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Mitochondrial DNA (mtDNA) mutations contribute to human disease across a range of severity,
from rare, highly penetrant mutations causal for monogenic disorders to mutations with milder
contributions to phenotypes. mtDNA variation can exist in all copies of mtDNA or in a
percentage of mtDNA copies and can be detected with levels as low as 1%. The large
number of copies of mtDNA and the possibility of multiple alternative alleles at the same DNA
nucleotide position make the task of identifying allelic variation in mtDNA very challenging. In
recent years, specialized variant calling algorithms have been developed that are tailored to
identify mtDNA variation from whole-genome sequencing (WGS) data. However, very few
studies have systematically evaluated and compared these methods for the detection of both
homoplasmy and heteroplasmy. A publicly available synthetic gold standard dataset was used
to assess four mtDNA variant callers (Mutserve, mitoCaller, MitoSeek, and MToolBox), and the
commonly used Genome Analysis Toolkit “best practices” pipeline, which is included in most
current WGS pipelines. We also usedWGS data from 126 trios and calculated the percentage
of maternally inherited variants as a metric of calling accuracy, especially for homoplasmic
variants. We additionally compared multiple pathogenicity prediction resources for mtDNA
variants. Although the accuracy of homoplasmic variant detection was high for the majority of
the callers with high concordance across callers, we found a very low concordance rate
between mtDNA variant callers for heteroplasmic variants ranging from 2.8% to 3.6%, for
heteroplasmy thresholds of 5%and 1%.Overall, Mutserve showed the best performance using
the synthetic benchmark dataset. The analysis of mtDNA pathogenicity resources also showed
low concordance in prediction results.We have shown that while homoplasmic variant calling is
consistent between callers, there remains a significant discrepancy in heteroplasmic variant
calling. We found that resources like population frequency databases and pathogenicity
predictors are now available for variant annotation but still need refinement and
improvement. With its peculiarities, the mitochondria require special considerations, and we
advocate that caution needs to be taken when analyzing mtDNA data from WGS data.
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1 INTRODUCTION

The mitochondrion is an organelle in eukaryotic cells responsible
for manufacturing most of the cell’s energy. It possesses its own
double-stranded circular genome of 16,569 nucleotides, which
encodes for the 12S and 16S rRNAs, 22 tRNAs, and 13
polypeptides (Anderson et al., 1981; Taanman 1999).
Typically, mitochondrial DNA (mtDNA) is only inherited
from the mother because the mitochondria from the sperm
cell are usually destroyed by the egg shortly after fertilization;
a phenomenon known as a matrilineal inheritance (Sutovsky
et al., 1999). There are multiple copies (~100–10,000 copies) of
mtDNA in a mitochondrion and many mitochondria per somatic
cell. With a mutation rate of more than a hundred folds higher
than the nuclear genome, the DNA sequence at any base of the
mtDNA genome may differ between mtDNA copies (Kogelnik
et al., 1998; Marcelino and Thilly 1999; Just et al., 2015; Stewart
and Chinnery 2015).

The genetic variation in mtDNA is classified into two
categories: 1) homoplasmic variants, which occur when an
alternative allele appears in all copies of the mtDNA genome,
and are expected to be inherited from the mother, and 2)
heteroplasmic variants, which occur when an alternative allele
is only present in some copies of the mtDNA genome (Taylor and
Turnbull 2005; Stewart and Chinnery 2015). Heteroplasmic
variants are often sporadic, appearing throughout an
individual’s lifetime, but can also be inherited from the
mother and can have an allele frequency as low as 1% (Guo
et al., 2013a; Rebolledo-Jaramillo et al., 2014). Mitochondrial
DNA variants are known to contribute to human disease with
varying severity, from rare, highly penetrant mutations causing
monogenic disorders that often affect the nervous system,
muscles, heart, and endocrine organs, to mutations with
milder contributions to phenotypes (Taylor and Turnbull
2005). The small size of the mitochondrial genome compared
to the full human genome might imply that mtDNA variant
calling is a straightforward task. However, the large number of
copies of mtDNA and the possibility of multiple alternative alleles
at the same DNA nucleotide position make the task of identifying
allelic variation in mtDNA much more challenging. In addition,
the human mitochondrial genome contains a total of 31 repeats
that are more than 12 bp in length (Phillips et al., 2017). The
presence of repeats when short read sequencing data are used
adds an additional challenge to this task.

Whole-genome sequencing (WGS) is becoming the default
sequencing option for most research studies, fueled by the drop in
cost to under $USD1000 for human DNA (Wetterstrand 2019). A
surprising benefit of WGS for a human sample is that because of
the high number of mitochondria that exists in human cells, the
smaller mitochondrial genome is also captured and sequenced,
with coverage of >1,000 reads typically achieved. As a result, both
homoplasmic and heteroplasmic variants can be detected using
WGS. Homoplasmic variants are expected to be found across all
sequencing reads at a specific position, while heteroplasmic
variants would occur in a percentage of the sequencing reads.
This percentage of mtDNA variant allele frequency (VAF) can be
as low as 1% and can be often hard to distinguish from technical

errors (Rebolledo-Jaramillo et al., 2014; Guo et al., 2013b). Given
the large number of copies of mtDNA, a variant with 1%
frequency can still be present in thousands of mtDNA copies,
especially in specific tissues such as in oocytes.

In recent years, specialized variant calling algorithms have
been developed that are tailored to identify mtDNA variation
from WGS data (Weissensteiner et al., 2016; Ding et al., 2015;
Guo et al., 2013a; Calabrese et al., 2014). These methods utilize
the high-depth of coverage of the mitochondrial genome and go
beyond the three discrete genotype categories of the nuclear DNA
to identify both homoplasmic and heteroplasmic variants that
might only have occurred in a fraction of all the mtDNA copies
(Just et al., 2015). However, as it has been shown for other
algorithms tailored for the nuclear DNA or for somatic variant
identification (Hwang et al., 2015; Chen et al., 2019; Wang et al.,
2019; Chen et al., 2020), variant calling algorithms can often
exhibit low concordance and can suffer frommany false positives.
Accurate identification of mtDNA variation will facilitate disease-
sequencing studies that currently often ignore the mitochondrial
genome.

In this study, we provide a systematic evaluation and
benchmarking of multiple mtDNA variant calling algorithms.
We evaluate five variant callers, Mutserve (Weissensteiner et al.,
2016), mitoCaller (Ding et al., 2015), MitoSeek (Guo et al.,
2013b), MToolBox (Calabrese et al., 2014), and a mtDNA-
tailored modification of GATK HaplotypeCaller (DePristo
et al., 2011) using a synthetic gold-standard two-person
mtDNA mixture sequenced using Illumina MiSeq, and 300
mtDNA samples forming 126 trios, which were sequenced
using Illumina HiSeq X Ten. In addition, all resulting variants
from the trio analysis were annotated using control population
frequencies and pathogenicity prediction databases. Our results
provide useful insights for researchers and clinicians analyzing
mitochondrial genomes obtained from WGS experiments for
disease studies.

2 MATERIALS AND METHODS

2.1 Synthetic Gold-Standard Dataset
We utilized a recently constructed heteroplasmy benchmark
dataset developed by Fazzini et al. (2021). This benchmark
dataset contains 27 expected artificial heteroplasmic sites
(which is the result of the mixture of the haplotypes H1c6 and
U5a2e in reference to the mtDNA reference genome) and 6
homoplasmic variants and 3 private mutations. The M4 mixture
of 1:100 corresponding to heteroplasmy levels of 1% was used for
the algorithms’ evaluation.

2.1.1 Sample Collection and Sequencing
As described by Fazzini et al. (2021), the samples were sequenced
on Illumina MiSeq with three different Taq polymerases
[Clontech LA Advantage (Clontech/CLAA), LongAmp Taq
Polymerase (NEB), and Herculase Fusion (HERK)] and
different DNA extraction protocols (using PCR products and
using total DNA, i.e., PCR free). One sample per library
preparation method and DNA extraction method was selected

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 6922572

Ip et al. Benchmarking Mitochondrial DNA Variant Callers

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


from Fazzini et al. (2021) by selecting the samples with the highest
coverage. The following samples were used: M4-Clontech_S211,
M4-Herk_S151, M4-NEB_S241, M4-PCR-Clontech_S191, M4-
PCR-Herk_S141, and M4-PCR-NEB_S291.

2.1.2 Alignment to a Reference Genome
The genomic data were obtained in the form of FASTQ files from
the provided link: https://zenodo.org/record/3991749#.
YNKDNZMzaWg. The data were aligned to the revised
Cambridge Reference Sequence (rCRS) mitochondrial
sequence NC_012920.1 using the Burrows–Wheeler Aligner
(BWA) 0.7.17 (Li and Durbin 2009) to create mtDNA binary
alignment map (BAM) files. Duplicates were marked using The
Genome Analysis Toolkit (GATK) v4.2.0.0 (DePristo et al., 2011).

2.1.3 Mitochondrial Variant Calling
Four mtDNA-specific variant callers (Mutserve v1.1.17
(Weissensteiner et al., 2016), mitoCaller v1.0 (Ding et al., 2015),
MitoSeek v.1.3 (Guo et al., 2013a), and MToolBox v1.2 (Calabrese
et al., 2014)) were used for our evaluation, as well as the GATK
Haplotypecaller v4.2.0.0 pipeline (DePristo et al., 2011) (Table 1).
Variant calling for the synthetic dataset was performed at
standardized heteroplasmy detection evaluation at 1% threshold.
For mitoCaller and GATK Haplotypecaller, which did not have a
user parameter to define a heteroplasmy variant detection threshold,
custom scripts were used tofilter returned heteroplasmic variants that
met the experimental threshold of 1%.

2.1.3.1 Mutserve
Mutserve is a local version of the scalable web server “mtDNA-
server,” which was released in 2016 (Weissensteiner et al., 2016).

It has been used in variant identification studies for diseases like
congenital lactic acidosis and gastric cancer (Bravo-Alonso et al.,
2019; Cavalcante et al., 2019). Mutserve performs internal quality
control by excluding mitochondrial hotspots and sites with <10
reads and estimates a strand bias, as it handles forward and
reverse reads separately. Heteroplasmic variants are called on
sites with alternate allele frequencies greater than the default 1%.
A maximum-likelihood method adopted from Ye et al. (2014),
which factors in sequencing errors, returns a log-likelihood ratio
for each heteroplasmic variant to indicate how confident the call
is (Ye et al., 2014). It uses 1000 Genomes Phase 3 data as a prior
and calculates the posterior probability for each genotype, with
the most likely genotype called. The sensitivity in heteroplasmy
detection can be altered. Mutserve version 1.1.17 was used for this
analysis. A latest version has been released since then (v.2.0.0-
rs12).

2.1.3.2 MitoSeek
MitoSeek was released in 2013 and has been used in various
disease studies, from melanoma to hepatocellular carcinoma
(Guo et al., 2013a; Araujo et al., 2018; Li et al., 2017). Quality
control is performed internally to create a report containing
statistics like average depth, base quality distribution, and
mapping quality distribution. It then filters BAM reads based
on these statistics, such as using mapping quality scores ≥20 and
base quality scores ≥20. Heteroplasmy detection by MitoSeek
works by evaluating the number of raw read counts or the read
percentage for an alternative allele. A one-tailed Fisher’s exact test
is then used to determine if the rate of heteroplasmic at each site is
greater than the default 5% threshold. The sensitivity in
heteroplasmy detection can be altered. MitoSeek does not

TABLE 1 | A descriptive summary of mtDNA variant callers selected for comparative analyses.

Features Mutserve v1.1.17 MitoSeek v1.3 mitoCaller v1.0 MToolBox v1.2 GATK v3.7 and v4.2-
HaplotypeCaller

Version from
19/02/19

Version from
13/05/2019

Version from
16/01/2018

Version from
15/11/2021

Versions from
12/12/2016 and

18/0/2021

Process Location Local, command line Local, command line Local, command line Local, command line Local, command line
Input File format BAM BAM BAM BAM BAM
Mitochondrial
alignment

rCRS mitochondrial
reference

rCRS mitochondrial
reference

“double alignment” strategy,
with rCRS mitochondrial
reference and a shifted rCRS
reference

RSRS and rCRS mitochondrial
reference

rCRS mitochondrial
reference

Heteroplasmic
variant detection

Yes Yes Yes Yes Yes

Homoplasmic
variant detection

Yes No Yes Yes Yes

Default
heteroplasmic
threshold

1% 5% Based on likelihood model 20% Based on likelihood model

Altering
heteroplasmic
threshold

--level parameter -hp parameter a custom script for threshold
detection was used in the
study

hf_min parameter in config file a custom script for threshold
detection was used in the
study

Description of the
variant-calling
algorithm

Maximum likelihood
model for detecting
heteroplasmic variants

One-tail Fisher’s exact
test for detecting
heteroplasmic variants

Maximum likelihood-based
model for both
heteroplasmic and
homoplasmic variants
detection

Identification of mismatches in
the newly assembled
mitochondrial genome (or
differences in the SAM CIGAR
string for INDELs)

Bayesian model for both
heteroplasmic and
homoplasmic variants
detection
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detect homoplasmic variants. MitoSeek version 1.3 was used for
this analysis.

2.1.3.3 mitoCaller
mitoCaller is a mitochondrial variant-calling module from the
mitoAnalyzer package released in 2015, which has been used in
studies on ageing (Ding et al., 2015; Ferrucci et al., 2020).
mitoCaller differs from the other tools in its alignment of
mtDNA reads. With the mitochondrial genome being circular,
mitoCaller proposes a “double alignment” strategy using a
conventional rCRS reference and a shifted rCRS reference. A
breakpoint is created in the middle of the circular sequence to
form a reference that starts at position 8000 and ends at position
7999. The mitoCaller method requires the user to align the
sample’s FASTQ reads first against the conventional rCRS
reference, and then the FASTQ file is aligned again against the
shifted rCRS reference. This creates two BAM files—a
conventional mitochondrial BAM and a shifted mitochondrial
BAM—which might contain reads that span the traditional start
and end base positions. mtDNA variants are called using both
BAMs. mitoCaller utilizes a likelihood-based model to predict the
genotype at each mtDNA position. Estimation of all possible
genotypes is made from the sequence reads; thus, it can call both
heteroplasmic and homoplasmic variants. Quality control filters,
such as the average sequence depth of the overall mtDNA (>100),
base quality scores (≥20), and sequence depth at the calling base
position (raw reads ≥40, after base quality score filtering ≥10), are
applied to account for the possibility of sequencing errors at each
mtDNA position (Ding et al., 2015). The algorithm is based on
the ones used in conventional autosomal DNA variant callers but
modified to allow for low-heteroplasmic-level allele fractions.
MitoCaller version 1.0 was used for this analysis.

2.1.3.4 MToolBox
MToolBox is a complete workflow for mtDNA variant calling
(Calabrese et al., 2014). It can accept as input raw read data
(FASTQ files) or pre-aligned reads (BAM files). The reads are re-
mapped to a user-defined reference (the Reconstructed Sapiens
Reference Sequence or the revised Cambridge Reference
Sequence) and to the nuclear genome to discard nuclear
mitochondrial sequences (NUMTs) and amplification artifacts.
Following optional indels re-alignment, the complete
mitochondrial genome is reconstructed using genome
assembly, and variants are called. The variants are filtered
based on the quality scores and read depth and annotated in a
VCF file. The reconstructed contig sequences are provided, and
haplogroups are assigned. Finally, the variants can be prioritized
by taking into account pathogenicity of each mutated allele,
determined with different algorithms, the nucleotide variability
of each variant site, and occurrence among 1000 Genomes Project
samples. MToolBox does not explicitly call homoplasmies but
only distinguishes calls when their variant allele frequency is at
100%. All other variants are detected, and their variant allele
frequency or heteroplasmic fraction (HF) is reported and can be
up to 100%. Homoplasmic variants are identified if their genotype
is 1 in the VCF file, which corresponds to HF = 100%. MToolBox
by default calls variants with a threshold of HF >20%, but this

threshold can be altered by the user. MToolBox version 1.2 was
used for this analysis.

2.1.3.5 GATK With HaplotypeCaller (via GenotypeGVCFs)
A GATK pipeline with HaplotypeCaller (via GenotypeGVCFs) is
a commonly used pipeline to identify variants from the nuclear
genome. We are evaluating its performance in identifying
mtDNA variants, since it is often the standard pipeline applied
to all WGS data. Since GATK Haplotypecaller is not a mtDNA
caller, a custom script was used to calculate the heteroplasmic
level based on the allelic fractions from alternate allele read
numbers. Decomposition of multi-allelic variants and
normalization were performed with VT v0.57721 (Tan et al.,
2015). GATK v3.7 and v4.2 Haplotypecaller were used for this
analysis. Recently, the GATK team has introduced guidelines for
the identification of mitochondrial short variant discovery that
involves the use of Mutect2, a GATK algorithm for somatic
variant detection that can be used on mitochondrial mode
(Benjamin et al., 2019).

The commands used for alignment and variant calling of the
synthetic dataset using all methods are provided in the
Supplementary Methods.

2.1.4 Variant Calling Accuracy
To assess variant calling accuracy, a comparison of the results
with the variants defining the gold standard was performed
(provided in Supplementary Table S7 of Fazzini et al., 2021).
Sensitivity, specificity, precision, and F1 scores were calculated for
all callers.

2.2 Congenital Heart Disease Trio Dataset
The dataset originally consisted of 329 samples from a Congenital
Heart Disease (CHD) cohort compiled at the Victor Chang
Cardiac Research Institute and was previously used in a study
aiming to identify clinically actionable CHD variants (Alankarage
et al., 2018). For the purposes of mtDNA variant calling, we
identified all samples with in-sample contamination using
Haplocheck (Weissensteiner et al., 2021). We removed all trios
containing at least one contaminated sample. Our final data
consisted of 300 samples forming 126 trios (including trios of
siblings with the same parents) mostly of European descent as
shown in Alankarage et al. (2018).

2.2.1 Sample Collection and Sequencing
Genomic DNA was extracted as described previously (Szot et al.,
2018). DNA sample libraries were prepared using the Illumina
TruSeq Nano DNA HT Library Prep Kit and sequenced on the
Illumina HiSeq X Ten at Genome.One, Garvan Institute of
Medical Research, Sydney, Australia.

2.2.2 Alignment to a Reference Genome
The genomic data were aligned to the 1000 Genomes Reference
Genome Sequence (hs37d5) using the Burrows–Wheeler Aligner
(BWA) 0.7.17 (Li and Durbin 2009) to create whole-genome
BAM files. This reference genome is composed of the Genome
Reference ConsortiumHuman Reference 37 (GRCh37) assembly,
the revised Cambridge Reference Sequence (rCRS) mitochondrial
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sequence NC_012920.1, the human herpesvirus 4 type 1, and
decoy sequences. We marked duplicates using Picard Tools 2.1.1
(http://broadinstitute.github.io/picard/) and default parameters
and then performed local realignment and local recalibration
using the Genome Analysis Toolkit (GATK) 3.7 following their
“best practices” pipeline (DePristo et al., 2011; Poplin et al., 2017).
Mitochondrial-specific BAM files were created using samtools 1.9
software to extract mitochondrial aligned reads (Li et al., 2009;
Zhang et al., 2016).

2.2.3 Mitochondrial Variant Calling
The same mtDNA-specific variant callers (Mutserve
(Weissensteiner et al., 2016), mitoCaller (Ding et al., 2015),
MitoSeek (Guo et al., 2013b), and MToolBox (Calabrese et al.,
2014)) were used for our evaluation, and the gold-standard
GATK Haplotypecaller “best practices” pipeline (DePristo
et al., 2011) (Table 1). Variant calling was performed using
the default settings for each caller and standardized
heteroplasmy detection evaluations at 1% and 5% threshold.
These thresholds were chosen based on the methods’ ideal
sensitivity (1% for Mutserve and Mitoseek; >4% for
MitoCaller). Again, for mitoCaller and GATK Haplotypecaller,
custom scripts were used to filter-returned heteroplasmic variants
that met the experimental thresholds (1% and 5%).

2.2.4 Variant Calling Accuracy
A true mitochondrial variant dataset consisting of confirmed
variants for the CHD trio dataset was not available to allow us
to evaluate the various callers. To determine the accuracy of
the callers, an alternative method using the matrilineal
inheritance nature of the mitochondria was adopted. As our
dataset contained family trios, we compared homoplasmic
mtDNA variants identified in the child against
homoplasmic mtDNA variants identified in the mother. The
resultant shared percentage of homoplasmic variants was used
as an indicator of caller accuracy. This approach was used
because mtDNA has matrilineal inheritance, so we would more
likely see a homoplasmic variant as an inherited variant than a
de novo homoplasmic variant in offspring, even with the high
mutation rate of the mitochondrial genome (Amorim et al.,
2019). As an additional metric, we compared heteroplasmic
mtDNA variants identified in children against heteroplasmic
variants identified in mothers and fathers. Although most
heteroplasmic variants occur during lifetime, we still expect
a child to share more variants with its mother than its father
(Ding et al., 2015; Guo et al., 2013a; Stewart and Chinnery
2015). Rare cases of biparental mtDNA transmission have
been reported (Luo et al., 2018) but not replicated by other
studies that showed that these findings are related to the
presence and inheritance of mega-NUMTs (Balciuniene and
Balciunas, 2019; Salas et al., 2020; Wei et al., 2020; Lutz-
Bonengel et al., 2021).

2.2.5 Population Frequency of Mitochondrial Variants
We utilized the publicly available HelixMTdb, a database
containing a list of variants and their allele frequency in
195,983 unrelated individuals (Bolze et al., 2020), to subset our

called variants into rare (≤1% in HelixMTdb) and common (>1%
in HelixMTdb).

2.2.6 Pathogenicity Annotation of Mitochondrial
Variants
mtDNA variants were annotated using three pathogenicity
prediction databases: (1) MitImpact v3.0.1 (Castellana, Rónai,
and Mazza 2015), which is a collection of functional impact
predictions of all possible mtDNA missense variants, including
PolyPhen2, CADD, and APOGEE, a machine-learning-based
mitochondrial missense mutation predictor (Castellana et al.,
2017); (2) MitoTIP (Sonney et al., 2017), which uses a
predictive algorithm that combines known variant history at a
position, and a conservation score for the position, to identify
regions most vulnerable to pathogenic variants; and (3)
MITOMAP (Kogelnik et al., 1998), which contains clinical
characteristics associated with mutations, so it provides a
library of pathogenic and normal phenotypes.

For this analysis, using the three pathogenicity predictors
mentioned above, variants were identified as pathogenic when:

1) MitImpact’s APOGEE prediction for the variant was “P” for
pathogenic; or

2) MitoTIP’s prediction score for the variant exceeded the
recommended pathogenicity threshold of 12.66 (Sonney
et al., 2017); or

3) The variant was marked as “confirmed pathogenic” in
MITOMAP.

3 RESULTS

3.1 Variant Calling Accuracy
Using a synthetic gold-standard dataset constructed by the
mixture of two mtDNA genomes (Fazzini et al., 2021), we
assessed the accuracy of five mtDNA variant callers (Table 1).
The level of 1% heteroplasmy and homoplasmy was assessed
using all callers. The callers showed comparable performance
across three different Taq polymerases and two DNA extraction
protocols (Figure 1 and Supplementary Table S1). Mutserve
achieved the highest accuracy as measured via F1 score (Figure 1,
average F1 = 0.74), followed by mitoCaller (average F1 = 0.55),
while GATK Haplotypecaller, MitoSeek, and MToolBox had
comparable performance with GATK Haplotypecaller
performing marginally better when a DNA extraction protocol
starting from PCR products was used (Figures 1D–F). Since
GATK Haplotypecaller is not a specialized mtDNA variant caller,
the number of calls was very low, detecting mostly the
homoplasmic variants (nine true-positive and three false-
positive calls for all types of Taq polymerases and DNA
extraction protocols). This is expected since the level of
heteroplasmy assessed was very low (1%) to be detected by a
germline variant caller (Supplementary Table S1). The highest
call rate was achieved by Mutserve, which also returned the
highest number of true positives (Supplementary Table S1).
MitoSeek is unable to detect homoplasmic variants, which affects
both its call rate and accuracy.
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We further explored the methods’ accuracy, using a CHD
cohort of families that underwent whole-genome sequencing
forming 126 parents–child trios (Alankarage et al., 2018). The
average sequencing depth of the mtDNA genome across all
samples was 3,887.

To determine the accuracy of each caller, we investigated the
percentage of matrilineal inheritance of homoplasmic variants
across the study dataset. First, we used the default parameters for
each caller (see Table 1 for default heteroplasmy detection
thresholds). The total numbers of homoplasmic variants called
in the probands of the 126 trios were as follows: 2,630 with
mitoCaller, 3,112 with Mutserve, 457 with MToolBox, and 3,357
with GATK Haplotypecaller. The matrilineal inheritance
percentages were 87.34%, 95.37%, 61.27%, and 99.46%,
respectively (Table 2). Since the default heteroplasmy

detection threshold varied so greatly between callers (from 1%
to 20%), we applied uniform heteroplasmy detection thresholds
of 1% and 5% (Table 3, Supplementary Table S2) to obtain a less
biased evaluation. The total number of homoplasmic variants
called using a 5% heteroplasmy detection threshold in the
probands were 3,147 with mitoCaller, 3,246 with Mutserve,
449 with MToolBox, and 3,357 with GATK Haplotypecaller.
The matrilineal inheritance percentages were 99.33%, 98.43%,
60.58%, and 99.46%, respectively (Table 3).

In reviewing heteroplasmic variants, we expect to see the
offspring inheriting a higher proportion of heteroplasmies
from their mothers—although most heteroplasmies arise as de
novo during lifetime (Ding et al., 2015; Li et al., 2016; Stewart and
Chinnery 2015; Guo et al., 2013b). Any sharing of heteroplasmies
between fathers and offspring is most likely occurring by chance,

FIGURE 1 | Accuracy comparison of mtDNA variant callers at heteroplasmy threshold of 1%, across different Taq polymerases and DNA extraction protocols using
a synthetic benchmark dataset. (A) F1 scores of four variant callers using Clontech Taq polymerase and total DNA extraction. (B) F1 scores of four variant callers using
Herk Taq polymerase and total DNA extraction. (C) F1 scores of four variant callers using NEB Taq polymerase and total DNA extraction. (D) F1 scores of four variant
callers using Clontech Taq polymerase and PCR products. (E) F1 scores of four variant callers using Herk Taq polymerase and PCR products. (F) F1 scores of four
variant callers using NEB Taq polymerase and PCR products.
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as patrilinear inheritance has only been reported once (Luo et al.,
2018) but not replicated by other studies (Balciuniene and
Balciunas, 2019; Salas et al., 2020; Wei et al., 2020; Lutz-
Bonengerl et al., 2021). Hence, we also evaluated the
heteroplasmic variants using the matrilineal inheritance
comparison. In an ideal scenario, a higher percentage of
maternally inherited variants in comparison to variants shared
with the father would indicate better accuracy.

The total numbers of heteroplasmic variants called, with each
caller’s default parameter, in the probands were 5,284 with
mitoCaller, 1,099 with Mutserve, 160 with MitoSeek, 661 with
MToolBox, and 62 with GATK Haplotypecaller. The matrilineal
inheritance percentages were 43.81%, 44.13%, 50.00%, 78.21%,
and 58.06%, respectively (Table 2). At heteroplasmy detection
threshold of 5%, the total number of heteroplasmic variants called
in the probands were 341 with mitoCaller, 75 with Mutserve, 160
with MitoSeek, and 62 with GATK Haplotypecaller. The
matrilineal inheritance percentages were 91.50%, 38.67%,
50.00%, 79.76%, and 58.06.%, respectively (Table 3). The
number of heteroplasmic variants called decreased as the
heteroplasmy detection threshold increased.

Using only the homoplasmic variant matrilineal inheritance
percentage as a metric of accuracy, across all the heteroplasmy
detection threshold levels used, the non-mtDNA-specific variant

caller GATK Haplotypecaller would be considered the most
accurate for homoplasmy calling, followed by mitoCaller and
Mutserve. For all callers, the percentage of heteroplasmic variants
of the child shared with the mother was always higher than the
percentage shared with the father, reflecting our expectation
based on matrilineal inheritance. For heteroplasmy threshold
of 1%, the percentage of the offspring variants shared with the
father was increased for all callers, and the variants shared
between the mother and the father. This indicates that at such
low heteroplasmy threshold, systematic errors are likely to occur
in the same nucleotide positions.

3.2 Allelic Distribution of mtDNA Variants
Due to the variable penetrance of heteroplasmic variants in the
mitochondria, we investigated the allelic fraction of all
heteroplasmic variants called by the mtDNA variant callers
using the CHD trio data analysis (Figure 2). For
heteroplasmic variants called using default heteroplasmy
detection threshold (Figure 2A), GATK Haplotypecaller
variants behaved as expected, with variants restricted to a VAF
range of ~15%–50%, much like a heterozygous VAF for
autosomal genomic variants. Mutserve, MitoSeek, and
MToolBox heteroplasmic variants had VAFs that started at
their default heteroplasmy thresholds of 1%, 5%, and 20%,

TABLE 2 | mtDNA variants called in CHD trio dataset by variant callers using their default parameters (1% heteroplasmy threshold for Mutserve, 5% for Mitoseek, 0 for
mitoCaller, and 20% for MToolBox).

Caller Comparing child with parents (126 trios) Comparing mother with father

# Variants
in child

# Shared
with mother

# Shared
with father

# Variants
in mother

# Shared
with father

GATK Haplotypecaller Homoplasmy 3,357 3,339 (99.46%) 1,320 (39.32%) 3,348 1,320 (39.43%)
Heteroplasmy 62 36 (58.06%) 6 (9.68%) 62 6 (9.68%)

mitoCaller Homoplasmy 2,630 2,297 (87.34%) 980 (37.26%) 2,518 966 (38.36%)
Heteroplasmy 5,284 2,315 (43.81%) 1,905 (36.05%) 5,551 1,839 (33.13%)

Mutserve Homoplasmy 3,112 2,968 (95.37%) 1,230 (39.52%) 3,043 1,227 (40.32%)
Heteroplasmy 1,099 485 (44.13%) 485 (44.13%) 1,441 506 (35.11%)

MitoSeek Homoplasmy NA NA NA NA NA
Heteroplasmy 160 80 (50.00%) 52 (32.50%) 131 46 (35.11%)

MToolBox Homoplasmy 457 280 (61.27%) 11 (2.41%) 403 8 (1.99%)
Heteroplasmy 661 517 (78.21%) 60 (9.08%) 701 64 (9.13%)

TABLE 3 | mtDNA variants called by variant callers using a 5% heteroplasmy threshold.

Caller Comparing child with parents (126 trios) Comparing mother with father

#Variants in
child

#Shared with
mother

#Shared with
father

#Variants in
mother

#Shared with
father

GATK Haplotypecaller Homoplasmy 3357 3339 (99.46%) 1320 (39.32%) 3348 1,320 (39.43%)
Heteroplasmy 62 36 (58.06%) 6 (9.68%) 62 6 (9.68%)

mitoCaller Homoplasmy 3147 3126 (99.33%) 1186 (37.69%) 3139 1,188 (37.85%)
Heteroplasmy 341 312 (91.50%) 244 (71.55%) 352 248 (70.45%)

Mutserve Homoplasmy 3246 3195 (98.43%) 1249 (38.48%) 3215 1,249 (38.85%)
Heteroplasmy 75 29 (38.67%) 0 (0.00%) 90 3 (3.33%)

MitoSeek Homoplasmy NA NA NA NA NA
Heteroplasmy 160 80 (50.00%) 52 (32.50%) 131 46 (35.11%)

MToolBox Homoplasmy 449 272 (60.58%) 11 (2.45%) 394 8 (2.03%)
Heteroplasmy 830 662 (79.76%) 164 (19.76%) 887 164 (18.49%)
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respectively. mitoCaller had the lowest VAF boundary of close to
0%, which is in line with it having no default heteroplasmy
threshold value. MitoSeek seemed to be the only caller that did
not call any heteroplasmic variants beyond a 50% VAF. All others
called heteroplasmic variants with >75% VAF, with mitoCaller,
Mutserve, and MToolBox even calling outlying heteroplasmic
variants close to the 100% fraction. The VAF distribution of
variants called by MToolBox was skewed towards 100%. This is
because MToolBox calls all variants as heteroplasmic and only
distinguishing homoplasmic variants when VAF = 100%. As a
result, a large number of variants with VAF close to 99% were
called as heteroplasmic.

When we set a uniform heteroplasmy detection threshold
of 1% (Figure 2B), we saw no change for GATK

Haplotypecaller-called variants, as most variants called
were well above the 1% detection threshold. For the other
callers, the variants’ VAF mostly reflected the 1% threshold
level. For mitoCaller, a lot of low-fraction variant calls were
removed, while MitoSeek called a higher number of low-
fraction variants. MToolBox called a large number of low-
level heteroplasmic variants, which altered the VAF
distribution towards 1%. At a heteroplasmy detection
threshold of 5% (Figure 2C), mitoCaller’s VAF range
extended beyond the 50% fraction for heteroplasmic
variants, as did that of Mutserve. This was due to the
removal of heteroplasmic variants with very low VAFs,
which altered the VAF distribution of the remaining
heteroplasmic variants called by both callers (Table 3).

FIGURE 2 | Allelic distributions of mitochondrial variants according to four variant calling methods. (A) Allelic fraction distributions of heteroplasmic variants with
default detection threshold. The heteroplasmic variant allele fractions for Mutserve, MitoSeek, and MToolBox are at the minimum and equal to their default heteroplasmy
thresholds of 1%, 5%, and 20%, respectively. mitoCaller has no threshold, which is reflected in the low VAF values in the plot. With GATK Haplotypecaller, which is not a
specific mitochondrial caller, the allelic fraction represents values typical of a heterozygous call from autosomal genomic variant calling (median values: GATK
Haplotypecaller—29.9%; mitoCaller—0.5%; Mutserve—1.5%; MitoSeek—4.7%; MToolBox—99.7%). (B) Allelic fraction distributions for heteroplasmic variants at a
detection threshold of 1% (median values: GATK Haplotypecaller—29.9%; mitoCaller—2.2%; Mutserve—1.5%; MitoSeek—1.5%; MToolBox—1.9%). (C) Allelic
fraction distributions for heteroplasmic variants at a detection threshold of 5% (median values: GATK Haplotypecaller—9.9%; mitoCaller—54%; Mutserve—37.3%;
MitoSeek—14.7%; MToolBox—99.6%). (D) Allelic fraction distributions for homoplasmic variants with default detection thresholds and excluding MitoSeek, which does
not call homoplasmic variants. As expected for homoplasmic variants, the allelic fractions are almost all at the 100% level. (E) Allelic fraction distributions for homoplasmic
variants at a detection threshold of 1%. There is no change for GATK Haplotypecaller and Mutserve calls. mitoCaller now includes homoplasmic variants that are in the
99% range (100%—1% heteroplasmy detection threshold). (F) Allelic fraction distributions for homoplasmic variants at a heteroplasmy detection threshold of 5%,
showing an allele fraction change for mitoCaller to include 95% range.
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Interestingly, the VAF distribution of MToolBox variants was
not overwhelmed by low-fraction heteroplasmic variants;
MToolBox mostly called heteroplasmic variants with very
high VAF.

Homoplasmic variants at the default heteroplasmy detection
threshold (Figure 2D) were concentrated at the 100% VAF for all
callers. GATKHaplotypecaller andMutserve called homoplasmic
variants with VAFs as low as 60%. mitoCaller and MToolBox are
both very strict in calling only variants that had a VAF close to
100%, which might explain the high allelic fractions seen in their
heteroplasmic variants (Figure 2A). At the 1% heteroplasmy
detection threshold (Figure 2E), we saw no distribution change
for GATK Haplotypecaller and Mutserve calls compared to the
default heteroplasmy detection threshold results. The 1%
heteroplasmy detection threshold result for mitoCaller showed
a few homoplasmic variants with <100% VAF. At 5%
heteroplasmy detection threshold (Figure 2F), there was again
no VAF distribution change in the GATK Haplotypecaller and
Mutserve calls compared to the 1% threshold results. For
mitoCaller, homoplasmic variants were called with VAF as
low as 95%. MToolBox still only called homoplasmic variants
if VAF = 100%.

3.3 Concordance of mtDNA Variants
Concordance percentages between all four mtDNA variant callers
across the 300 samples in our study were calculated for both
homoplasmic and heteroplasmic variants using again the CHD
trio data analysis (Figure 3 and Supplementary Figure S1).
Under default settings, only 45 heteroplasmic variants
(representing 0.29% of the total number of variants) were
concordant (Supplementary Figure S1A). This low percentage
can be attributed to the difference in heteroplasmy thresholds
used by the different callers. There is a disproportionately large
number of heteroplasmic variants called by mitoCaller that does
not have a default heteroplasmy threshold with 68% (10,581) of
the variants being unique to mitoCaller, while the percentages of
variants unique to other callers were orders of magnitude less
(Table 4, Supplementary Figure S1A). There was 13%
concordance (919 variants) of homoplasmic variants between
calling methods (Supplementary Figure S1B). This low
concordance of homoplasmic variants is driven by the low
number of variants identified by MToolBox, which
distinguishes such calls only when VAF = 100%. At 1%
heteroplasmy detection threshold the concordance percentage
was 3.6% for heteroplasmic variants (400 variants) and 13% for

FIGURE 3 | Concordance of mitochondrial variants between the variant callers, Mutserve, MitoSeek, mitoCaller, and GATK Haplotypecaller. (A) Concordance of
heteroplasmic variants called by the various callers using their default parameters. The first value in the diagram represents the number of mitochondrial variants, and the
second value is the percentage of total. (B) Concordance of homoplasmic variants called by the various callers using their default parameters, excluding MitoSeek that
does not identify homoplasmic variants. (C) Concordance of heteroplasmic variants called by the various callers using a heteroplasmic threshold of 5%. (D)
Concordance of homoplasmic variants called by the various callers using a heteroplasmic threshold of 5%.
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homoplasmic variants (945 variants) (Figures 3A,B). At the 5%
heteroplasmy detection threshold level, we saw 81 concordant
heteroplasmic variants representing 2.8% of the total calls
(Figure 3C). Mutserve showed a large decrease in the number
of heteroplasmic variants calls and MitoSeek. However, the small
concordance at this heteroplasmy threshold is again driven by the
large number called by both MToolBox and MitoCaller. The
concordance of homoplasmic variants decreased to 12% (940
variants) (Figure 3D).

Given the strict calling of homoplasmic variants by
MToolBox, we investigated the concordance of the rest of
callers including GATK HaplotypeCaller in identifying
homoplasmic variants and found that to increase to 72%, 85%,
and 90% for the default, 1% and 5% heteroplasmy thresholds,
respectively. This indicates that the low concordance of these calls
is indeed driven by the MToolBox variants.

3.4 Classification of mtDNA Variants by
Population Frequency and Pathogenicity
Prediction
The mtDNA variants called in the CHD trio dataset were
categorized using mitochondrial variants population allele
frequency dataset HelixMTdb (Bolze et al., 2020) into rare
(≤1% frequency in HelixMTdb) and common variants (>1%
frequency in HelixMTdb) (Table 4). There were many more
common homoplasmic variants than rare variants, as
expected. However, a substantial number of variants
(>1,000) were in the “rare” category. For heteroplasmic
variants, we observed more rare variants than common
variants. This may be because there were more de novo
variants due to the high mutation rate of the mitochondrial
genome and accumulation of mutations over a lifetime
(Amorim et al., 2019). This was the case regardless of the
heteroplasmy detection threshold used. We also saw no large
increase in the concordance of variants between callers when
we compared the results with only the rare or only the

common variants across different heteroplasmy detection
thresholds (Supplementary Figures S2–S4).

All variants were annotated with pathogenicity predictions
using MitImpact (Castellana, Rónai, and Mazza 2015), MitoTIP
(Sonney et al., 2017), and MITOMAP (Kogelnik et al., 1998),
based on the criteria described in Materials and Methods. For
heteroplasmic variants, no common variants were predicted to be
pathogenic (Supplementary Table S3). The number of rare
variants annotated as pathogenic was the lowest by
MITOMAP (1–12 variants), followed by MitoTIP (8–74
variants), and MitImpact (5–815 variants) (Supplementary
Table S3). Neither MITOMAP nor MitoTIP predicted any
pathogenic variants in the homoplasmic variant set, with only
MitImpact predicting pathogenicity for any rare (16–34 variants)
or common variants (9–92 variants) (Supplementary Table S4).

4 DISCUSSION

When we aim to identify genetic variants fromWGS data, be they
autosomal or mitochondrial, one of the major considerations in
determining which variant caller to use is their accuracy. Here, we
provide a systematic evaluation of four mitochondrial variant
callers (mitoCaller, MitoSeek, Mutserve, and MToolBox) and a
standard germline variant caller included in most current WGS
pipelines (GATK Best Practices). We used a publicly available
synthetic benchmark mtDNA dataset with known heteroplasmic
and homoplasmic variants to determine each caller’s accuracy.
We additionally utilized a set of 126 CHD trios and determined
each caller’s accuracy based on the mitochondrion’s unique
matrilineal inheritance. We also explored the variant
properties of each method, using the CHD trio dataset.

Using the synthetic benchmark mtDNA dataset of 1%
heteroplasmy mixture and by calculating measures such as F1
score, we found that Mutserve was the most accurate caller for
detecting both heteroplasmic and homoplasmic variants. This
was the case for all three types of Taq polymerases used in the

TABLE 4 | The number of variants called by the mtDNA variant callers for dataset, by variant type, and population frequency.

Heteroplasmy
detection threshold

Variant caller Total
variants (300 samples)

Homoplasmic (rare, common) Heteroplasmic (rare, common)

default GATK Haplotypecaller 8,019 7,856 (1,456, 6,400) 163 (94, 69)
mitoCaller 19,387 5,943 (1,029, 4,914) 13,444 (13, 120, 324)
MitoSeek 360 NA 360 (358, 2)
Mutserve 10,490 7,202 (1,499, 5,703) 3,288 (3,233, 55)
MToolBox 2,688 979 (603, 376) 1,709 (1,662, 47)

1% GATK Haplotypecaller 8,019 7,856 (1,456, 6,400) 163 (94, 69)
mitoCaller 9,738 7,267 (1,342, 5,925) 2,470 (2,260, 210)
MitoSeek 2,549 NA 2,549 (2,541, 8)
Mutserve 10,490 7,202 (1,499, 5,703) 3,288 (3,233, 55)
MToolBox 8,495 970 (602, 368) 7,525 (7,215, 310)

5% GATK Haplotypecaller 8,019 7,856 (1,456, 6,400) 163 (94, 69)
mitoCaller 8,200 6,358 (1,391, 5,967) 842 (796, 46)
MitoSeek 360 NA 360 (358, 2)
Mutserve 7,791 7,567 (1,595, 5,972) 224 (204, 20)
MToolBox 3,113 960 (596, 364) 2,153 (2,083,70)

Note: Population frequency determined using helixMTdb; rare denote variants ≤ population allele frequency of 1%. Common denote variants > population allele frequency of 1%.
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library preparation process (Clontech, Herk or NEB) and DNA
extraction protocol (PCR or PCR-free). This analysis was
performed using a uniform 1% heteroplasmy detection
threshold for all callers given the expected 1% level of
heteroplasmy in the synthetic dataset. Fazzini et al.(2021) that
constructed this dataset performed a similar comparison of
heteroplasmy detection at different levels by evaluating six
variant callers (Mutserve, Vardict, Varscan, Freebayes, GATK,
and Lofreq). Apart from Mutserve, the rest of the callers used by
Fazzini et al. (2021) were not mtDNA specific but callers that can
detect variants with low levels of VAF. Interestingly, when
comparing Mutserve’s accuracy for the same data (mixture of
1% heteroplasmy), we found it to be more accurate with average
F1 score 0.74. Fazzini et al. (2021) report Mutserve’s accuracy
with F1 close to zero. This is the case for all callers they evaluated
for this heteroplasmy level. The reason for this discrepancy might
be due to the default heteroplasmy detection threshold used by
Fazzini et al. (2021), which was 0.4% for all callers. For this
threshold, the results are overwhelmed by a very high number of
false-positive low-level polymorphic positions, resulting in
overall lower accuracy for all callers. This is expected, as most
callers were developed to detect higher levels of heteroplasmy.
Hence, we believe that an analysis with an expected threshold of
1% provides a more useful evaluation that can inform researchers
and clinicians on the accuracy of mtDNA-specific variant callers.

Using the CHD trio dataset and the matrilinear inheritance as
a level of accuracy, we found a similarly higher percentage of
shared homoplasmic variants (61%–99%) between proband and
mother in the called variants for all tools, including GATK
Haplotypecaller, which is not a specialized mtDNA caller. This
may reflect the more straightforward approach of identifying
homoplasmic variants that, in majority, have VAF >60% across
all methods. MToolBox exhibited the lowest percentage of
matrilinear inherited variants due to the strict calling of
homoplasmies only when VAF = 100%. By lowering that
threshold to 99%, we found that these percentages increase to
96.59%, 96.22%, and 96.35% for the default, 5%, and 1%
heteroplasmy threshold, indicating that potential true-positive
calls are missed by such a strict categorization of homoplasmic
variants.

We did not expect to see high heteroplasmy matrilineal
inheritance rates, since de novo variants will occur in both
mother and proband as they accumulate during their lifespan.
However, since heteroplasmy is reported to be inherited by the
mother more often than the father (Stewart and Chinnery, 2015;
Guo et al., 2013a), this comparison is still very useful. We found
that for higher heteroplasmy thresholds, such as the default
thresholds of GATK Haplotypecaller and MToolBox, less
heteroplasmic variants were called compared to the other
methods, but a higher proportion of these were shared with
the mother than the father. This is also in line with our
expectation of true-positive calls being shared with the mother.

Using a heteroplasmy threshold of 5%, mitoCaller reported
that ~91.5% of shared heteroplasmic variants were indicative of
matrilineal inheritance, a significantly higher percentage than the
other callers (Table 3). However, this is most likely due to the
higher number of variants mitoCaller calls for this threshold and

systematic errors. A higher number of errors returned by
MitoCaller is also supported by the fact that the calls made
also had a high unexpected patrilinear inheritance (Table 3)
and were in their majority unique compared to the other callers
(Figure 3).

Using a lower heteroplasmy threshold of 1%, the number of
heteroplasmic variants increased threefold for most callers, apart
from GATK Haplotypecaller, which is designed to identify
variants of higher VAF. At such a low level of VAF, we expect
the number of false-positive variants to increase. MToolBox
showed the highest number of unique heteroplasmic variants
using the CHD trio dataset, indicating potential false-positive
calls (Figures 3A,C).

Our exploratory analysis of VAF distributions highlighted the
difficulty in classifying heteroplasmic variants (Figures 2A–C).
Unlike with autosomal genotyping, which is what GATK
Haplotypecaller is designed to perform, there was a large
range of allele fractions observed, with mitoCaller, Mutserve,
and MToolBox calling heteroplasmic variants with VAFs of up to
99.99%. For homoplasmy, mitoCaller maintained a homoplasmy
VAF in line with the heteroplasmy detection threshold. Mutserve
was calling homoplasmic variants down to a VAF value of 70%.
However, it also called heteroplasmic variants at this same 70%
VAF level. This overlap was not clarified when we used different
heteroplasmy detection thresholds (Figure 2). Using the default
parameters, the VAF distribution of heteroplasmic variants called
by MToolBox was skewed towards 100% (median VAF = 99.7%).
This is because of a large number of potentially misclassified
homoplasmic variants. For the same parameters, the majority of
heteroplasmic variants identified by MitoSeek were of higher
VAF (median VAF = 14.7%) than the other two specialized
mtDNA callers (mitoCaller Median VAF = 0.47%, Mutserve
median VAF = 1.5%) (Figure 2A). By modifying the
heteroplasmy thresholds, there was a large shift in the VAF
distributions with mitoCaller identifying the variants with
highest median VAF (for threshold = 5%, median VAF =
54%) apart from MToolBox, which suffers again from high
number of potentially misclassified homoplasmic variants
(median VAF = 99.6%) (Figure 2C).

The use of different heteroplasmy detection thresholds, from
the default values of each method to uniform heteroplasmy
detection thresholds of 1% and 5%, has allowed us to fully
investigate the impact of this threshold on the variants
returned. These results indicate that a higher heteroplasmy
detection threshold, such as 5%, leads to greater accuracy in
the calling of not only homoplasmic but also heteroplasmic
variants. This idea of utilizing a high heteroplasmy detection
threshold has also been encouraged by other studies (Ding et al.,
2015; Zhang et al., 2016). However, such an approach would
eliminate all heteroplasmy with levels <5%—the expected
number of false negatives is difficult to estimate.

When investigating the concordance of multiple methods, an
assumption is often made that if a variant is called by multiple
callers, then it is more likely to be a true variant. Thus, by
investigating the balance between the percentage of
concordant variants (true variants) and the discordant, or the
caller-unique variants (possible false variants) using the real CHD
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trio data, one could decide on a recommendation of a specific
mtDNA variant caller. For the majority of methods (excluding
MToolBox), the concordance for homoplasmic variants was high,
from 72% using default parameters to 90% for a heteroplasmy
detection threshold of 5%. We should note that often systematic
artifacts can lead to variants detected by all callers, for example
due the capture of recurring translocations of mitochondrial
DNA to the nuclear genome, nuclear mitochondrial sequences
(NUMTs) present at higher levels.

We saw a very low level of heteroplasmic variant concordance,
from 0.29% using default parameters to 3.6% at 1% heteroplasmy
threshold between all mt-DNA variant callers, excluding the
germline variant caller GATK Haplotype Caller (Figure 3 and
Supplementary Figure S1). The true number of heteroplasmic
variants in the CHD trio samples is unknown. If the concordant
variants are the only true variants in our samples, then the variant
callers identify a very large number of false positives. On the other
hand, if the majority of the discordant variants are true variants,
then that indicates many non-variants (false-negative variants)
are being accepted by the various callers. Both scenarios would
have important implications in a WGS bioinformatics pipeline
aiming to identify disease-causing mutations in mtDNA.

We extended our study to include currently available
mitochondrial resources, which might form part of a
mitochondrial variant identification pipeline. The CHD trio
variants were broken down into rare (≤1%) and common variants
(>1%) based on the mitochondrial variant population frequency
database, helixMTdb (Bolze et al., 2020) (Table 4). There was a high
number of rare variants identified, especially for heteroplasmic
variants, for all mtDNA callers. The high mutational rate of
mtDNA could be creating many de novo variants that are not in
HelixMTdb, thereby causing these variants to be flagged as “rare”
(Kogelnik et al., 1998; Just et al., 2015; Stewart and Chinnery 2015).
The CHD trio dataset is mostly of European descent; therefore, we
did not expect any population-specific differences.

A variant identification pipeline could include resources to
determine if a variant is pathogenic or not.We annotated both the
HelixMTdb rare and common variants using the pathogenicity
annotation datasets MitImpact (Castellana et al., 2015), MitoTIP
(Sonney et al., 2017), and MITOMAP (Kogelnik et al., 1998). Of
the three, MitImpact provided the most pathogenic annotations
to variants, since it is a database that contains a prediction for
every possible nucleotide change within the 13 gene-coding
regions of mtDNA. Both MitoTIP and MITOMAP use known
clinical history of existing variants, so this may account for the
fewer predictions made by them, compared to MitImpact. A
pathogenic annotation from MitoTIP and MITOMAP should be
considered more impactful than from MitImpact, as they are
supported by functional and clinical evidence.

Manymethods have been used to detect heteroplasmy inmtDNA
that aim to identify variants with low levels of VAF such as LoFreq
(Wilm et al., 2012), Mutect2 (Benjamin et al., 2019), and Varscan2
(Koboldt et al., 2012). However, our analysis has focused on callers
that aim to be mtDNA specific, especially since such methods could
call both homoplasmic and heteroplasmic variants. Other methods
were considered that are mtDNA specific such as Mit-o-matic
(Vellarikkal et al., 2015), MitoRS (Marquis et al., 2017), and

mitoSuite (Ishiya and Ueda, 2017). We selected methods for
evaluation that were publicly available, with a command-line
interface and that generate output easily accessible by an NGS
pipeline. Finally, we did not include in our comparisons
NOVOPlasty (Dierckxsens et al., 2020), which is a de novo
assembly algorithm and heteroplasmy variant caller that has
recently been used more widely.

Our study is one of the first to systematically evaluate mtDNA
variant calling algorithms for both heteroplasmy and homoplasmy
detection on WGS data. Previous work by Fazzini et al. (2021) has
evaluated variant callers that are not mtDNA specific, for
heteroplasmy detection only, using only a synthetic dataset and
using only a very low heteroplasmy threshold. Other previous
work has evaluated ways to analyze the mitochondrial genome
using PCR-based enrichment approaches coupled with massively
parallel sequencing showing that heteroplasmy detection lower than
15%was possible (Cui et al., 2013) and that high diagnostic sensitivity
of mitochondrial diseases can be achieved (Zhang et al., 2012).
Although prior to sequencing, other methods existed to test
mtDNA (Venegas and Halberg 2012), the consensus
recommendation provided by Mitochondrial Medicine Society is
to perform massively parallel sequencing or next generation
sequencing of the mtDNA genome and should be performed in
cases of suspected mitochondrial disease instead of testing for a
limited number of pathogenic point mutations (Parikh et al., 2015).
Studies have also evaluated the effect of the capture of recurring
translocations of mitochondrial DNA to the nuclear genome, known
as nuclear mitochondrial sequences (NUMTs) in the analysis of
sequencing mtDNA data (Maude et al., 2019; Santibanez-Koref et al.,
2019). More recently, studies have provided recommendation in the
interpretation (Wong et al., 2020) and prioritization (Bris et al., 2018)
of variants detected fromNGS. Taken together, our work can provide
useful recommendations for mtDNA variant calling fromWGS data,
a necessary step prior to prioritization and interpretation of variants.

5 LIMITATIONS OF OUR STUDY

A limitation of this study is that the accuracy of each
mitochondrial variant caller was to be determined by a small
synthetic benchmark mtDNA dataset and using the maternal
percentage of homoplasmic variant calls in WGS trios. This
measure was used since the true mtDNA variation of the
CHD trio data set is not known. Since heteroplasmic variants
can occur during lifetime, this measure of matrilineal inheritance
is not ideal. It is important for mtDNA variant callers to be
accurate not only with homoplasmic calls but also with
heteroplasmic ones. With mitochondrial heteroplasmic
variants having great variability in VAF levels, which can be
as low as 1% or lower in an individual, the calling of
heteroplasmic variants is very difficult. Thus, the accuracy of a
mitochondrial variant caller in determining heteroplasmic
variants is of vital importance. Truly determining
heteroplasmic calling accuracy would require greater
refinement in heteroplasmy genotyping, especially at low VAFs.

To improve the overall ability to assess mitochondrial variant
callers, a large gold-standard mtDNA variant dataset of real
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human WGS data is still needed that would incorporate both
homoplasmic and heteroplasmic variants, at various levels
of VAF.

6 CONCLUSION

We have shown that while homoplasmic variant calling from
WGS data seems to be consistent between the majority of callers,
there remains a significant discrepancy in the calling of
heteroplasmic variants. Mutserve showed the best accuracy
using a publicly available synthetic benchmark dataset. While
GATK Haplotypecaller performed well as a stand-in, it does not
have the sensitivity to call the low-level heteroplasmic variants,
which the specialized mtDNA variant callers are built for. Since
GATK Haplotypecaller is commonly used for WGS analysis, it
can be used to detect homoplastic variants without the need for a
specialized mtDNA variant caller. However, if heteroplasmy
detection is needed, Mutserve showed that it can detect both
types of variation with highest accuracy at low levels of
heteroplasmy (1%) while maintaining expected levels of
matrilinear inheritance. For heteroplasmic variants, we believe
that any caller’s result should be treated with scrutiny. To address
mtDNA variant annotation, population frequency databases and
pathogenicity prediction resources are available now but still need
greater development, such as with greater sample numbers, or
annotation breakdown by heteroplasmic level, and clinical proof
of pathogenicity. We see the study of the mitochondrial genome
from WGS data as a developing area of research, with its own
peculiarities that do not fit into the same variant discovery
pipeline as autosomal variants. The present study provides
useful information for building a mtDNA variant pipeline by
providing selection metrics for mtDNA variant callers and
criteria for the selection of population frequency and
pathogenicity annotation datasets. We advocate that caution
should be taken when analyzing mitochondrial DNA from
WGS data especially when interrogating heteroplasmy at low
levels.
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