function (CDF) curve and consensus matrix were used.

Analysis of functional pathways

KEGG pathways were acquired from MSigDB (Liberzon et al.,
2015). FGSEA R package (Korotkevich et al., 2021) was used to
conduct gene set enrichment analysis (GSEA) on KEGG pathways.
Pathways showing a false discovery rate (FDR) < 0.05 was significantly
enriched. ssGSEA algorithm in GSVA R package (Hänzelmann et al.,
2013) was applied to assess the enrichment of KEGG pathways.

Establishment and validation of an mRNAsi-
related risk model

First of all, using limma R package (Ritchie et al., 2015) under
conditions of |log2 (fold change)|>log2 (1.5) and p < 0.05, differentially
expressed genes (DEGs) were identified between different subtypes.
ClusterProfiler R package was employed to annotate Gene Ontology
(GO) terms and KEGG pathways of DEGs. Then univariate Cox
regression was performed on the DEGs to screen those showing a
significant correlation with patients’ overall survival (p < 0.05).
Subsequently, least absolute shrinkage and selection operator (Lasso)
regression (Friedman et al., 2010) and stepwise Akaike information
criterion (stepAIC) algorithm (Zhang, 2016) were implemented for
decreasing prognostic genes number and constructing the optimal risk
model. The mRNAsi-related risk model was determined as: risk score =
Σ(Expi*βi), where i represents genes, Exp represents expression of genes,
and β represents Lasso coefficients. Using the median cut-off value of
risk score, the samples were divided into two groups of high risk and low
risk. Kaplan-Meier survival analysis was conducted to assess the overall
survival of two risk groups. Receiver operation characteristic (ROC)
curve analysis was used to evaluate the efficiency of the risk model in
predicting the overall survival.

Analysis of immune characteristics

CIBERSORT algorithm was conducted for estimating the
proportion of 22 immune cells. ESTIMTAE analysis was used to
evaluate immune infiltration and stromal infiltration. 29 immune-
related signatures were obtained from a previous study (Bagaev et al.,
2021). PROGENy algorithm (Pathway RespOnsive GENes) (Schubert
et al., 2018) was used to calculate enrichment score of oncogenic
pathways including p53, TGF-β, hypoxia, MAPK, JAK. STAT, NFκB,
TNF-α, Trail, EGFR, VEGF, and PI3K.

Analysis of the sensitivity to immunotherapy
and chemotherapeutic drugs

The gene signatures of T cell inflamed gene expression profiles (GEP)
(Ayers et al., 2017), Th1/IFN-γ (Danilova et al., 2019), cytolytic activity

(Rooney et al., 2015) were obtained from previous research. Eight key
immune checkpoints (PDCD1, CTLA4, CD274, TIGIT, PDCD1LG2,
LAG3, BTLA, and HAVACR2) were included for predicting the
sensitivity to immune checkpoint inhibitors. Pearson correlation
analysis was conducted to analyze the correlation of risk score with
the immune gene signatures and immune checkpoints using Hmisc R
package. The estimated IC50 of three chemotherapeutic drugs (5-
fluorouracil, cisplatin, and gemcitabine) was calculated by pRRophetic
R package (Geeleher et al., 2014). Based on the drug sensitivity data from
Genomics of Drug Sensitivity in Cancer (GDSC) database (Yang et al.,
2013) (http://www.cancerrxgene.org), the relation between risk score and
drug sensitivity was analyzed by Spearman correlation analysis. Drugs
with |Rs| > 0.2 and FDR < 0.05 were considered to have a significant
correlation with risk score, where Rs > 0.2 represents drug resistance and
Rs < -0.2 represents drug sensitivity.

Statistical analysis

The bioinformatics analysis was performed with the help of
Sangerbox platform (Shen et al., 2022) (http://vip.sangerbox.com/).
Log-rank test was performed with Cox regression analysis and survival
analysis. Wilcoxon test was performed to test the significance between
two groups. Statistical significant was p < 0.05. FDR was calculated by
Benjamini-Hochberg correction.

Results

The relation between mRNAsi and iCCA
prognosis

We firstly calculated mRNAsi for each iCCA sample in E-MTAB-
6389 cohort. On the association of mRNAsi with clinical features (sex,
vascular invasion, alcohol, and cirrhosis), no significant correlation
was observed (Figure 1A). Then under the optimal cut-off value
determined by surv_cutpoint function in survminer R package,
cholangiocarcinoma samples were grouped into two mRNAsi
groups (mRNAsi-high and mRNAsi-low). Significant difference was
detected on the overall survival between mRNAsi-high and mRNAsi-
low groups (p < 0.05, Figure 1B). To identify the protein-coding genes
associated with mRNAsi, we performed Spearman correlation analysis
and screened a total of 1794 mRNAsi-related genes (|cor| > 0.4 and p <
0.01). Subsequently, we identified a total of 69 prognostic genes within
1794 miRNA-related genes through univariate Cox regression
analysis, where 61 risk genes (HR > 1) and 8 protective genes
(HR < 1) were included (Supplementary Figure S1A).

To further understand the association of mRNAsi with iCCA
prognosis, we applied consensus clustering to identify mRNAsi-
associated molecular subtypes based on the 69 prognostic miRNA-
related genes. To clustering samples into two subtypes (C1 and C2),
cluster number k = 2 was determined (Supplementary Figures S1B–D).
Kaplan-Meier survival analysis on the two subtypes showed that
C2 had significantly longer overall survival than C1 (p < 0.01,
Figure 1C). Risk genes were relatively higher expressed and
protective gene were relatively lower expression in C1 compared
with that in C2 (Figure 1D). In addition, PCA showed a separated
distribution of expression profiles of two subtypes (Figure 1E).
C2 showed a significantly higher mRNAsi than C1 (Figure 1F),
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and mRNAsi-high samples also contributed a higher percentage in C2
(Figure 1G), indicating that high mRNAsi was probably a protective
factor in iCCA prognosis. Moreover, we found a positive correlation
between mRNAsi with CDH1 (epithelial marker) and a negative
correlation between mRNAsi and CDH2 (mesenchymal marker)
(Supplementary Figure S2), suggesting a negative relation between
mRNAsi and cancer metastasis in iCCA. The results were consistent
with the previous study (Malta et al., 2018).

Differential enrichment of biological
pathways in two subtypes

As mRNAsi was associated with the prognosis of iCCA patients,
we attempted to reveal the potential biological pathways involved in
tumor stemness. GSEA was performed on all candidate gene sets of
KEGG pathways and the significantly enriched pathways in C1 were
outputted (FDR < 0.05). In C1 than C2 immune and stromal pathways
were more activated, such as cytokine-cytokine receptor interaction,
focal adhesion chemokine, and ECM receptor interaction, signaling
pathway, (Figure 2A). Moreover, ssGSEA results revealed that tumor-
related pathways (for example, epithelial-mesenchymal transition,
TGF-β signaling, angiogenesis, Wnt-β signaling, Notch signaling
and PI3K-Akt signaling, P53 signaling, hypoxia) and immune-
related pathways (for example, IL6-JAK-STAT3 signaling,
complement, inflammatory response, interferon response) showed a

significantly higher enrichment score in C1 (p < 0.001, Figures 2B, C).
The above findings suggested a correlation between tumor stemness
and immune modulation, and tumor stem cells was involved in the
tumor development through activating oncogenic pathways in iCCA.

The immune characteristics of two subtypes

In the previous section, we demonstrated that C1 and C2 had
differential enrichment of immune-related pathways. We next
evaluated the immune microenvironment of C1 and C2 by
different tools. CIBERSORT analysis on 22 immune cells showed
that some immune cells were differentially enriched between two
subtypes, such as higher enrichment of CD8 T cells, regulatory T cells,
monocytes, M0 macrophages in C2, but higher enrichment of
M2 macrophages in C1 (p < 0.01, Figure 3A). ESTIMATE results
presented that C1 had evidently higher immune infiltration and
stromal infiltration than C2 (p < 0.0001, Figure 3B). Furthermore,
we collected some immune-related gene signatures from a previous
study (Bagaev et al., 2021), and calculated their enrichment scores
using ssGSEA. As shown in Figures 3C, D, the angiogenesis-related
signatures, cancer-associated fibroblasts (CAFs), pro-tumor signatures
and epithelial-mesenchymal transition (EMT) signature were
relatively activated in C1; at the same time, anti-tumor signatures
were also more enriched in C1 than that in C2. In 11 oncogenic
pathways, 7 of them were more significantly activated in C1 than that

FIGURE 1
The relation between mRNAsi and the prognosis of cholangiocarcinoma in E-MTAB-6389 cohort. (A) Correlation analysis of mRNAsi with clinical
features of cholangiocarcinoma patients. (B) Kaplan-Meier survival plot of mRNAsi-high and mRNAsi-low groups. (C) Kaplan-Meier survival plot of C1 and
C2 subtypes. (D)Heatmap of the expression (log2TPM) of risk genes and protective genes in C1 andC2. (E) PCA plot of C1 and C2. (F)Comparison ofmRNAsi in
C1 and C2. (G) The distribution of mRNAsi-high and mRNAsi-low groups in C1 and C2. *p < 0.05, ****p < 0.0001.
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in C2 (p < 0.05, Figures 3E, F). Although C1 had an anti-tumor
immune microenvironment, pro-tumor activity led it to a more
progressive outcome than C2.

In addition, we examined the potential immune response of two
subtypes to immunotherapy. It has been reported that T cell inflamed
GEP score and Th1/IFN-γ are positively associated with anti-tumor
response in immunotherapy (Ribas and Hu-Lieskovan, 2016; Ott et al.,
2019). C1 displayed higher scores of T cell inflamed GEP, Th1/IFN-γ,
as well as cytolytic activity than C2 (p < 0.0001, Figures 4A–C),
indicating that C1 was predicted to be more responsive in
immunotherapy. Immune checkpoint inhibitors (ICIs) such as PD-
1 and PD-L1 are important factors in immune checkpoint blockade
therapy. High PD-1/PD-L1 expression has been demonstrated to
associate with high sensitivity to ICIs (Patel and Kurzrock, 2015).
In the eight key immune checkpoints, we found that their expression
levels except for PD-1 (PDCD1) were significantly higher in C1 than
that in C2 (p < 0.01, Figure 4D). The above observations implied that
C1 was more sensitive to immunotherapy than C2.

Establishment and validation of an mRNAsi-
related prognostic model for iCCA

Given that C1 and C2 had distinct immune microenvironment
and activated biological pathways, we identified a total of 1746 DEGs

(FDR < 0.05, log2FC > 0) between C1 and C2 using limma R package
(Supplementary Table S1). Of these DEGs, SERINC1 and MYO9B
were previously reported as potential driver genes in liver cancer (Basu
et al., 2018). Then, we screened 473 DEGs with 1.5 -fold change, and
401 up-regulated genes and 72 down-regulated genes in C1 were
outputted (Supplementary Figures S3A, B). Gene enrichment analysis
on these DEGs showed that immune-related GO terms and pathways
were annotated in up-regulated genes, which was accordant with the
findings in the previous section (Supplementary Figure S3C; Figure 2).
In down-regulated genes, metabolism-related pathways and terms
were enriched in C2 such as drugmetabolism and tyrosine metabolism
(Supplementary Figure S3D).

The DEGs were used as a basis to construct a prognostic model in
the training cohort (E-MTAB-6389). Univariate Cox regression on the
473 DEGs identified a total of 98 DEGs including 86 risk genes and
12 protective genes significantly associated with overall survival
(Supplementary Table S2). Then to decrease the number of
prognostic genes for constructing an optimal model, Lasso
regression was employed here. When lambda = 0.1718, the model
reached the optimal, and six prognostic genes were remained (Figures
5A, B). Furthermore, we applied stepAIC to obtain the sufficient fitting
degree with the least number of variables (genes). Finally, three genes
were remained including ANO1, CD109, and CTNND2 (Figure 5C).
The mRNAsi-related prognostic model was defined as: Risk Score =
0.489*ANO1 + 0.332*CD109–0.346*CTNND2.

FIGURE 2
Enrichment of functional pathways in C1 and C2 of E-MTAB-6389 cohort. (A) GSEA results displaying significantly enriched KEGG pathways of C1. (B)
Heatmap of the top 50 enriched pathways in C1 and C2. (C) A total of 21 pathways differentially enriched between C1 and C2. Wilcoxon test was conducted.
**p < 0.01, ***p < 0.001, ****p < 0.0001.
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The risk score was calculated for training cohort samples. The
median value of risk score was used to group samples into two groups
of high and low risk (Figure 5D). The expression levels of ANO1 and
CD109 were relatively higher in high-risk group while CTNND2 was
relatively lower expressed compared with low-risk group. From the
results of survival analysis, patients with a high risk evidently
developed a worse overall survival than those in the low-risk group
(p < 0.01, Figure 5E). ROC curve analysis illustrated that the model
had a high efficiency in predicting 1-year, 2-year, 3-year, and 5-year
overall survival with AUC of 0.75, 0.78, 0.77, and 0.78 respectively
(Figure 5F). We verified the risk model in the validation cohort
(GSE107943), and observed the similar results (Figures 5G, H). We
also compared the risk score of mRNAsi-low and mRNAsi-high, as
well as C1 and C2. ThemRNAsi-low group and C1 subtype exhibited a
higher risk score than the mRNAsi-high group and C2 subtype (p <
0.0001, Supplementary Figures S4A, B). The high-risk samples
contributed to a high percentage in C1 subtype and mRNAsi-low
group (Supplementary Figure S4), which was consistent with their
prognosis. The mRNAsi-related risk model also showed a favorable
performance distinguishing high-risk samples in different mRNAsi
groups and subtypes (Supplementary Figure S4D). It could be

concluded that the mRNAsi-related risk model was robust in
predicting the prognosis of iCCA patients.

The relation of risk score with biological
pathways and immune microenvironment

We assessed the biological pathways of two risk groups using
GSEA. Immune-related pathways such as interferon-gamma response,
interferon-alpha response, IL6-JAK-STAT3 signaling, and
complement were evidently enriched in high-risk group
(Figure 6A), suggesting that immune response was more activated
in patients with a high risk than those in low-risk group. We examined
the immune infiltration of two risk groups, and found that high-risk
group had significantly greater immune infiltration and stromal
infiltration (Figure 6B). Patients showing a low risk had higher
enrichment of regulatory T cells and M0 macrophages, monocytes,
but had lower enrichment of M2 macrophages than high-risk group
(Figure 6C). Moreover, the relationship of risk score with the
infiltration of different immune cells was evaluated. The risk score
was positively correlated with M2 macrophages, and was negatively

FIGURE 3
Immune characteristics in C1 and C2 of E-MTAB-6389 cohort. (A) The distribution of 22 immune cells in C1 and C2 analyzed by CIBERSORT. Wilcoxon
test was conducted. (B) ESTIMATE analysis showed the immune score, stromal score and ESTIMATE score of C1 and C2. (C) Heat map of 29 immune-related
signatures in C1 and C2. (D) Box plot showing the ssGSEA score of 29 immune-related signatures in C1 and C2. Wilcoxon test was conducted. (E)Heatmap of
oncogenic pathways. (F) Box plot of oncogenic pathways. Wilcoxon test was conducted. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001.
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correlated with CD8 T cells, regulatory T cells, monocytes and
M0 macrophages (Figure 6D). The immune characteristics in high-
risk group were consistent with that in C1 (Figures 3A, B). Therefore,
we speculated that there was an association of the risk score with
mRNAsi. Not surprisingly, a significantly negative correlation was
revealed by Spearman correlation analysis between mRNAsi and the
risk score (p < 0.0001, R = −0.53, Figure 6E). The result indicated that
high-risk group had a lower mRNAsi than low-risk group, which
accounted for the consistence of immune characteristics between risk
groups and subtypes. In addition, the risk score was positively
correlated with tumor-related pathways such as EGFR (R = 0.57),
hypoxia (R = 0.56), MAPK (R = 0.56), and TGF-β (R = 0.38)
(Figure 6F), and immunosuppressive features such as angiogenesis
(R = 0.33), CAFs (R = 0.50), and TAMs (R = 0.55) (Supplementary
Figure S5), which was similar to the previous results (Figure 3F).

Different responses of two risk groups to
immunotherapy and chemotherapy

The mRNAsi-related risk model was verified to be effective in
predicting the prognosis of iCCA in different cohorts, and two risk
groups showed differential mRNAsi, immune microenvironment, and
activation of biological pathways. We further examined the value of

the risk model in guiding clinical therapies. High-risk group was
suggested to have a higher sensitivity to immunotherapy than low-risk
group according to the higher score of T cell inflamed GEP, Th1/IFN-
γ, and cytolytic activity in high-risk group (p < 0.05, Figures 7A–C).
Moreover, the expression level of key immune checkpoints was also
lower in low-risk group (Figure 7D). Correlation analysis of the risk
score with the above indicators of immunotherapy displayed that the
risk score showed a positive correlation with T cell inflamed GEP (R =
0.30, p < 0.01), Th1/IFN-γ (R = 0.47, p < 0.001), cytolytic activity (R =
0.30, p < 0.01), CD274 (PD-L1) (R = 0.36, p < 0.01), LAG3 (R = 0.26,
p < 0.05), and PDCD1LG2 (R = 0.45) (Figure 7E, p < 0.0001).

In the response to chemotherapeutic drugs, we used estimated
IC50 to predict the response of two risk groups to 5-fluorouracil,
cisplatin, and gemcitabine. High-risk group was shown to have lower
estimated IC50 of 5-fluorouracil and cisplatin than low-risk group,
indicating that high-risk group was more sensitive to the two drugs. In
addition, we obtained the data of drug sensitivity of about 190 drugs in
1000 cancer cell lines from GDSC, and analyzed the correlation
between the risk score and the sensitivity to these drugs. As a
result, 10 drugs were found to be significantly correlated with the
risk score, where 7 drugs showed drug sensitivity relating to risk score
(Rs < −0.2) and 3 drugs showed drug resistance relating to risk score
(Rs > 0.2, Figure 7F). The results suggested that the 7 drugs
(trametinib, AZD3759, selumetinib, SCH772984, sapitinib, gefitinib,

FIGURE 4
Prediction of the response to immunotherapy in E-MTAB-6389 cohort. (A–C) Comparison of ssGSEA score of T cell inflamed GEP, Th1/IFN-γ signature,
and cytolytic activity in C1 and C2. (D) The expression of key immune checkpoints in C1 and C2. Wilcoxon test was conducted. ns, not significant. **p < 0.01,
***p < 0.001, ****p < 0.0001.
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and PD0325901) were predicted to the potential therapeutic drugs in
iCCA. The mRNAsi-related risk model was potential to estimate the
sensitivity to immunotherapy or chemotherapeutic drugs.

Discussion

Tumor stemness has been uncovered to have an effect in
tumorigenesis, tumor progression and metastasis. This study used
the expression data of iCCA for evaluating tumor stemness at a

transcriptional level (mRNAsi) of iCCA patients. High-mRNAsi
and low-mRNAsi groups showed a significantly different overall
survival. The patients with high mRNAsi had longer overall
survival than that with low mRNAsi, indicating that tumor
stemness was involved in the iCCA development. To further reveal
the link of tumor stemness with iCCA prognosis, we identified
mRNAsi-related molecular subtypes based on the expression data
of mRNAsi-related prognostic genes. Two subtypes were identified
and C1 and C2 subtypes showed distinct expression patterns. In
addition, C2 had a higher mRNAsi level and more favorable

FIGURE 5
Construction and validation of anmRNAsi-related risk model. (A, B) Lasso regression on the 98 prognostic genes. Red dashed line in (A) and red dot in (B)
represents lambda = 0.1718. (C) Three prognostic genes were screened by stepAIC. Log-rank test was conducted. (D) The risk score, survival status, and the
expression of three genes of all samples in E-MTAB-6389 cohort. (E) Survival plot of high- and low-risk groups in E-MTAB-6389 cohort. (F) ROC curve of the
risk model in predicting 1-year, 2-year, 3-year, and 5-year survival in E-MTAB-6389 cohort. (G, H) Survival plot and ROC curve of the risk model in
GSE107943 cohort. *p < 0.05.
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prognosis than C1. We preliminarily confirmed the association
between mRNAsi and iCCA prognosis.

To clarify the potential mechanism of tumor stemness
contributing to iCCA development, we assessed the functional
pathways of C1 and C2. Tumor-related pathways especially TGF-β
signaling and EMT, Notch signaling, and Wnt signaling were more
enriched in C1 than that in C2. EMT is a biological process enabling
epithelial cells to acquire mesenchymal phenotypes, which can be
triggered by TGF-β (David et al., 2016). Compelling evidence has
shown that tumor cells have activated EMT process that allows tumor
cells gaining invasive features (Wilson et al., 2020). In EMT process,
tumor cells acquired stemness that can increase motility and promote
metastasis (Dongre and Weinberg, 2019). Although the specific

transition states of EMT inducing stemness have not been fully
defined, EMT in promoting stemness is supported by the
involvement of Wnt signaling (Basu et al., 2018), Notch signaling
(Fender et al., 2015), Mitofusin signaling (Wu et al., 2019), and
Hedgehog signaling pathways (Guen et al., 2017).

In addition to EMT-related pathways, immune-related pathways
such as angiogenesis, complement, PI3K-Akt-mTOR signaling, IL6-
Jak-Stat3 signaling, inflammatory response, interferon response, IL2-
Stat5 signaling were also more enriched in C2 compared with C1. Not
surprisingly, C1 had higher immune response than C2, which showed
as higher immune infiltration, T cell inflamed GEP score, and cytolytic
activity. However, it seemed controversial with the outcome that
C1 had a worse prognosis. At the same time, C1 also exhibited an

FIGURE 6
Analysis of biological pathways and immune microenvironment in two risk groups in E-MTAB-6389 cohort. (A) GSEA results of significantly enriched
pathways in high-risk group. (B) ESTIMATE analysis showed immune score, stromal score and ESTIMATE score of two risk groups. Wilcoxon test was
conducted. (C) CIBERSORT analysis showed the enrichment of 22 immune cells in two risk groups. Wilcoxon test was conducted. (D) Pearson correlation
analysis of risk score with immune cells. Red and blue lines indicate positive and negative correlation respectively. (E) Spearman correlation analysis
between mRNAsi and risk score. (F) Pearson correlation analysis of risk score with oncogenic pathways. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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immunosuppressive environment that CAFs and TAMs were
evidently accumulated. Multiple inflammatory modulators
promotes CAF activation, such as interleukin-1 (IL-1) acting
through NF-κB and IL-6 acting on STAT transcription factors
(Erez et al., 2010; Sanz-Moreno et al., 2011). In our results, NF-κB
and JAK-STAT signaling were more activated in C1 compared with
C2. High TAM infiltration is associated with poor prognosis in solid
tumors, as well as the association with angiogenesis, migration, and the
resistance to chemotherapy and radiotherapy (Chen et al., 2019).
Moreover, we found that C1 had higher expression levels of key
immune checkpoints such as PDL1, CTLA4, and LAG3, which was
also responsible for the immunosuppressive environment. From the
above analysis, we considered that the activation of EMT, oncogenic
pathways, and the enrichment of immunosuppressive cells were the
main contributors for the poor overall survival of C1.

Given that two mRNAsi-related subtypes had significantly
different molecular features, we then screened a group of
prognostic DEGs that may be involved in iCCA progression. By
using Lasso and stepAIC algorithm, we constructing a prognostic
risk model containing three genes (ANO1, CD109, and CTNND2).
The risk score was calculated for each iCCA sample and they were
divided into high-risk and low-risk groups according to the median

risk score. In both training and validation cohorts, high-risk group had
a worse overall survival than low-risk group, and the risk model
showed a favorable performance in predicting 1-year, 3-year, and 5-
year survival with AUC over than 0.70. The expression levels of three
genes were associated with the risk score, where ANO1 and
CD109 were highly expressed in high-risk group and
CTNND2 was highly expressed in low-risk group.

Notably, we discovered that risk score was negatively correlated
with mRNAsi (R = −0.53), which showed a consistence with the
finding that low mRNAsi was associated with poor prognosis. The
results indicated that the three genes in the risk model were
importantly involved in the regulation of tumor stemness.
ANO1 was found to be a risk factor in many cancer types (HR =
1.52, 95% CI: 1.19-1.92), and was suggested to be a prognostic factor
(Zhang et al., 2021). Kim et al. uncovered that ANO1 knockdown
could increase the survival and inhibit local invasion of glioblastoma
stem cells (GSCs) in mouse model, indicating that ANO1 was
important in the maintenance of stemness (Kim et al., 2021). In
human lung adenocarcinoma cell lines, CD109 overexpression was
associated with the ability of migration and metastasis by activating
the Jak-Stat3 signaling (Chuang et al., 2017). Actually, Jak-Stat3
signaling was more activated in high-risk group than that in low-

FIGURE 7
Validating the value of the risk model in predicting the response to clinical therapy. (A–C) The ssGSEA score of T cell inflamed GEP, Th1/IFN-γ, and
cytolytic activity in two risk groups. Wilcoxon test was performed. (D) The expression of key immune checkpoints in two risk groups. Wilcoxon test was
performed. (E) Pearson correlation analysis of risk score with immune signatures and immune checkpoints. (F) The estimated IC50 of 5-fluorouracil, cisplatin,
and gemcitabine in two risk groups. (G) Spearman correlation analysis between drug sensitivity and risk score. Rs indicates correlation coefficient.
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risk group. Previous research revealed that CD109 promoted EMT
process and stemness in lung adenocarcinoma, and CD109 was
considered as a potential therapeutic target (Lee et al., 2020).
CTNND2 (δ-catenin) was suggested as a potential cancer
biomarker and was associated with the expression of markers of
cancer stem cells in lung adenocarcinoma (Lu et al., 2014; Huang
et al., 2018). However, the roles of these three genes in CCA have not
been revealed in the previous research. Our study only provided a
direction for the further analysis of their function in tumor stemness in
CCA, and further experiments are needed to verify the roles of three
genes in the future work.

We characterized the biological features of high- and low-risk
groups, and the results were consistent with that in subtype analysis.
High-risk group had significantly higher immune infiltration and
more activated immune response than low-risk group. Simultaneously,
immunosuppressive environment was more enriched in high-risk group,
such as high enrichment of angiogenesis, CAFs, and TAMs, as well as
high expression of immune checkpoints, which contributed for the
unfavorable outcome of high-risk group. Nevertheless, the prediction
of sensitivity to immunotherapy and chemotherapy revealed that high-
risk group was more sensitive to immune checkpoint inhibitors and
chemotherapeutic drugs such as 5-fluorouracil and cisplatin. The results
laid a foundation for the predictive value of the mRNAsi-related risk
model in clinical treatment for iCCA patients.

Conclusion

In conclusion, this study clarified the relation of tumor stemness
with prognosis and immune microenvironment in iCCA patients. In
addition, we constructed an mRNAsi-related risk model that was
effective and stable to predict the overall survival of iCCA patients.
Importantly, the risk model showed a potential to predict the
sensitivity of iCCA patients to immunotherapy and
chemotherapeutic drugs.
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