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Background: Circadian dysregulation is linked to the onset and progression of
cancer, but current knowledge of the role of circadian rhythm-related genes
(CRRGs) in breast cancer (BC) is limited and incomplete. The purpose of this
study was to investigate the potential role and immune-related prognostic
significance of CRRGs in BC.

Methods: The Cancer Genome Atlas breast cancer (TCGA-BRCA) genetic data were
combined with 1369 CRRGs to create a model of BC prognosis-related CRRGs. To
validate the model’s predictive power in TCGA and other external datasets, the
Kaplan-Meier survival curve and receptor operation characteristic curve were
plotted. The relationship between CRRGs model and gene enrichment pathways,
immune cell infiltration, and differences in patient response to immune checkpoint
inhibitors (ICIs) therapy was then discussed.

Results: A CRRG-based eighteen-gene model was developed that accurately
predicted the survival time of BC patients. Based on this model, BC patients can
be classified as high or low risk. The high-risk group has negative immune cell
infiltration (such as macrophages M0 and M2) and a poor therapeutic response to
ICIs due to lower immune checkpoint gene expression. Furthermore, TCF7 and
IFNG were found to be strongly associated with immune checkpoints in CRRGs
model.

Conclusion: The 18 CRRGs may be useful in assessing the prognosis of BC patients,
studying immune infiltration, and developing more effective immunotherapy
strategies.
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1 Introduction

According to GLOBOCAN, the number of new cases of breast cancer has surpassed
lung cancer as the world’s leading cancer, reaching 2.3 million in 2020 (Sung et al., 2021).
Despite significant advancements in the treatment of BC, such as immunotherapy (Emens,
2018) and immune checkpoint inhibitors (ICIs) (Keenan and Tolaney, 2020). Due to the
heterogeneity of BC, recurrence and metastasis remain the most typical reasons for
treatment failure (Weigelt et al., 2005), and the 5-year survival rate of metastatic BC is
just 26% (Peart, 2017). Therefore, identifying key molecular markers associated with the
malignant transformation of BC cells and tumor progression is critical for effective BC
diagnosis and prognosis prediction in BC patients.
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Circadian rhythm is a 24-h cycle in which the hypothalamic
suprachiasmatic nucleus (SCN) acts as a central clock to regulate
the vital activities of the body (Koronowski and Sassone-Corsi, 2021).
The core transcription-translation feedback loop (TTFL), which
includes CLOCK, BMAL1, cryptochromes (CRY1, CRY2), and
cyclins (PER1-3), generates circadian rhythm at the molecular level
(Koronowski and Sassone-Corsi, 2021). CLOCK and
BMAL1 heterodimers activate the transcription of PER and CRY in
the morning by binding to the E-box response element within their
promoters (Takahashi, 2017). Later in the day, PER and CRY proteins
accumulate in the cytoplasm and transfer to the nucleus, where they
bind and negatively regulate circadian mechanisms by inhibiting the
CLOCK/BMAL1 complex (Kelleher et al., 2014). CLOCK and
BMAL1 heterodimers also stimulate the expression of a large
number of clock control genes (CCGs), many of which are
associated with the tumor microenvironment (TME) (Xu et al.,
2021). Angiogenic factor expression in TME decreases when
CLOCK shRNA is knocked down and increases when CLOCK is
overexpressed in colorectal cancer cells, according to genetic studies
(Wang et al., 2017). CLOCK and PER3 gene expression fluctuates
rhythmically in cancer cells in mouse models of BC and is associated
with the infiltration of immune inflammatory cells such as
macrophages (Wu et al., 2019; Ramos et al., 2020).

The current study suggests that disruption of circadian
rhythms is important in the onset and progression of BC (Chi
et al., 2017; Angelousi et al., 2019). Circadian rhythm disturbances
associated with shift work and exposure to evening light, for
example, increase the incidence of BC by 19% and 12%,
respectively (Ijaz et al., 2013; He et al., 2015). Furthermore, it
has been demonstrated that the circadian rhythm-associated
ARNTL2 gene is a distinct prognostic factor in triple-negative
breast cancer (Wang et al., 2021). Therefore, it is certain that
circadian genes can be used as biomarkers to predict BC prognosis,
but current studies on their role in BC are still sparse and one-
sided, and the molecular mechanisms of action applicable to broad
BC warrant further investigation.

The field of cancer immunotherapy has been forever changed by
ICIs that block immunological checkpoints such cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4), programmed death 1
(PD-1) and its ligand (PD-L1), and PD-1 ligand 2 (PD-L2).
(Bagchi et al., 2021). The mechanism of ICIs for cancer treatment
is primarily to reactivate T-lymphocytes and boost the body’s immune
system, resulting in anti-tumor activity (Jardim et al., 2021). As a
result, identifying biomarker genes associated with immune
checkpoints such as CTLA-4 and PD-1 is critical for improving
tumor prognosis. Although clock genes have been linked to T-cell
depletion (CD8 and CD4 T-cell) and the upregulation of
immunosuppressive molecules such as PD-L1 and CTLA-4 (Wu
et al., 2019; Zhou J et al., 2020), more research is needed to
determine the mechanism of action between circadian genes and
immune checkpoints associated with BC prognosis.

Given that, we developed a risk assessment model based on gene
expression data and clinical data from The Cancer Genome Atlas
(TCGA) to screen circadian rhythm-related genes (CRRGs) of
prognostic value in BC patients and validate it in the GEO
datasets. Extensive analysis was then used to determine the
prognostic value of 18 CRRGs. Finally, the relationship between
CRRGs and immune checkpoints was investigated, allowing our
CRRGs risk model to guide the prognosis and treatment of BC.

2 Materials and methods

2.1 Data source and processing

We downloaded mRNA sequencing data and clinical
information of BC patients from the Cancer Genome Atlas
(TCGA) database as a training dataset (TCGA-BRCA; https://
portal.gdc.cancer.gov/) Data integration and processing were as
follows :1) normal samples were removed; 2) samples with a
survival time less than 30 days were screened; 3) only one
sample was retained for each patient, and 4) genes expressed in
more than half of the samples were retained. After careful
screening, 937 BC samples were used for follow-up studies.
Gene expression profiles and clinical information of BC patients
in the GSE21653, GSE20685, and GSE58812 datasets were used as
test data sets from Gene Expression Omnibus (GEO) data (https://
www.ncbi.nlm.nih.gov/geo/) downloaded and processed according
to the same filtering criteria. Single-cell RNA sequencing (scRNA-
seq) data (GSE188600) from triple-negative BC patients were also
downloaded from the GEO database for verification. The specific
data download and processing process is included in
Supplementary Table S1. Moreover, a total of 1369 CRRGs
about Homo sapiens were obtained from the Circadian Gene
Data Base (GCDB, http://cgdb.biocuckoo.org/). These genes
have been used as the basis for further research. The detailed
flow chart of the research design is shown in Figure 1.

2.2 Construction of CRRGs risk score model

In this study, we first performed a univariate COX regression
analysis on genes expressed in TCGA-BRCA, then identified genes
with p < 0.05 as overall survival (OS)-related genes. To find candidate
genes, these genes were crossed with 1369 CRRGs. The least absolute
contraction and selection operator (LASSO) regression was then used
to determine non-zero coefficients, allowing us to eliminate potential
predictors and select the best OS-related genes while avoiding model
overfitting. Finally, multivariate Cox regression was used to identify
and calculate correlation coefficients for candidate genes involved in
the final modeling. The associated risk score of the prognostic CRRGs
was equal to the product of the prognostic rhythm-related gene’s
expression and its coefficient.

2.3 Validation of CRRGs risk score model

As previously stated, the training dataset was TCGA-BRCA,
while the test dataset was GSE20685 for OS of BC. Based on the
median calculated risk scores associated with rhythm genes,
samples in each dataset were divided into high-risk and low-risk
groups. The Kaplan-Meier survival analyses were then plotted to
investigate significant differences in patient survival. Furthermore,
receiver operating characteristic (ROC) curves for 1, 2, and 3 years
were generated in R software to calculate the area under the ROC
curve (AUC) values for each prediction model to further evaluate
the model’s efficiency and accuracy. Simultaneously, disease-free
survival (DFS) and metastasis-free survival (MFS) of BC were
validated using outcome events and time in GSE21653 and
GSE58812, respectively, and related graphs were created. In
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addition, validation of scRNA-seq for BC was performed in the
GSE188600 dataset.

2.4 Construction of a prognostic normogram

Clinical information was first extracted from the TCGA-BRCA
dataset, including age, stage, and risk group. Univariate and
multivariate COX regression analyses were then performed to
identify independent prognostic factors affecting OS in BC
patients. The corresponding operations were then performed in
the validation set databases (GSE21653, GSE20685, and GSE58812)
to make our extracted information universally convincing (due to
missing data, the Stage was only validated in GSE20685). To
visualize the Cox regression results, we used the “rms” R
package to generate a Normogram that included CRRGs and
clinical variables. Age, TNM stage, and CRRGs risk groups were
three independent predictors. The scoring criteria were developed
based on the magnitude of their regression coefficients, allowing 1-
year, 2-year, and 3-year OS probabilities to be calculated.
Calibration curves were used to visually demonstrate the
consistency of the Normogram model at 1, 2, and 3 years.

2.5 Functional enrichment analysis

Differentially expressed genes (DEGs) between high- and low-
risk groups were first identified by the “limma” package with
screening criteria of |log FC| > 1 and p-value_ t < 0.05. This
DEG list was then used for gene ontology (GO) analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis for TCGA-BRCA to explore possible biological
functions and signaling pathways. GO analysis included
biological process (BP), cellular composition (CC), and
molecular function (MF) (p < 0.05 was statistically significant).

The results of the GO analysis and KEGG pathway were visualized
using the R package “ggplot2”.

To further explore the potential molecular mechanisms of
rhythm-related genes in breast cancer formation and progression,
we performed a gene set enrichment analysis (GSEA) on the BC
dataset in the TCGA database to explore the enrichment pathways
associated with rhythm genes in high-risk and low-risk groups. “c2.
cp.kegg.v7.4. symbols” was chosen to be used for our analysis.

2.6 Immuno-infiltration analysis

CIBERSOFT was used to explore the relationship between high-
and low-risk groups based on candidate gene characteristics and the
abundance of each immune cell type. Information on the 22 immune
cell types can be downloaded from the attachment to the previous
article (https://www.nature.com/articles/nmeth.3337#MOESM207).
Box plots were then plotted using the ggplot2 R package to visually
represent differences in abundance. Additionally, we investigated the
relationship between CCGRs and immunological checkpoints (PD1,
PDL2, and CTLA4) as well as the connection between risk scores for
CCGRs and immune checkpoints.

2.7 Predicting the response of BC patients to
ICIs

To investigate the response of BC patients in high- and low-risk
groups to ICIs treatment, we obtained immunophenotype score (IPS)
data for BC from The Cancer Immunome Atlas (TCIA, https://tcia.at/
), which quantifies tumor immunogenicity scores ranging from 0 to
10. IPS values are associated with tumor immunogenicity and can be
used to predict patient response to ICIs treatment (Charoentong et al.,
2017). Furthermore, we compared the expression of immune
checkpoints in high- and low-risk groups.

FIGURE 1
Flow diagram of this study.
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2.8 Statistical analysis

Statistical analyses were carried out using R (version 4.2.0) and
SPSS 26.0. The independent prognostic value of clinical characteristics
and risk groups associated with CRRGs was described using univariate
and multifactorial COX. Pearson correlation coefficients were used to
examine the relationship between CRRGs and immune checkpoints.
The presence of two-sided p values less than 0.05 was considered
statistically significant.

3 Results

3.1 Identification of prognostic characteristics
of CRRGs

The flow chart in Figure 1 shows that we finally constructed a
prognostic model associated with 18 CRRGs, which include
STXBP5, CYP27A1, TAGLN2, SIPA1L1, ZNF485, IFNG, FOXJ1,
TP53I11, CEACAM1, TCF7, PPA2, MAK, EMP1, NDRG2,
DGAT1, RGL3, TULP4, and CABYR. Figures 2A, B shows the
LASSO regression process. The relationship between these
18 candidate genes and the core clock genes is shown in
Supplementary Figure S3. A prognostic risk score formula was

developed based on the linear combination of CRRGs expression
levels and the weighted regression coefficients of multiple Cox
regression analysis: Risk score = 0.557*STXBP5-
0.189*CYP27A1+0.70*TAGLN2-0.814*SIPA1L1+0.747*ZNF485–
1.192*IFNG-0.139*FOXJ1+0.314*TP53I11 0.238*CEACAM1+0.373*TCF7+
0.577*PPA2-0.253*MAK+0.333*EMP1-0.220*NDRG2+0.366*DGAT1-
0.152*RGL3+0.350*TULP4-0.237*CABYR. These candidate genes
were categorized into risk types (STXBP5, TAGLN2, ZNF485,
TP53I11, TCF7, PPA2, EMP1, DGAT1, TULP4) and protective
types (CYP27A1, SIPA1L1, IFNG, CEACAM1, RGL3), with HR >
1 (p < 0.05) being associated with poor prognosis and HR < 1 (p <
0.05) being associated with better prognosis (Figure 2C).
Interestingly, NDRG2 and CABYR were present and
expressed at higher levels in the normal group despite FOXJ1,
MAK, and EMP1 not being in the human protein atlas (HPA;
https://www.proteinatlas.org/), proving that these two genes are
also protective. In addition, the expression differences of the
other 15 CRRGs in normal and BC tissues were indexed in the
HAP database and shown in Supplementary Figure S1. Clinical
stage was found to be positively correlated with risk score
(Figure 2E), with a statistically significant difference (p = 0.01).
Based on the median risk score, patients were divided into high-
risk and low-risk groups, with the expression of 18 candidate
genes in TCGA in both groups shown in Figure 2D and the

FIGURE 2
(A) The LASSO Cox regression model was utilized to identify CRRGs. (B) Select range of the optimal parameter (lambda) in the LASSO Cox regression
model. (C) The coefficient of the selected CRRGs. (D) Expression of 18 CRRGs in the high and low risk groups. (E) The distribution of the CRRGs risk score in
different TNM stages of TCGA-BRCA dataset.
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expression in the three validation sets shown in Supplementary
Figure S6.

3.2 Validation of model prediction effects of
CRRGs

To determine the prediction accuracy of the 18 candidate
genes, OS validation was performed using GSE20685 datasets,
and DFS and MFS validation were performed using two other
external datasets (GSE21653 and GSE58812), respectively. The
AUCs for 1-year, 2-year, and 3-year survival in the TCGA test set

were 0.83, 0.82, and 0.82 (Figure3A), whereas in GSE20685,
GSE21653, and GSE58812, the AUCs for 1-year, 2-year, and 3-
year survival were 0.80, 0.69, and 0.65; 0.63, 0.65, and 0.70; 0.75,
0.65, and 0.65, respectively (Figure 3B, Figures 4A, B).

Kaplan-Meier survival analysis showed that patients in the
high-risk group had a significantly shorter survival time than
those in the low-risk group (TCGA: p < 0.0001; GSE20685: p =
0.028; GSE21653: p = 0.00061; GSE58812: p = 0.0026) (Figure 3C,
D; Figures 4C, D). Moreover, risk scores were negatively correlated
with survival time in all four data sets (Figures 3E, F, Figures 4E, F).
In addition, the results of scRNA-seq are shown in Supplementary
Figure S4, 5.

FIGURE 3
CRRGs signature associated with BC patient’s overall survival (OS). (A) The predictive value for the 1-y, 2-y and 3-y OS in TCGA-BRCA dataset. (B) The
predictive value for the 1-y, 2-y and 3-y OS in GSE20685 dataset. (C) The OS between the CRRGs high- and low-risk groups in TCGA-BRCA dataset. (D) The
OS between the CRRGs high- and low-risk groups in GSE20685 dataset. (E) The risk plot of the CRRGs signature in TCGA-BRCA dataset. (F) The risk plot of the
CRRGs signature in GSE20685 dataset.
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3.3 Construction of a nomogram for CRRGs
and clinical characteristics

First, the risk score and other clinical parameters were used as
covariates in univariate and multivariate Cox proportional risk
regression models. The risk group was found to perform well as a
prognostic factor affecting the survival cycle of BC patients in both the
TCGA and validation set databases. Table 1; Table 2 also showed the
results for age and stage. As a result, we selected the three variables
listed above to create follow-up nomograms. The findings revealed
that as the total score increased, the survival time decreased
(Figure 5A). The calibration curve revealed that the nomogram

model had high predictive accuracy for OS at 1, 2, and 3 years and
significantly overlapped with the 45-degree angle line (Figures 5B–D).
Additionally, Supplementary Table S1 displayed the survival times
(OS, MFS, and DFS) of the three external validation sets (GSE21653,
GSE20685, and GSE58812) in relation to CRRGs.

3.4 Enrichment analysis based on CRRGs risk
model

Based on the results of the “limma” variance analysis, we identified
354 differentially expressed genes (DEGs), including 193 up-regulated

FIGURE 4
CRRGs signature associated with BC patient’s disease-free survival (DFS) and metastasis-free survival (MFS). (A) The predictive value for the 1-y, 2-y and
3-y DFS in GSE21653 dataset. (B) The predictive value for the 1-y, 2-y and 3-y MFS in GSE58812 dataset. (C) The DFS between the CRRGs high- and low-risk
groups in GSE21653 dataset. (D) The MFS between the CRRGs high- and low-risk groups in GSE58812 dataset. (E) The risk plot of the CRRGs signature in
GSE21653 dataset. (F) The risk plot of the CRRGs signature in GSE58812 dataset.
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DEGs and 161 down-regulated DEGs. The bubble diagram shows the
terms of these DEGs in GO-BP, GO-CC and GO-MF (Figure 6A). GO
functional annotation shows that these DEGs are mainly involved in
cytoplasmic translation, ribosomes, and ribosome structural
composition. A two-way bar graph showing the top five pathways
of KEGG upregulation and downregulation (Figure 6B). GSEA
showed that the significantly enriched pathway in the high-risk
group was systemic lupus erythematosus, whereas in the low-risk
group it was the adipocytokine signaling pathway, ascorbate and
aldehyde metabolism, pentose and glucuronide interconversion,
phenylalanine metabolism, and ribosomes (Figures 6C–H).
Furthermore, using a risk-score model, we investigated the genetic
alterations of these CRRGs and discovered that they are relatively
conserved evolutionarily (mutation rates of 1% or less)
(Supplementary Figure S2), which is consistent with the current
study (Cederroth et al., 2019).

3.5 Immuno-infiltration analysis in CRRGs risk
groups

We investigated the level of infiltration of 22 immune cells in
various risk groups, and box plots revealed that the level of immune

infiltration of T-cell CD8 and T-cell CD4 memory activated was
significantly lower in the high-risk group, while
immunosuppressive cells such as macrophages M0 and M2 were
significantly higher (Figure 7A). The high-risk group appeared to
have an immunosuppressive tumor microenvironment filled with a
large number of immunosuppressive cells, which was consistent with a
poor prognosis. The correlation heat map between CRRGs and
immune checkpoints is shown in Figure 7B, which shows that
IFNG and TCF7 are strongly correlated with immune checkpoints
(Figures 7D, E). These two genes were also shown in scRNA analysis to
be distributed mainly in T-cell (Supplementary Figure S4E). The chord
plot of the correlation between risk scores and immune checkpoints is
represented in Figure 7C.

3.6 Response of patients in the CRRGs risk
groups to ICIs treatment

Because the TCGA-BRCA dataset lacked information on ICIs
treatment, we used two IPS-valued subtypes (IPS- PD-L1/PD-1/
PD-L2 blocker and IPS-CTLA-4 blocker) as proxies for response to
anti-PD-1/PD-L1 and anti-CTLA-4 treatment in BC patients. In
the CRRGs prediction model, the low-risk group had a higher

TABLE1 Univariate and multivariate Cox regression analysis of clinical characteristics and survival of BC patients in TCGA Cohort.

Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value

Age 1.036 (1.022–1.051) 0.000 1.028 (1.014–1.042) 0.000

Stage (I/II) 1.502 (0.866–2.606) 0.148 1.872 (1.072–3.271) 0.028

Stage (I/III) 2.871 (1.610–5.120) 0.000 3.708 (2.056–6.687) 0.000

Stage (I/IV) 15.385 (7.370–32.115) 0.000 18.892 (8.978–39.754) 0.000

Risk (High/Low) 0.155 (0.096–0.251) 0.000 0.155 (0.096–0.252) 0.000

Abbreviations: HR: hazard ratio; CI: confidence interval.

TABLE 2 Univariate and multivariate Cox regression analysis of clinical characteristics and survival of BC patients in Validation set Cohort.

Univariate analysis Multivariate analysis

HR (95% CI) p-value HR (95% CI) p-value

GSE20685 (OS)

Age 1.006 (0.982–1.031) 0.620 0.999 (0.975–1.023) 0.919

Stage (I/II) 3.141 (1.300–7.590) 0.011 2.835 (1.152–6.978) 0.023

Stage (I/III) 1.077 (0.401–2.895) 0.883 1.191 (0.440–3.223) 0.730

Stage (I/IV) 1.816 (0.795–4.150) 0.157 1.697 (0.735–3.916) 0.216

Risk (High/Low) 0.503 (0.299–0.847) 0.010 0.582 (0.339–0.999) 0.049

GSE21653 (DFS)

Age 1.001 (0.983–1.019) 0.927 0.997 (0.979–1.015) 0.997

Risk (High/Low) 0.444 (0.276–0.716) 0.001 0.439 (0.271–0.710) 0.001

GSE58812 (MFS)

Age 1.061 (1.025–1.098) 0.001 1.054 (1.020–1.089) 0.002

Risk (High/Low) 0.293 (0.125–0.685) 0.005 0.324 (0.138–0.764) 0.010

Abbreviations: HR: hazard ratio; CI: confidence interval; OS: overall survival; DFS: disease-free survival; MFS: metastasis-free survival.
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relative probability of receiving anti-PD-1/PD-L1 and anti-CTLA-
4 treatment (Figures 8A, B). The findings imply that patients with
low CRRG risk scores may be candidates for ICIs treatment.
Furthermore, we compared immune checkpoint expression
levels between the high-risk and low-risk groups. Patients with
low risk had significantly higher levels of PD-1, PD-L2, and CTLA-
4 (Figure 8C).

4 Discussion

Circadian rhythm is shaped at the molecular level by oscillations of
clock genes, which maintain body homeostasis by controlling cell
proliferation, cell metabolism, and various gene expression pathways
(Shi et al., 2020). Disrupting the regular cell cycle, circadian rhythm
disorders are accompanied by variable expression of CRRGs and are
linked to the start of several chronic illnesses, including cancer and
metabolic disorders (Masri and Sassone-Corsi, 2018; Sulli et al., 2018).
Circadian rhythm disorders are classified as possible human
carcinogens by the International Agency for Research on Cancer
(IARC) in 2007 (Group 2A) (Straif et al., 2007). A growing body
of evidence suggests that disruption of circadian rhythms is closely
linked to the development of BC (Hansen, 2017; Salamanca-

Fernández et al., 2018). However, the significance of CRRGs in the
prognosis of BC patients, as well as the underlying molecular
mechanisms, is rarely recognized and studied in clinical research
and practice, and even less so when translated to the bedside. As a
result, our research is attempting to take a significant step in this
direction.

Using the TCGA-BRCA dataset, we developed a prognostic
risk score model for CRRGs. We validated the model’s prognostic
predictive efficacy with three GEO datasets, and Kaplan-Meier
analysis and time-ROC curves confirmed that the model could
accurately predict OS, RFS, and MFS in BC patients. This model
contains 18 CRRGs, some of which have been linked to BC
development, invasion, and prognosis. Particularly, not only is
CYP27A1 abundant in macrophages (Hansson et al., 2003), but it
also catalyzes the conversion of cholesterol to 27-
hydroxycholesterol (27HC), which promotes the growth of
estrogen receptor-dependent tumor cells (Nelson et al., 2013).
TAGLN2 is a major cause of paclitaxel resistance in BC patients,
and new strategies to reverse paclitaxel resistance in BC patients
include various drugs and pathways to reduce
TAGLN2 expression (Cai et al., 2014; Wang et al., 2019).
TP53I11 inhibits the epithelial-mesenchymal transition (EMT)
of BC cells, preventing cancer metastasis (Xiao et al., 2019; Zhai

FIGURE 5
(A) The construction of OS predictive nomogram for TCGA-BRCA patients. (B–D) 1-year, 2-year, and 3-year calibration curves of the nomogram
combined model in TCGA-BRCA dataset.
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et al., 2022). In our study, CEACAM1 and NDRG2 were protective
factors for BC prognosis (HR < 1), which is consistent with the
previous consensus that they are tumor suppressors (Yang et al.,
2015). Not only were their levels reduced in BC cells, but also the
expression of NDRG2 was found to be negatively correlated with
PD1 expression, suggesting that increasing NDRG2 expression
could activate T-cell proliferation to counteract tumor invasion
(Lee et al., 2021). FOXJ1 and EMP1 have also been shown to
predict BC prognostic regression and outcome (Sun et al., 2014;
Zhou X et al., 2020). Furthermore, other CRRGs, such as PPA2,
DGAT1, and CABYR, have been shown to be involved in the
oncogenic effects of other cancers and to affect patient prognosis,
despite the fact that related studies are uncommon in BC (Luo
et al., 2007; Cheng et al., 2020; Zhu et al., 2021).

Immune cells play an important role in the tumor
microenvironment (TME). The disruption of the circadian rhythm
results in the loss or reversal of the daily pattern and cytokine levels of
M0 and M2 macrophages, which exhibit immunosuppression and
homeostasis and are beneficial to tumor cell proliferation (Chanmee
et al., 2014; Aiello et al., 2020). For example, the high-risk group was
found to be positively correlated with immunosuppressive cells such
as M2 macrophages in two newly published studies on the prediction
of triple-negative BC prognosis by cell death patterns (Pu et al., 2022;

Zou et al., 2022). In our prognostic model, M2macrophage levels were
significantly higher in the high-risk group than in the low-risk group,
while T-cell CD8 and T-cell CD4 memory activation levels were
significantly lower. Because the Kaplan-Meier survival analysis
revealed that the high-CRRGs risk group had shorter survival
times, it suggests that immune infiltration is an important factor
influencing the prognosis of BC patients. Therefore, in order to
confirm the critical function of CRRGs in BC immunity, we
further investigated immunological checkpoints. Cancer cells are
well known for activating immune checkpoints with
immunosuppressive functions in order to suppress the body’s
immune function and thus achieve rapid proliferation (Darvin
et al., 2018). ICI is a monoclonal antibody that binds to and
inhibits CTLA4 or PD1, two key signal pathways involved in
T-cell activation and failure (Wright et al., 2021). Although ICIs
have been shown to improve survival time in advanced patients with
non-small cell lung cancer and melanoma (Duma et al., 2019; Lozano
et al., 2022), their efficacy in BC patients is low (Keenan and Tolaney,
2020). This method raises the issue of identifying patients who
respond to treatment. According to our findings, higher immune
checkpoint expression in the low-risk group is consistent with lower
IPS in the low-risk group, and together they represent a better
response to ICIs in low-risk patients. Furthermore, our findings

FIGURE 6
Enrichment analysis based on CRRGs risk model (A) Bubble plot for GO enrichment analysis based on CRRGs. (B) Bar chart of KEGG enrichment analysis
based on CRRGs. (C) Gene enrichment analysis of CRRGs in the TCGA-BRCA dataset.
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show that IFNG and TCF7 in CRRGs are linked to three immune
checkpoints, which is consistent with previous research (Bassez et al.,
2021; Xie et al., 2022). As a result, we can predict the response of BC

patients to ICIs using our CRRGs model, which is extremely
important for promoting the treatment and development of ICIs
in BC patients.

FIGURE 7
Correlation analysis of the expression of eighteen CRRGs in BC with the level of complex immune infiltration. (A) Differences of the abundance of
22 immune cells between high- and low-risk groups in the TCGA-BRCA dataset. (B) Correlation heat map between immune checkpoints and eighteen
CRRGs. (C) Chord plot of the correlation between immune checkpoints and risk scores. (D) Correlation between TCF7 expression levels in BC and three
immune checkpoints. (E) Correlation between IFNG expression levels in BC and three immune checkpoints.
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Ribosomal pathways were found to be enriched in GO, KEGG, and
GSEA in our study. This result is easy to understand given the known
molecular function and mechanism of ribosomes. Ribosome biogenesis is
a common sign of cell growth and proliferation because ribosomes are
required for protein production (Turi et al., 2019). Upregulation of
ribosome biogenesis during G1/S arrest can facilitate tumor
metastasis-related EMT (Prakash et al., 2019). In a recent study,
CRISPR activation was used to screen the whole genome of circulating
tumor cells (CTC) from BC patients for genes that promote tumor
metastasis. They discovered that genes encoding ribosomal proteins were
overrepresented (Ebright et al., 2020). As a result, high ribosome levels can
be used as a marker of BC invasion and metastasis, which are linked to a
poor prognosis of BC. In addition, several other cancer-related pathways,
such as the adipocytokine signaling pathway and cellular senescence, were
enriched in the low-risk group. Adiponectin, which is secreted by fat cells
in the breast microenvironment, inhibits the growth for cancer cells
(Chung et al., 2017). Cellular senescence is a permanent state of cell cycle
arrest that is thought to be a tumor-inhibiting mechanism (Calcinotto
et al., 2019). These enrichment pathways are consistent with the
conclusion that patients in the low-risk group have a longer survival time.

Although our study had some positive results, its limitations
should not be overlooked. Since this is a retrospective study, it is
inevitable that there would be missing data and selection bias.
Second, this CRRGs model is based on a publicly accessible
database. Although it performed well in three GEO datasets, its
predictive ability needs to be validated further through randomized
controlled experiments. Finally, we used IPS values to simulate
patient reactions to ICIs. While there is evidence for a correlation,
there are some differences between IPS and patient responses to
ICIs treatment.

5 Conclusion

In conclusion, the risk assessment model based on 18 CRRGs
can effectively evaluate BC patients’ prognosis and immunotherapy
effect. Patients with a low-risk score have a better prognosis and
response to ICIs treatment. These CRRGs, we believe, should be
prospectively validated as promising prognostic biomarkers for BC
and used to guide immunotherapy strategies in the future.

FIGURE 8
(A) Relative probability of response to CTLA-4 treatment in low-risk and high-risk groups. (B) Relative probability of response to PD-1/PD-L2 treatment in
low-risk and high-risk groups. Expression of (C) CTLA-4, (D) PD-L1 and (E) pdcd1LG2(PD-L2) in low- and high-risk groups.
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