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The soybean yield is a complex quantitative trait that is significantly influenced by
environmental factors. G × E interaction (GEI), which derives the performance of
soybean genotypes differentially in various environmental conditions, is one of the
main obstacles to increasing the net production. The primary goal of this study is to
identify the outperforming genotypes in different latitudes, which can then be used in
future breeding programs. A total of 96 soybean genotypes were examined in two
different ecological regions: Faisalabad and Tando Jam in Pakistan. The evaluation of
genotypes in different environmental conditions showed a substantial amount of
genetic diversity for grain yield. We identified 13 environment-specific genotypes
showing their maximum grain yield in each environment. Genotype G69 was found
to be an ideal genotype with higher grain yield than other genotypes tested in this
study and is broadly adapted for environments E1 and E2 and also included in top-
yielding genotypes in E3, E4, and E5. G92 is another genotype that is broadly adapted
in E1, E3, and E4. In the case of environments, E3 is suggested to be a more ideal
environment as it is plotted near the concentric circle and is very informative for the
selection of genotypes with high yield. Despite the presence of GEI, advances in DNA
technology provided very useful tools to investigate the insight of advanced
genotypes. Association mapping is a useful method for swiftly and efficiently
investigating the genetic basis of significant plant traits. A total of 26 marker–trait
associations were found for six agronomic traits in five environments, with the
highest significance (p-value = 2.48 × 10–08) for plant height and the lowest
significance (1.03 × 10–03) for hundred-grain weight. Soybean genotypes
identified in the present study could be a valuable source for future breeding
programs as they are adaptable to a wide range of environments. Genetic
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selection of genotypes with the best yields can be used for gross grain production in a
wide range of climatic conditions, and it would give an essential reference in terms of
soybean variety selection.
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1 Introduction

The soybean (Glycine max) is an important oil seed crop that
fulfills the demands of oil and proteins of millions of people around
the world. Its cultivation area covered 130.94 million hectares during
2021/2022, with a net production of 355.59 million metric tons in the
world (https://www.fas.usda.gov/data/world-agricultural-
production). However, in Pakistan, its cultivation area is negligible,
with a production of 1,000 metric tons. To meet the increasing need
for food, it is essential for breeders to develop cultivars that have high
yield and yield stability and are also resistant to biotic and abiotic
stresses (Eltaher et al., 2021). In any crop species, grain yield is the
most important factor. It is a complex quantitative trait that is
influenced by multiple genes and environmental factors (Yongchun
et al., 2008). Hence, it is necessary to dissect the underlying genetics of
grain yield and other related traits for manipulating alleles at relevant
loci to get maximum benefits (Yongchun et al., 2008). The selection of
genotypes carried out in a single environment on the basis of their
performance is not suitable for the development of varieties (Shrestha
et al., 2012). So, the selection of the genotypes on the basis of yield
stability evaluation is more important than their mean performance in
multiple environmental conditions (Tariku et al., 2013; Islam et al.,
2016). For crops like soybean, which grows in a wide range of
ecological conditions, it is very important to select the genotypes
for adaptability and stability before recommending any environmental
condition. The photoperiod is the main climatic factor in soybean that
determines its adaptability to different ecological conditions. Because
of photoperiod sensitivity, each soybean cultivar is restricted to
cultivation in a narrow range of latitudes to get maximum yield
(Debebe et al., 2014). Although soybean grows in a wide range of
latitudes (50°N–35°S) across the world, identification of traits that help
to determine the performance of the most stable cultivars at different
latitudes is very important (Li et al., 2020).

Genotype × environment interaction (GEI) has limitations in
the study of important agronomic traits like yield and its
components, as it complicates the understanding of genetic
experimentations and restricts the selection of varieties adaptive
to specific conditions (Farshadfar and Sutka, 2003). Normally, in
plant breeding programs, the selection of genotypes for a specific
environment is conducted by multi-environmental trials (METs)
for the evaluation of genotypes based on their performance across
environments (Li et al., 2020). Numerous research studies have
been conducted using several statistical modeling approaches for
checking the effect of GEI on yield and other agronomic traits
(Grüneberg et al., 2005). These approaches mainly utilize a
generalized linear model (GLM) to measure the variation caused
by genotype, environment, and GEI for each variable by linear
regression and joint analysis of variance (ANOVA) (Arif et al.,
2021). GLMs lower the supposition of dependent variables (Olsson,
2002).

The additive main effect and multiplicative interaction (AMMI)
model is mostly used in crop breeding programs for evaluating the
genotypes for variety approval. First, the AMMI model uses ANOVA
to divide variations into the main effect of genotype (G), main effect of
environment (E), and effect caused by genotype-by-environment
interaction (GEI). Second, it performs principal component
analysis (PCA) by singular value decomposition for genotype and
environment (Gauch Jr et al., 2008).

The most important method that visually helps to examine the
relationship among genotypes, environments, and genotype-by-
environment interaction and plays a significant role in the selection
of the most stable and high-performing genotype for a specific
environment in mega-environmental trials is the GGE biplot
(Tiwari, 2019). GGE biplots play a major role in the selection of
the most stable genotypes and discard those genotypes that are
unstable across environments and/or have less yield (Li et al.,
2020). In the past, many studies have been conducted to check the
stability of soybean across environments. GGE biplots have been used
to check the stability and adaptability of soybean genotypes that were
cultivated in multiple environments and select the varieties that were
highly stable and performed better across the environments (Mukuze
et al., 2020; Carvalho et al., 2021). Other than soybean, GGE biplots
were used in oat, sugarcane, rice, wheat, and maize for screening the
stable genotypes in mega-environmental trials. Hence, it has been
established that in agricultural research programs, the GGE biplot is
the most effective method for the selection of suitable cultivars for
specific environments in mega-environmental trials (Donoso-
Ñanculao et al., 2016; Tena et al., 2019).

In general, genetic make-up (G), environment (E), and their
interaction G × E influence the expression of any physiological and
morphological trait. Due to their polygenic nature, yield and other
quantitative traits are continuously controlled and affected by
quantitative trait loci, genomic regions with associated genes, and
environment (Said et al., 2022). As a result, genes that affect the yield
and its components are highly sensitive to the environment and show
QTL–environment interaction. This interaction between QTL and the
environment can facilitate or constrain the responses toward artificial
selection (Falconer, 1952). Therefore, breeding programs need to take
these effects seriously and address them properly (El-Soda and Sarhan,
2021). Traditional QTL mapping and genome-wide association
mapping are two methods that can be used for identifying the
genes with an underlying natural variation that affects the genotypes.

In traditional breeding programs, the selection of genotypes is
mostly carried out on the basis of phenotypic performance. Breeders
mostly select the genotypes that perform well in a specific
environment, costing time and resources (Baenziger, 2016).
Association mapping (AM) is an alternative to conventional
breeding and is considered an effective approach for dissecting the
genomic location of genes or quantitative trait loci (Verdeprado et al.,
2018). Based on the association between markers and traits, it
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performs rapid and fine mapping of the target locus (Mackay and
Powell, 2007). In previous studies, association mapping conducted in
soybean by using genome-wide SSR markers showed a successful
marker–trait association (Ghione et al., 2021). The use of functional
molecular markers, especially those derived from expressed sequence
tags (ESTs), facilitates the association between phenotype and
genotype by providing direct access to the population variation in
genes of agronomically important traits (Mulato et al., 2010). In the
past, linkage mapping was frequently used to check the effect of
genotype, environment, and GEI (Ma et al., 2009). However,
association mapping is rarely used for dissecting GEI (Lü et al.,
2011). So, the aim of this study was 1) to check the effect of G × E
interaction on the performance of soybean genotypes in multiple-
environmental trials and select the genotypes that are most stable and
have high adaptability across the environments, 2) identify the
genotypes that give high yields in different environments, and 3)
find the association between markers and traits for important
agronomic traits.

2 Materials and methods

2.1 Plant material

A total of 96 soybean accessions acquired from USDA-ARS from
different maturity groups (Supplementary Table S1) were selected. Of
these accessions, eight were from Pakistan, including two locally
adapted cultivars, Faisal soybean (G95) and Ajmeri (G96).

2.2 Experimental design

The field experiments were conducted at the Nuclear Institute of
Agriculture (NIA) (25°′60′N 68°′60′E), Tando Jam, Sindh, Pakistan,
and the National Institute for Biotechnology and Genetic Engineering

(NIBGE), Faisalabad, Punjab (31°′42′N 73°′02′E), in the
2015–2016 growing season of soybean. The seeds were sown
during August 2015 and 2016 at NIBGE and NIA and during
August 2016 at NIBGE, with three replications of each accession.
To analyze the data, each experiment was considered a separate
environment. Experiments during February 2015/2016 at NIBGE
were coded as E1 and E2, and those at NIA were E3 and E4,
respectively. The experiment conducted during February 2016 at
NIBGE was presented as E5.

The accessions were planted using a randomized complete block
design. Seedbeds were prepared by one-time plowing with a cultivator,
followed by planking and two-time plowing with a rotavator. To
maintain a distance of three inches between plants, sowing was carried
out with the help of a dibbler. Row to row distance of 30 cm and seed
depth of 1-2 inches was maintained for proper emergence. Three rows
of size 2.43 m were used for each soybean accession. Weather data for
all the experimental locations were collected from https://www.
worldweatheronline.com/ (Figure 1).

2.3 Phenotyping

Data were collected for plant height (cm), pods per plant
(number), seeds per plant (number), seed weight per plant (gm),
hundred-grain weight (gm), and total grain yield (gm). For
phenotyping, the average data of three randomly selected plants
were collected for each parameter except total yield. Plant height
(PH) was measured at maturity from the surface of the soil to the tip of
the plant. Pods per plant (PPP) were calculated for each randomly
selected plant, and the average number of pod was recorded as pods
per plant. Seed per plant (SDPP) was calculated as the average number
of seeds present in three randomly selected plants of each accession.
For seed weight per plant (SWPP), seeds of three randomly selected
plants of each accession were weighed separately, and the average of
three plants was recorded. For hundred-grain weight (HGW),

FIGURE 1
Weather footprint for the soybean genotypes’ growth period. Monthly rainfall (mm) (left x-axis) and relative humidity (%) (right x-axis).
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100 seeds were selected from the total seeds of each randomly selected
plant, and the average of three plants was recorded as HGW. Total
yield (TY) for each accession was measured after harvesting the
whole plot.

2.4 Genotyping

For the association study, 100 genome-wide SSR markers were
selected from the literature (Supplementary Table S2). For genotyping,
DNA was extracted from young leaves using the method introduced
by Doyle and Doyle (1987). PCR amplification was performed at an
annealing temperature ranging from 42°C to 58°C, and the amplified
product was run on 2.5% agarose gel. Scoring of bands was carried out
on the basis of presence (0) and absence (1).

2.5 Phenotypic data analysis

2.5.1 Correlation analysis
Correlation analysis between the six traits was performed in the

web-based R software package “Performance Analytics” to find the
significance of interrelationships between these traits based on
Pearson’s correlation (Micheaux et al., 2013). By using the formula
given by Wen et al. (2012), the correlation coefficient was calculated.

r � ∑n
i�1 x i − ├ �x( ) yi − �y( )�����������∑n

i�1 xi − �x( )2
√ �����������

Ʃn
i�1 yi − �y( )2√ ,

where �x and �y denoted the mean value of xi and yi samples.

2.5.2 Descriptive statistics
Descriptive statistics of six phenotypic traits was measured using

the R-based package “metan,” which provides a simple and intuitive
pipeline. The mean value of each variable was computed for all the
combinations of genotypes and environments.

2.5.3 Combined analysis of variance
The level of significance of the genotypes, environment, and their

interaction in the multi-environment trial ANOVA was performed on
six traits. In this model, a linear model along with the interaction effect
was used, which is formulated as

yijk � μ + αi + τj + ατ( )ij + εij.

In this equation, yijk represents the response variable, which is
observed in the ith genotype and jth environment; µ is used for the
grand average; αi represents the effect of the ith genotype; τj is the
effect of the jth environment; (ατ)ij represents the interaction effect of
the ith genotype with the jth environment; and εij is the residual
standard error.

2.6 G × E data analysis

2.6.1 AMMI and GLM models
In multi-environment experiments, GEI is commonly used to

check the performance of genotype (G) across environments. The two
statistical models used to evaluate the response of genotype in multi-
environment are the AMMI model and GLM. In the AMMI method,

ANOVA is used to access genotype G, environment E, and genotype ×
environment interaction to keep the genotype as fixed and the
environment as a random effect, as described by Olivoto and Lúcio
(2020). This method is further divided into interaction principal
component analysis (IPCA) and AMMI main effect biplot analysis,
where GE was plotted on the x-axis and IPCA values on the y-axis,
while the second method is G and GEI biplot (Yan and Tinker, 2006).

yij � μ + αi + τj +∑p

k�1 λkaiktjk + ρij + εij.

Metan package of R is utilized to plot the data of GEI. On the other
hand, MINITAB 14 software is used to perform GLM, which is a
combination of ANOVA and generalized linear regression.

2.6.2 GGE biplots
In METs, genotype main effect plus genotype-by-environment

interaction (GGE) model were used for evaluation of appropriate
genotype and environment. It can be written as

YIJ − μ − βj � λ1ξi1ηj1 + λ2ξi2ηj2 + εij,

where Yij stands for the average of the ith genotype in the jth
environment; µ stands for the grand mean, and βj stands for the
main effect of the jth environment; µ + βj is the mean variable of all the
genotypes in the jth environment; λ1 and λ2 are singular values
obtained from first two principal components (PC1 and PC2); ?i1
and ?i2 are the eigenvalues of PC1 and PC2 for ith genotype; ɳj1 and ɳj2
are eigenvectors of PC1 and PC2 for the jth environment, and Ɛij is the
residual for ith genotype and y, for jth environment.

2.7 Graphics

Trellis plots of phenotypic traits across the genotypes and
environments were produced using Origin software.

2.8 Association mapping

Association analysis was conducted for individual environments
for the evaluation of the association between markers and phenotypic
traits and best linear unbiased prediction (BLUP) values using the
GLM in TASSEL 3.0 software (Bradbury et al., 2007). Markers having
a p-value of 1.03 × 10–3 are considered significantly associated with
phenotypic traits. A linkage map was constructed based on the
associated markers in Map chart software (Voorrips, 2002).

3 Results

3.1 Extent of phenotypic variations among
environments

The effect of each environment on morphological traits was
measured and illustrated by trellis plots, which showed the
significant effect of each on genotypes (Figure 2). Environments
showed a clear effect on PPP, SDPP, SWPP, and TY; however, in
the case of HGW and PH, genotypes were found to be the main source
of variation. Based on the mean data of PPP, SDPP, and SWPP,
E5 performed well in the spring season of Faisalabad. However, it was
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observed that TY was higher for most of the genotypes in E3 (Tando
Jam) than other environments. Data recorded for TY presented higher
variation for each genotype in all the environments (Figure 3).

3.2 Extent of genotypic variations among
environments

In multi-environment yield trials, it is common to represent a
combination of cross and non-crossover types of
genotype–environment interaction. Trellis plots demonstrated that
average data of the total yield of individual genotypes were higher in
E3 for the majority of genotypes when compared to other
environments (Figure 4). Based on the trellis plots’ observation,

G69 performed well in all the environments. However, G11, G69,
G73, G82, G85, G88, G91, G92, and G3 were found to be stable in
E3 and E4 and performed better during 2015/16 at Tando Jam.

3.3 Correlation analysis

The pairwise correlation matrix of grandmean data of morphological
traits showed a low level of positive correlation between PH, PPP, SDPP,
SWPP, and TY. PPP and SDPP had a relatively high positive correlation
as compared to other traits. HGW was negatively correlated with all the
traits except SWPP, for which a low level of positive correlation was
recorded. However, TYwas positively correlated with all the traits at a low
level except HGW (Figure 5).

FIGURE 2
Variation in phenotypic data for traits is shown in trellis plots. (A) Plant height (PH). (B) Pods per plant (PPP). (C) Seeds per plant (SDPP). (D) Seedweight per
plant (SWPP). (E) Hundred-grain weight (HGW). (F) Total yield (TY).
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3.4 G × E interaction

3.4.1 Genotype main effects: AMMI biplots
The identification of genotype adaptability to the nearby

environment, i.e., broadly (near the origin) or specifically (far from
the origin), can be carried out using AMMI main effect biplots
(Figure 6A). Genotypes G19, G23, and G87 were less sensitive to

environmental interaction in terms of seed yield as these were located
near the origin. Similarly, the mean yield of G73, G11, G69, and
G31 was found to be better than the grand mean yield of all genotypes.
These genotypes were proposed to be high yielding and comparatively
unresponsive to GEI. Performances of G2, G66, and G76 were less
effective compared to the grand mean yield and were located near the
origin along the y-axis but far from the origin on the x-axis, which

FIGURE 3
Shade plot across five environments. Number of genotypes (x-axis) and environments (y-axis).

FIGURE 4
Trellis plots for average yield (g/plot) across five environments. Genotypes are coded as 1–96.

Frontiers in Genetics frontiersin.org06

Rani et al. 10.3389/fgene.2022.1090994

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1090994


means that these genotypes had low yield and were not affected by
GEI. In a similar way, environments that had lower PCA scores and
were found to be located near the central point along the y-axis had
less contribution in GEI, such as E1 and E2, whereas E3, E4, and
E5 showed strong interactive force. In terms of GEI, E4 had better
contribution as it was plotted away from the center of origin along the
x-axis. For TY, E4 was the most productive environment, followed by
E3 and E5, and E1 and E2 were the least productive. Based on AMMI
estimates in five environments, the ranks of 96 genotypes for the mean
grain yield are presented in Supplementary Table S3.

3.4.2 Genotype main effect: ANOVA (AMMI
and GLM)

For better understanding, GLM was performed for our data along
with the AMMI model, to compare the analytical competitiveness of
GLMwith special software-based AMMI analysis. Results obtained for
ANOVA from both models were similar (Table 1). This suggests that
genetic makeup of genotype has the least contribution in phenotypic
variation of all traits compared to environment and GEI.

GEIs show how the performance of genotype is different in different
environmental conditions. AMMI-based biplots were explained by the

FIGURE 5
Correlation matrix (upper triangle), frequency distributions (blue bars), and bivariate scatter plots with a fitted line at lower triangle are shown for plant
height (PH), pods per plant (PPP), seeds per plant (SDPP), seed weight per plant (SWPP), hundred-grain weight (HGW), and total yield (TY).

FIGURE 6
(A) AMMI main effects biplot for TY of genotypes across five environments. (B) The scatter plot of 96 soybean genotypes’ seed yield data across five
environments explained 81.1% of the total variation. At the x-axis, PC1 explains (54.2%), and at the y-axis axis, PC2 explains (24.9%).
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two interactive principal components. PCA 1 was on axis 1, while PCA
2 was on axis 2, and no GEI was explained by its origin. The scatter plot of
TY data presented a negative correlation between E1, E2, E4, and E5, as
shown by the obtuse angle between them (Figure 6B). Environments
E1 and E2 were plotted near the origin and in the same cluster, elicited
weak interactive forces, and had a similar influence on the genotypes,
while E4 was located away from the origin and was subjected to strong
interactive forces. Genotypes G69 and G72 were suggested to be under
maximum GEI influence as they were located away from the center.
G69 was located near E3 and was suggested to be specifically adapted for
E3. G31, G41, and G42 were clustered together and had a similar yield
across environments and were influenced by GEI in a similar way.

3.5 Selection of the best suitable genotype
and environment

Various kinds of biplots can be drawn for better understanding of
G × E analysis via GGE plots.

3.5.1 Representativeness vs. discriminativeness
To evaluate the genotypes with better and stable yield,

representativeness and discriminative view of GGE biplots can be
used on tested environments. The length of environmental vectors can
be visualized, which is proportional to standard deviation in respective
environments based on the concentric circle in the biplots and is a
measure of the environmental ability to discriminate. Therefore, E3,
E4, and E5 are the most discriminative, while E1 and E2 are less
discriminative and provide very little information (Figure 7A). E1 and
E2 are highly representative, based on the angle formed between the
environmental vector and the average environment coordinate (AEC)
axis. The smaller the angle between the environmental vector and
AEC, the stronger will be the representativeness. Environments which
are discriminating but non-representative are good for the selection of
specifically adapted genotypes in mega-environments.

3.5.2 Which–won–where
The which–won–where view of GGE biplot for TY helps in the

identification of suitable genotypes for a specific environment in

TABLE 1 Additive main effects and multiplicative interaction (AMMI) and generalized linear regression model (GLM) analysis of variance of the 96 soybean genotypes
tested across five environments.

Source Plant height (cm) Pods per plant Seeds per plant

AMMI Var GLM Var AMMI Var GLM Var AMMI Var GLM Var

SS % SS % SS % SS % SS % SS %

Genotype (G) 43,388 31 14,465 31 172,982 18 57,099 18 958,167 11 321,594 11

Environment (E) 6,856 5 2,286 5 164,481 17 54,754 17 4,633,323 53 1,528,906 52

G x E 91,586 64 30,529 64 635,298 65 210,800 65 3,140,858 36 1,086,808 37

IPCA1 52,339 — — — 441,207 — — — 1,684,096 — — —

IPCA2 32,966 — — — 135,043 — — — 833,618 — — —

IPCA3 4,939 — — — 57,952 — — — 390,085 — — —

IPCA4 1,342 — — — 1,095 — — — 233,060 — — —

Residuals 18,362 — — — 167,387 — — — 283,773 — — —

Total 252,210 100 47,280 100 1,785,008 100 322,643 100 12,170,736 100 2,937,308 100

Source Seed weight per plant (g) Hundred-grain weight (g) Total yield (g)

AMMI Var GLM Var AMMI Var GLM Var AMMI Var GLM Var

SS % SS % SS % SS % SS % SS %

Genotype (G) 48,558 19 16,196 19 9,594 55 3,193 55 820,965 15 273,655 15

Environment (E) 125,820 49 41,925 49 636 4 205 4 2,138,951 38 712,984 38

G x E 82,002 32 27,367 32 7,216 41 2,455 41 2,640,105 47 880,035 47

IPCA1 62,152 — — — 5,220 — — 1,431,114 — — —

IPCA2 15,156 — — — 1,659 — — 658,172 — — —

IPCA3 3,889 — — — 279 — — 439,416 — — —

IPCA4 805 — — — 57 — — 111,403 — — —

Residuals 7,995 — — — 1,079 — — 66,360 — — —

Total 348,233 100 85,488 100 25,945 5,852 100 8,322,069 100 1,866,674 100

The bolds provided are just to highlight the traits.
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mega-environments. In our study, we observed three mega-
environments: E3 and E5 formed mega-environment 1 (ME1),
E1 and E2 formed mega-environment 2 (ME2), while E5 alone was
mega-environment 3 (ME3) (Figure 7B). The polygon connects all the
genotypes which are further from the origin of the biplot in such a way
that all the genotypes are contained inside the polygon. Perpendicular
lines generated from the center of origin help to compare the
genotypes. Generally, the genotype that appears in the same sectors
as the specific environment performs the best in that environment.
The equality line that connects the adjacent genotypes on the polygon
helps in visual comparison of the genotypes, e.g., the equality line that
is formed between G11 and G40 shows that G40 was better in E3 and
E5, while G11 performed better in other environments. So, these
genotypes are expected to produce the maximum yield in that
particular environment.

3.5.3 Ranking genotypes relative to ideal genotype
A genotype that is highly stable across the environments and also

has high mean performance is considered an ideal genotype. The
performance of a genotype in a particular environment is ranked by
the axis line that passes through center of origin. An ideal genotype is
mostly plotted near the center of concentric circles to a point on the
AEA (“absolutely stable”) in the positive direction. It also has a vector

FIGURE 7
(A) Genotype plus genotype × environment interaction (GGE) biplot analysis for representation and discrimination of genotypes. (B) The
which–won–where biplot for the yield of 96 soybean genotypes evaluated in five environments. (C) The best genotypes based on average performance and
stability are displayed in a yield-focused comparative biplot. (D) Environment-focused comparison biplot explains the ideal environment for soybean yield
among the locations used in evaluations.

TABLE 2 Top genotypes for high yields across five environments.

E1 E2 E3 E4 E5

G92 * * *

G69 * * * * *

G19 * *

G86 * *

G85 * * *

G40 * * *

G20 * *

G42 * *

G31 * *

G44 * *

G36 * *

G73 * *

G39 * *

Total 8 3 7 6 7
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length that is equal to the longest vector of genotypes on the positive
side of AEA (“highest mean performance”). In our case, G11 was
considered more desirable than G69, even though G69 has a higher
average yield (Figure 7C). G76 was considered to be the poorest of all
the genotypes as it was the furthest from the center of the concentric
circle and was consistently the poorest. Although the yield of G76 was
very low, its performance was also stable.

As there was not a single genotype that produced the highest
yield in all the environments, we selected top-20 high-yielding
genotypes from each environment as a representative of high-
yielding genotypes for that environment. If a genotype was one of

the 20 high-producing genotypes in at least two environments, it was
then selected. Consequently, 13 genotypes were identified and
selected (Table 2).

3.5.4 Ranking environments
A ranking environment view of the GGE biplot is the most suitable

method to check ideal environment for the selection of genotypes that
perform better in a specific environment. The environment that is
plotted near the concentric circle is more informative than those
plotted far away from the center. So, in this case, E3 is suggested to be
more ideal environment as it is plotted near the concentric circle and is

TABLE 3 Analysis of variance (ANOVA) combined for total yield (TY), plant height (PH), pods per plant (PPP), seeds per plant (SDPP), seed weight per plant (SWPP), and
hundred-grain weight (HGW).

Traits Source Df SS Var % MS F value

Total yield (g) Environment (E) 4 2,138,951.31 38 534,737.83 7,655.17

Genotype (G) 95 820,965.26 14 8,641.74 123.71

G × E 380 2,640,104.76 47 6,947.64 99.46

Residuals 950 66,360.50 1 69.85

Total 1,429 5,666,381.83 100

Plant height (cm) Environment (E) 4 6,855.58 4 1713.90 88.67

Genotype (G) 95 43,388.16 27 456.72 23.63

G × E 380 91,586.43 57 241.02 12.47

Residuals 950 18,361.64 12 19.33

Total 1,429 160,191.82 100

Pods per plant Environment (E) 4 164,481.43 14 41,120.36 233.38

Genotype (G) 95 172,982.32 15 1820.87 10.33

G × E 380 635,297.58 56 1,671.84 9.49

Residuals 950 167,387.14 15 176.20

Total 1,429 1,140,148.46 100

Seeds per plant Environment (E) 4 4,633,323.10 51 1,158,330.78 3,877.80

Genotype (G) 95 958,166.57 11 10,085.96 33.77

G × E 380 3,140,858.43 35 8,265.42 27.67

Residuals 950 283,772.90 3 298.71

Total 1,429 9,016,120.99 100

Seed weight per plant (g) Environment (E) 4 125,820.14 48 31,455.04 3,737.66

Genotype (G) 95 48,558.27 18 511.14 60.74

G × E 380 82,002.25 31 215.80 25.64

Residuals 950 7,994.91 3 8.42

Total 1,429 264,375.57 100

Hundred-grain weight (g) Environment (E) 4 635.83 3 158.96 140.00

Genotype (G) 95 9,594.31 52 100.99 88.95

G × E 380 7,215.98 39 18.99 16.72

Residuals 950 1,078.67 6 1.14

Total 1,429 18,524.80 100 1.14
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very informative for the selection of genotypes with high yield
(Figure 7D), while E1 and E2 are far away from the concentric
circle and give very little information for selection of high-yielding
genotypes.

3.6 Combined analysis of variance

Results obtained from combined ANOVA showed that the
environment has the main influence on SDPP, SWPP, and HGW,
whereas GEI has a high influence on TY, PH, and PPP, that is, 47%,
57%, and 56%, respectively (Table 3). The results obtained from

AMMI-based ANOVA also showed that G × E has a major
influence on TY, PH, and PPP, which showed that in soybean,
genotypes performed differently across different environments,
which may be because of differences in locations.

3.7 Analysis of variability, heritability, and
genetic advance

From the results obtained from the genotypic coefficient of
variance (GCV), phenotypic coefficient of variance (PCV),
heritability, and genetic advance (GA) (Table 4), there is sufficient

TABLE 4 Variability, heritability, and genetic advance estimate for six agronomic traits.

Traits Environment SEM ECV (%) GCV (%) PCV (%) h2% GA

Plant height E1 2.7024 18.72 20.7736 27.9639 55.19 7.9487

E2 2.4832 16.1988 19.5046 25.3541 59.18 8.2068

E3 1.9517 11.8329 22.1595 25.1209 77.81 11.5037

E4 3.3932 19.789 49.5019 53.3108 86.22 28.1221

E5 1.8496 13.4616 48.1595 50.0055 92.75 22.7386

Pods per plant E1 1.6544 10.4287 58.3768 59.301 96.91 32.5277

E2 3.5833 13.1744 19.332 23.3943 68.29 15.5033

E3 2.9551 10.2789 18.4711 21.1385 76.35 16.5566

E4 11.2558 37.1468 42.8019 56.6735 57.04 34.9485

E5 11.944 34.8605 67.6765 76.1273 79.03 73.5491

Seeds per plant E1 1.2216 5.6103 57.3823 57.6559 99.05 44.3704

E2 8.1589 20.3741 62.3657 65.6093 90.36 84.7051

E3 8.0271 6.8488 30.3627 31.1256 95.16 123.8603

E4 3.3165 4.3303 39.4654 39.7023 98.81 107.2044

E5 18.8243 31.733 68.8557 75.8162 82.48 132.3587

Seed weight per plant E1 0.3142 21.2268 55.6528 59.5638 87.30 2.7458

E2 2.1919 14.3328 49.8399 51.8599 92.36 26.1365

E3 1.2055 7.5147 48.0508 48.6349 97.61 27.1735

E4 1.824 8.851 17.1982 27.5685 32.493 0.7199

E5 2.0839 29.2044 64.6533 70.9433 83.05 15.0015

Hundred-grain weight E1 0.6169 7.6845 19.6252 21.0762 86.71 5.234

E2 1.0575 13.0592 21.118 24.8297 72.34 5.1895

E3 0.3755 4.3948 22.1574 22.5891 96.21 6.6256

E4 0.3533 3.9428 31.912 32.1547 98.50 10.1245

E5 0.3575 4.5005 17.1955 17.7747 93.59 4.7146

Total yield E1 1.7858 3.3856 21.4582 21.7236 97.57 39.8917

E2 1.5197 2.8868 22.8897 23.071 98.43 42.6546

E3 2.1067 1.9595 26.9173 26.9885 99.47 102.985

E4 9.3396 13.0413 58.3983 59.8367 95.25 145.6353

E5 4.3883 9.3684 72.3745 72.9784 98.35 119.9615
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scope for selecting desired germplasm for each environment based on
the agronomic traits. Both GCV% and PCV% calculated for PH, PPP,
SDPP, SWPP, and HGW were higher in most of the environments,
except for SDPP and HGW, where less distance was calculated
between GCV and PCV in E1 (57.38/57.65), E3 (30.36/31.12), and
E4 (39.46/39.70) for SDPP and E3 (22.15/22.58), E4 (31.91/32.15), and
E5 (17.19/17.77) for HGW, respectively. In case of TY, distance
calculated between PCV and GCV was very low in all
environments. Heritability estimated in this study were PH (55%–
92%), PPP (57%–97%), SDPP (82%–99%), SWPP (32%–98%), HGW
(72.34–98), and TY (95%–99%). TY (99%) showed relatively higher
heritability than other traits in all the environments. Maximum
genetic advance (145) was calculated for TY in E4.

3.8 Association mapping

Out of 100 markers, 96 were polymorphic, which produced a total
of 262 alleles with an average of 2.79 alleles per locus (Figure 8). The
average polymorphism information content of the molecular markers
was 0.44, and 28 markers showed a PIC value ≥ 0.50. In five
environments, a total of 26 marker–trait associations were found
for six agronomic traits. The level of significance was set at p <
1.03 × 10–3 for identifying significant markers (Table 5). Most of the
significant markers were found to be associated with a single trait in a
single environment. SSR marker Satt316 was found to be associated
with plant height at both locations during 2016 at NIBGE and 2015 at
NIA with 12% of the total variation. Few markers like GMES0902,
Satt565, GMES6336, Satt300, Satt322, Satt102, and Satt070 are
associated with more than one trait, which may be due to positive

correlations present among these traits. Two markers, Satt565 and
Satt070, were associated with both seeds per plant and total yield. A
total of nine markers were significantly associated with plant height,
which explained 12%–31% of variation, while a single marker–trait
association was observed for seed weight per plant with 18% of total
variation. Six marker–trait associations were identified for the total
yield at the tested environment with the total percentage of variation
explained by each marker ranging from 12% to 19%. Most of the
markers associated with the agronomic traits were located on
chromosome 17. The genetic linkage map was constructed to
depict the position of observed SSR and EST SSR markers (Figure 9).

4 Discussion

The main objective of any breeding program is to develop
genotypes that are resistant to biotic and abiotic stresses with high
production. Environmental interaction has a significant impact on
complex quantitative traits with several contributing factors such as
yield. The existence of a substantial genotype main effect and G × E
interactions revealed that genotypes respond differently in different
environmental conditions. Studies on stability and GEI are crucial for
effective breeding and adaptability in a wide range of environmental
conditions (Liang et al., 2015). For the allocation of best resources in
breeding or cultivar evaluation programs, the mega-environment
concept is helpful (Gauch Jr and Zobel, 1997). A mega-
environment is a collection of places that regularly use the same
top cultivars (Yan and Rajcan, 2002). Because of the significant impact
of genotype by mega-environment interaction, the evaluation of
cultivars should be carried out separately for each mega-

FIGURE 8
Representative gel image of 18 soybean genotypes with SSR marker Satt565 on 2.5% agarose gel. Lane M shows 1 kb plus DNA.
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environment before the cultivar recommendation (Yan et al., 2011).
Genotypes selected from the ideal test environment were mostly those
with exceptional mean performance and greater adaptability (Yan
et al., 2000). For identification of lines with high homeostasis in
multilocation trials and coordinated variety testing programs,
stability analysis models such as YSi statistics, AMMI, and GGE
biplots were used. The main issue for plant breeders is to get the
relevant knowledge concealed in multi-environment data and then to
understand it for successful utilization. For mega-environment and
cultivar evaluation, and assessment of varietal stability, GGE biplots
have mostly been used (Rakshit et al., 2012; Zimmer et al., 2016). The
GGE biplot wasmore beneficial when themega-environment was used
to evaluate a large set of genotypes, as the pattern of GEI could make
the genotype evaluation more challenging (Krishnamurthy et al.,
2017). In other words, environmental variation was inconsistent
with the superiority of genotype, which restricted the selection of
cultivars. The quality of selection can be improved by the selection of
superior genotypes, with little stability variance produced through

simultaneous selection for high mean and stability. In many crops, this
technique has been effectively used, particularly for determining grain
yield.

In this study, soybean genotypes were analyzed in five different
environmental conditions, and the features that substantially
correlated with stability were discussed. With the help of stability
analysis models, stable genotypes with high mean yields were
identified. These models suggested that the most stable genotype
for TY was G69, followed by G92, G85, and G40 (Figure 6A). A
genotype with a high mean yield and great stability would be an ideal
genotype. A genotype located closer to the mean environment’s
direction and having a projection of zero onto the perpendicular
AEC coordinate is considered an “ideal” genotype. For mean yield and
stability across environments, lines G69 and G92 displayed high mean
rankings and were determined to be the best-performing ones
(Figure 7C). Results obtained from GGE biplots suggested that
G92 and G69 are most suited to E1, G69 to E2, G18 to E3, G1 to
E4, and G42 to E5 (Figure 7B). These results are in line with the

TABLE 5 Marker–trait associations detected using GLM with six traits.

Trait Marker LG Position (cM) Environment p-value R2

PH Satt194 C1 26.35 V 2.48E-08 0.31

GMES0902 I 124.8 IV 4.86E-04 0.12

GMES6336 D1a 122.2 IV 5.26E-04 0.14

Satt102 K 30.28 II 7.09E-04 0.15

Satt300 A1 30.93 V 9.82E-04 0.18

satt154 D2 57.07 V 1.18E-03 0.14

Satt316 C2 127.66 II 2.36E-03 0.12

Satt316 C2 127.66 III 2.80E-03 0.12

HGW GMES0902 I 124.8 IV 3.04E-04 0.13

GMES6336 D1a 122.2 IV 1.03E-03 0.14

Satt322 C2 82.23 IV 1.39E-03 0.13

PPP Satt173 O 58.4 I 4.10E-04 0.18

Satt300 A1 30.93 V 1.04E-03 0.18

Sat_001 D2 92.12 I 2.09E-03 0.15

Sctt008 D2 3.2 V 2.99E-03 0.12

SWPP Satt300 A1 30.93 V 1.03E-03 0.18

TY Satt478 O 45 I 5.61E-04 0.19

Satt102 K 30.28 V 1.10E-03 0.14

Satt565 C1 16 V 1.48E-03 0.15

Satt386 D2 125 I 1.93E-03 0.12

Satt322 C2 82.23 V 2.91E-03 0.12

Satt070 B2 72.8 I 2.98E-03 0.15

SDPP Satt070 B2 72.8 II 7.95E-04 0.19

Satt373 L 87 IV 1.67E-03 0.2

Satt389 D2 79.23 II 2.27E-03 0.2

Satt565 C1 0 II 2.68E-03 0.14
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findings of Arif et al. (2021), who reported that genotypes DCD, BRC-
457, and D-14005 were ideal genotypes for E5 as they have high mean
yield and stability.

A significant variation was observed in the yield of genotypes,
which may be due to the presence of diversity across environments.
Similar results were reported by many researchers (Kumar et al., 2014;
Bhartiya et al., 2017). Carvalho et al. (2021) also reported the epistatic
effect on yield. Results obtained by GGE biplot analysis recommended
that E3 was the most suitable environment for the selection of high-
yielding genotypes and general adaptability (Figure 7D). E4 was the

most discriminating and least representative environment for
genotype evaluation and would be helpful in choosing genotypes
that are specifically adapted (Mulugeta et al., 2013). The
environment with the least discrimination but the most
representation for the majority of attributes was E3 (Figure 7D).
The large environmental difference suggested that there were
genotypic variations in adaptation (Krisnawati and Adie, 2018).
Regarding the stability of yield attributes, genotypes also varied
greatly. Genotype G69 stood out in all evaluated environments
(Table 2). However, when average yield was considered, G92, G85,

FIGURE 9
Genetic linkage map of soybean using simple sequence repeat (SSR) markers showing the marker positions and estimated map distance in cm on
chromosomes 1, 4, 5, 6, 9, 10, 14, 17, 19, and 20. Markers associated with plant height (PH), pods per plant (PPP), seeds per plant (SDPP), seed weight per plant
(SWPP), hundred-grain weight (HGW), and total yield (TY) are identified by colors. Markers that do not show any significant association with traits are not
highlighted with any color.

Frontiers in Genetics frontiersin.org14

Rani et al. 10.3389/fgene.2022.1090994

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1090994


and G40 performed better. Results obtained from this study are
aligned with those from the work of AbdulHamid et al. (2017) and
Nagarajan et al. (2017), who showed the importance of cultivating
soybean genotypes with yield-contributing traits.

With the advancement of phenotyping and genotyping technologies,
it has become easy to analyze the genomic regions related to quantitative
traits in larger populations. Considering the relatively important
interactions between the environments and genotypes, association
mapping was performed for yield-contributing traits with SSR and
EST-SSR markers for each environment separately. For six agronomic
traits, 26 marker–trait associations were found in five environments
(Table 4). No common markers among environments were
discovered, which may be due to absence or very weak significant
relationships between environments for TY. Additionally, many
studies have demonstrated that variations in the size and structure of
the populationmight affect the outcomes of associationmapping (Liu and
Cheng, 2020). Given that a smaller population offers fewer allelic types,
genetic drift may be the cause of this variation. Another possible source
could be the type and number of SSRs, as a preference for single-locus SSR
in the present study may miscalculate the value after lowering the
complexity of genotyping (Vigouroux et al., 2002). A typical
population for an association study should consist of multiple
unrelated and independent individuals from the same origin (Porth
et al., 2013). Therefore, in order to eliminate false positive associations,
we still need to confirm the association results by targeting allelic
variations in coding regions via molecular biology approaches such as
knockout studies (Abdurakhmonov and Abdukarimov, 2008) that offer a
high-precision estimation of allelic variation.

5 Conclusion

From this study, we concluded that significant genetic variation
was present between the genotypes for yield in different environments.
In total, 13 environment-specific genotypes showing their maximum
grain yield in each environment were identified. Genotype G69 was an
ideal genotype with higher grain yield and broad adaptation to
environments E1 and E2. In the case of environments, E3 was a
more ideal environment as it was plotted near the concentric circle and
was very informative for the selection of genotypes with high yield.
Furthermore, association mapping revealed a total of 26 marker–trait
associations for six agronomic traits in five environments, with the
highest significance for plant height and the lowest significance for
hundred-grain weights. As the G × E interaction has a significant effect

on yield, it is necessary to further evaluate the ideal location for
introducing suitable genotypes with stable high yield. Plant breeders
must concentrate on improving features with high heritability.
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