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Background: RNA modification plays an important role in many diseases. A
comprehensive study of tumor microenvironment (TME) characteristics mediated by
RNA modification regulators will improve the understanding of TME immune regulation.

Methods: We selected 26 RNA modification “writers” of lung adenocarcinoma (LUAD)
samples and performed unsupervised clustering analysis to explore RNA modification
patterns in LUAD. Differentially expressed genes (DEGs) with RNA modification patterns
were screened to develop a “writers” of RNA modification score (WM score) system. The
infiltration ratio of TME cell subsets was analyzed by CIBERSORT.

Results: We identified two RNA modification modes showing different characteristics of
overall survival (OS) and TME cell infiltration. According to WM score, LUAD patients were
divided into a high-WM score group and a low-WM score group. High-scored patients had
a poor prognosis and higher tumor mutation burden (TMB), they were more sensitive to
four LUAD therapies (erlotinib, XA V939, gefitinib, and KU-55933) and more clinically
responsive to PD-L1 treatment. Those with a low WM score showed higher stromal
scores, ESTIMATE scores, and survival chance.

Conclusion: Our work revealed the potential role of RNA modification patterns in TME,
genetic variation, targeted inhibitor therapy, and immunotherapy. Identifying RNA
modification pattern of LUAD patients help understand the characteristics of TME and
may promote the development of immunotherapy strategies.
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INTRODUCTION

The mortality of lung cancer far exceeds that resulting from breast
cancer, pancreatic cancer, colon cancer, and prostate cancer
(Siegel et al, 2018). Lung adenocarcinoma (LUAD) as a
subtype of lung cancer evolves from mucous glands, and is
found in many areas with scars or chronic inflammation
(Myers and Wallen, 2021). Chronic dry cough, dyspnea,
hemoptysis, and weight loss are main manifestations of LUAD
(Mullangi and Lekkala, 2021). LUAD accounts for almost half of
all lung cancer deaths, with a 5-year survival rate as low as 15%
(Kara et al., 2021; Spella and Stathopoulos, 2021). A large
proportion of LUAD patients have already developed
metastasis by the time of diagnosis (Siegel et al., 2021), but
available treatments for those patients are limited and often
challenging.

Cancer development may be driven by genetic and epigenetic
aberrations and complex crosstalk between different pathways
(Spella and Stathopoulos, 2021). RNA-modification and enzymes
that catalyze RNA modification (including writers, erasers, and
readers) contribute to precursor mRNA splicing, nuclear output,
transcriptional stability, and translation initiation of eukaryotic
cells (Shi et al, 2020). Several types of RNA modifications
affecting the processing and function of different RNA types

have been reported, for example, methylation (N’-
methylguanosine  [m’G], N6-methyl-2’-O-methyladenosine
[m°Am], 2'-O-m ethylation [Nm], N6-methyladenosine

[m°A], N1-methyladenosine [m'A], 5-methylcytosine [m°C]
and 5-hydroxymethylcytosine [hm’C]), and RNA editing
[adenosine-to-inosine  (A-to-I), pseudo-uridine(¥)] (Lobo
et al., 2018). Among a wide range of RNA modifications, on
adenine, including m®A, m1A, alternative polyadenylation (APA)
(Soles and Shi, 2021), and A-to-1, is the most common, and they
are mainly regulated by RNA modified “writers” (Muthusamy,
2020). Among them, M®A modification, which is the most
common modification in transcripts in the common sequence
RRm°ACH (Zhao et al, 2017), refers to the methylation of
adenosine base at the nitrogen-6 position. M'A adds a methyl
and a positive charge to adenosine N1 to block the Watson-Crick
interface, which will change the secondary structure of RNA and
protein-RNA interaction (Xie et al., 2020). APA is an mRNA-
related process that produces multiple transcriptional subtypes
through selecting alternate (proximal or distal) polyadenylation
signals on the 3’-UTR of pre-mRNAs and even proteomic
diversity (Akman and Erson-Bensan, 2014). A-to-I editing
consists of the irreversible conversion of adenosine to inosine
catalyzed by adenosine deaminase acting on RNA (ADAR)
enzymes (Marceca et al, 2021). These RNA modification
patterns participate in various physiological processes and play
important regulatory roles in diseases including cancers,
neurologic and metabolic diseases (Wilkinson et al., 2021).
This study examines the patterns of RNA modification
integrating clinicopathological information and genomic data
from 739 LUAD samples. The relationship between RNA
modification patterns, genetic mutation, and the characteristics
of TME cell infiltration was also analyzed. Moreover, we
developed a scoring system to quantify the RNA modification
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of individual LUAD samples for predicting clinical responses of
LUAD patients to chemotherapy and immunotherapy.

MATERIALS AND METHODS

Data Acquisition and Collation

The expression data and clinical data of LUAD patients in the
GSE31210 cohort and GSE72094 cohort were obtained from the
GEO database. Expression data (mRNA expression, miRNA
expression), genomic mutation data (somatic mutation,
somatic copy number change (SCNA), and clinical
information (tumor stage, histological subtype, sex, and total
survival time) of 513 patients with LUAD were downloaded from
TCGA database (https://portal.gdc.cancer.gov/) on 18 May 2021.

Consensus Clustering for 26 RNA

Modification “Writers”

A total of 26 RNA modification “writers”, including 7 m°A
modification enzymes (METTL3, METTL14, WTAP, RBM15,
RBM15B, ZC3H13, and KIAA1429), 4 m'A modification
enzymes (TRMT61A, TRMT61B, TRMT10C, and TRMTS), 12
APA modification enzymes (CPSF1-4, CSTF1/2/3, PCF11, CFJ,
CLP1, NUDT21, and PABPN1) and 3 A-I modification enzymes
(ADAR, ADARBI, and ADARB2), were obtained from
previously published studies. ConsensusClusterPlus (maxK =
10, reps = 10, pItem = 0.8, pFeature = 1, clusterAlg = “hc”
innerLinkage = “average”, finalLinkage = “average”, distance =
“pearson”) (Wilkerson and Hayes, 2010) was employed in
unsupervised clustering analysis on the RNA modification
“writers” of the samples in GSE31210 cohort.

Gene Set Variation Analysis and Functional

Annotation

GSVA enrichment analysis was performed in R package “GSVA”
(method = ssgsea, kedf = Gaussian) (Hanzelmann et al., 2013) to
analyze the biological processes in which different RNA
modification “writers” were enriched. Adjusted P by Benjamini
and Hochberg with a value less than 0.001 was considered to be
statistically significant. The hallmark gene set was downloaded
from the MSigDB database (Liberzon et al.,, 2015). Functional
annotation of 26 RNA modification “writers” was performed
using clusterProfiler (minGSSize = 10, maxGSSize = 500,
qvalueCutoff = 0.2) (Yu et al, 2012), false discovery rate
(FDR) was adjusted by Benjamini and Hochberg, and the
cutoff value of FDR <0.05 was set.

Immune Cell Abundance Estimation by

CIBERSORT

CIBERSORT (Newman et al., 2015) was employed to predict the
immune score of 22 kinds of immune cells in a LUAD
microenvironment with support vector regression (SVR). In
here, deconvo_cibersort function of R software package
“IOBR” (perm = 1,000, abs_method = “sig.score”) was
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conducted for above analysis. This is a machine learning
approach that improves deconvolution performance through a
combination of feature selection and robust mathematical
optimization techniques (Chen et al., 2018).

Construction of the “Writer” of RNA

Modification Score

To develop a WM scoring system, differentially expressed genes
(DEGs) among different RNA modification patterns using a
linear model with the limma package (the significance criteria
for determining DEGs was set to FDR <0.01 and log fold-change
>1.0), and those related to LUAD survival were identified by
univariate COX regression analysis. Functional enrichment
analysis of survival-related DEGs was carried out using the
clusterProfiler software package (the cutoff value of FDR
<0.05). The coefficients of each gene were determined by
univariate Cox regression analysis, and we developed a
formula for calculating WM score similar to a previous study
(Sotiriou et al., 2006) as follows:

WM score = Bi x Xi.

(i was the coefficients of each gene determined by univariate
Cox regression analysis, and Xi was the expression level of the
RNA modification phenotype-related genes.

Analysis of Post-Transcriptional Regulation

of WM Score

The WM score of each LUAD sample was calculated and the
critical score was determined according to surv_cutpoint
function of R software package “survminer” (minprop =
0.1). The LUAD patients were divided into high-WM score
group and low-WM score group. Differential miRNAs
between the two groups were obtained by differential
miRNA analysis, and their targets were predicted by
TargetScan  (http://www.targetscan.org/vert_72/). KEGG
was used to analyze the signal pathway in which the
differential miRNA target genes were enriched. The
calculation was conducted with the clusterProfiler package,
and statistical significance was set at 0.05.

Correlation Analysis Between WM Score
and Chemotherapeutic or Immune
Checkpoint Blocking Therapy

Drug sensitivity data of about 1,000 cancer cell lines were
downloaded from Genomics of Drug Sensitivity in Cancer
(GDSC,  http://www.cancerrxgene.org). The R  package
pRRophetic (drug = erlotinib, tissueType = urogenital_system,
selection = 1, dataset = cgp 2016) was used to examine
chemotherapeutic response determined as the half-maximal
inhibitory concentration (ICsq) of each LUAD sample in the
GDSC website. The correlation between drug sensitivity and WM
score was analyzed by Spearman. Two immunotherapy cohorts
[IMvigor210 (Mariathasan et al., 2018) and GSE78220 cohort
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(Hugo et al., 2016)] were also included. The relationship between
WM score and patients’ response to immune checkpoint blocking
therapy was analyzed.

Statistical Analysis

All the statistical analyses of this study were conducted in R
program (version R3.6.2). One-way ANOVA and Kruskal-Wallis
tests were applied for comparing differences. The receiver
operating characteristic (ROC) curve was used to determine
the specificity and sensitivity of the WM score. In addition,
independent prognostic factors were screened by multivariate
Cox regression analysis. FDR was adjusted by Benjamini and
Hochberg to reduce te false-positive rate in multiple tests. All
statistical p values were two-sided. p < 0.05 indicated statistical
significance.

RESULTS

TME Characterization of LUAD and Genetic
and Expression Changes of RNA

Modification “Writers”

Considering the dual role of TME in regulating LUAD
development, we analyzed the TME characteristics between
normal tissues and LUAD tissues in TCGA. According to the
results of the ESTIMATE algorithm, the immune score,
stromal score, and ESTIMATE score of LUAD were
significantly lower than those of normal tissues
(Supplementary Figure S1). Then, we studied the somatic
mutation and copy number variations (CNV) of 26 RNA
modification “writers”. Mutations of RNA modification
“writers” were detected in 42 TCGA-LUAD samples.
Among all the mutant RNA modification “writers”, those
with the highest mutation frequency were ZC3H13 (17%),
KIAA1429 (13%), and PCF11 (11%), respectively
(Figure 1A). No significant statistical difference was found
in the overall survival (OS) of LUAD patients with or without
these RNA modification “writer” mutations, suggesting that
“writer” mutations may have a limited effect on the overall
survival of LUAD patients (Figure 1B). GSVA enrichment
analysis showed that the mutant “writers” were mainly
enriched in carcinogenic pathways such as MYC targets,
E2F targets, mTORC1 signaling, and G2M checkpoint,
indicating that the mutation of “writers” could affect the
regulation of multiple signals (Figure 1C). CNV analysis
showed that the amplification in copy number of ADAR
and CPSF1 was the most extensive, while RBMI15B,
ZC3H13, ADARB2, and TRMT61A showed great CNV
deletion, and no CNV occurred in KIAA1429 (Figure 1D).
Further study on the expression of RNA modification
“writers” between normal tissues and LUAD tissues
demonstrated that apart from RBMI15B and NUDT21,
there were significant differences in the expression of 24
RNA modification “writers” (Figure 1E). According to the
CNV value, the LUAD patients were divided into CNV
amplification group, CNV deletion group, and normal
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FIGURE 3 | Development and validation of RNA modification “writers” scores. (A): The heat map of DEGs. (B): WM score differences between different RNA
modification pattern clusters. (C): WM score differences between the two genomic subtypes. (D): In the GSE31210 cohort, OS differences between patients with high
WM scores and patients with low WM scores. (E): Time-dependent ROC curve of WM score in GSE31210 cohort. (F): In the GSE31210 cohort, Kaplan-Meier curves of
patients with high WM score and low WM score. (G): Time-dependent ROC curve of WM Score in TCGA-LUAD cohort. (H): Univariate Cox analysis to determine

the relationship between clinical variables and OS in patients with LUAD in the GSE31210 cohort. (I): Univariate Cox analysis predicted the correlation between
clinicopathological factors and prognosis of patients with LUAD in TCGA-LUAD data set. **p < 0.01; **p < 0.0001.

Hazard ratio

group. Figure 1F showed that the expression of RNA
modification “writers” in the CNV amplification group was
higher than that in the CNV deletion group.

Identification of Two Patterns of RNA
Modification “Writers” and Analysis of the

Characteristics of TME Cell Infiltration

Univariate Cox analysis on the samples from the GSE31210
dataset identified 9 RNA modification “writers” with
prognostic significance in LUAD (Figure 2A). The results
of pairwise correlation analysis showed a significant
correlation between most RNA modification “writers”
(Figure 2B), and their internal connections may have
critical functions in the RNA-modified tumor model.
According to the expression of RNA modification

“writers”, ConsensusClusterPlus was used to classify the
samples in the GSE31210 dataset, and two RNA
modification modes, cluster_1 (148 LUAD patients) and
cluster_2 (78 LUAD patients), were determined
(Figure 2C). From the survival analysis of two RNA
modification subtypes, we found that samples with the
cluster_2 RNA modification pattern showed better survival
results (Figure 2D). The biological pathways of the two
clusters were examined by GSVA enrichment analysis, and
the data revealed that cluster_1 was significantly enriched in
cell cycle, cell division, and metabolic pathways, while
cluster_2 was more associated with diseases such as heart
disease and diabetes (Figure 2E). Then we further analyzed
the correlation between RNA modification “writers” and
TME cells, and each RNA modification “writer” was found
to be related to different immune cells (Supplementary
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Figure S2). Additionally, differences in neutrophils,
eosinophils, resting mast cells, MO macrophages, Ml
macrophages, monocytes, gamma delta T cells, regulatory
T cells, activated memory CD4 T cells, memory B cells were
also found between the two RNA modification patterns. The
immune scores of neutrophils, M0 macrophages, M1l
macrophages, activated memory CD4 T cells, and memory
B cells were significantly higher in Cluster_1 than in
Cluster_2. However, the immune score of eosinophils,

resting mast cells, monocytes, gamma delta T cells, and
activated memory CD4 T cells was significantly lower than
in cluster_2 (Figure 2F).

Development and Validation of RNA

Modification “Writers” Scores
Although our study analyzed the role of RNA modification
patterns in tumor development and immune infiltration
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regulation, the results were based on patient group studies
and may not be able to accurately predict the pattern of RNA
modification “writers” in a single LUAD sample. Therefore,
we developed WM score, a scoring scheme for determining
the RNA modification pattern of a single LUAD sample.
Firstly, 269 differentially expressed genes (DEGs) related
to RNA phenotype were obtained through differential
analysis. According to the results of unsupervised cluster
analysis on the 269 DEGs, consistent with the cluster
grouping of RNA modification pattern, LUAD was divided
into two genomic subtypes (gene.cluster A and gene.cluster
B) (Figure 3A). From the two box diagrams of WM score
between different RNA modification pattern cluster and
genomic subtypes, it could be observed that the WM score
of cluster_1 was significantly higher than that of cluster_2,
and similarly the WM score of gene.cluster A was also
significantly higher than that of gene.cluster B (Figures
3B,C). More importantly, in the GSE31210 cohort, the
prognosis of patients with high WM scores was worse than
those with low scores (Figure 3D). The AUC of time-
dependent ROC curve of WM score in 1 year, 3 years, and
5years were all greater than 0.65 (Figure 3E). To further
verify the reliability of the WM score model, we used TCGA-
LUAD queues to determine the relationship between WM
score and patients’ OS. Consistent with the results of the
GSE31210 cohort analysis, the survival of patients in the
TCGA-LUAD cohort with high WM scores was significantly
lower than those with low WM scores (Figure 3F). The 1-
year, 3-year, and 5-year AUC of the time-dependent ROC
curve of WM score were 0.7, 0.65, and 0.64, respectively
(Figure 3G). We also introduced the WM score model into
the GSE72094 cohort to calculate the WM score of each
sample. In this cohort, the mortality rate of samples with
high WM scores increased significantly (Supplementary
Figure S3A), and the AUC of the 5-year OS was predicted
tobe as high as 0.81 (Supplementary Figure $3B). Univariate
Cox regression analysis on the GSE31210 and the TCGA-
LUAD cohorts demonstrated that WM score could
independently predict the prognosis of LUAD (Figure 3F).
These results indicated that the WM score can reflect the
RNA modification pattern of LUAD patients and effectively
predict the prognosis of LUAD.

The Relationship Between WM Score and

TME was Characterized

The proportion of 22 kinds of tumor-infiltrating immune
cells (TIIC) in LUAD tissue was evaluated to help
characterize the relationship between WM score and TME,
and we found that the proportion of gamma delta T cells was
the highest among 22 kinds of TIICs (Figure 4A). The
infiltration of immune cells with different WM scores in
the GSE31210 data set was studied. From Figure 4B and
Figure 4C, it could be observed that there was a significant
difference in the proportion of 14 kinds of TIICs (plasma
cells, CD8 T cells, resting CD4 memory T cells, activated
memory CD4 T cells, gamma delta T cells, resting NK cells,

RNA Modification Characterizes Tumor Microenvironment

activated NK cells, monocytes, MO macrophage, MI
macrophage, resting mast cells, activated mast cells,
eosinophils and neutrophils) between patients with high-
and low-WM score. From the heatmap of TIIC ratio, the
proportion of most TIIC between high-WM score and low-
TIIC was clearly different (Figure 4D). There was no
statistical difference in immune scores between patients
with two WM scores (Figure 4E). Significant differences
between high and low WM scores were identified, and
stromal score and ESTIMATE score were higher in
patients with low WM scores (Figures 4F,G). These results
indicated that high WM scores and low WM scores showed
different TME characteristics.

Clinical, Somatic Mutation, and
Post-Transcriptional Modification

Characteristics of WM Score

To study WM score in different clinical characteristics, LUAD
were grouped according to the clinical variables of the
GSE31210 and TCGA-LUAD datasets to analyze the WM
score differences in different LUAD subgroups. In AJCC
stage grouping, the WM score of stage II was significantly
higher than that of stage I (Figure 5A). Similarly, in TCGA-
LUAD datasets, the WM score of stage 11, stage III, or stage IV
was higher than that of stage I (Figure 5B). According to the
WM score analysis of T stage grouping, the WM score of T2 or
T3 was significantly better than that of T1 (Figure 5C). Patients
with the N1 or N2 stage showed a noticeably higher WM score
than those with the NO stage (Figure 5D). For M0 and M1, there
was no significant difference in WM score between the two
(Figure 5E).

The difference in TMB between high-WM score and low-
WM score patients in the TCGA-LUAD cohort was also
investigated. From the violin map in Figure 5F, it could be
observed that patients with high WM scores had higher TMB,
and there was a significant positive correlation between TMB
and WM score (Figure 5G). Furthermore, mutated gene
analysis was carried out on LUAD samples with high- and
low-WM scores. The results showed that TP53 (58%), TTN
(53%), and MUCI16 (46%) had higher somatic mutation rates in
the high-WM score group. In low-WM score group, the top
genes with the highest mutation frequency were KRAS (26%),
TTN (26%), and MUC16 (24%), showing that the high-WM
score group had more tumor mutation burden than the low-
WM score group (Figure 5H).

Normally, RNA modification “writers” selectively install
the code of the entire transcriptional group and set it as the
upstream of information processing (Wang and He, 2014).
Transcriptional — modifications  regulated by RNA
modification “writers” affect almost every step of RNA
metabolism, including mRNA processing, mRNA transfer
from nucleus to cytoplasm, mRNA translation, mRNA
decay, and biogenesis of microRNAs (miRNAs) (Dai et al,,
2018). Analysis of the differences of miRNAs between high-
and low-WM scores detected 25 differential miRNAs
(Supplementary Table S1). The relationship between
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miRNA-mRNA and the above 10 pathways between the two
WM score groups was shown. The difference between the
high-WM score and low-WM score target genes of miRNAs
was shown in Figure 5J. The results here suggested that the
WM score was related to molecular mutation, expression of
miRNAs, and the regulation of signal pathways.

WM Score Could Predict the Response of

Cell Line Drug Therapy and Immunotherapy
We also predicted the response of the two WM score groups
to conventional drug therapy. Based on Spearman correlation
analysis, a total of 19 of the responses to drugs were found to

be significantly linked with WM scores in GDSC, specifically,
there were 5 drug sensitivities related to the WM score, and
resistance to 14 drugs was associated with the WM score
(Figure 6A). Analysis of the signaling pathways of the genes
regulated by these drugs demonstrated that drug sensitivity
associated with the WM score mainly regulated EGFR
signaling pathway, and that drug resistance related to the
WM score mainly targeted the regulation of DNA replication,
cell cycle, mitosis, and other processes (Figure 6B). The drug
response was then evaluated based on the half-maximum
inhibitory concentration (ICs,) of each TCGA-LUAD sample
in the GDSC database. The estimated 1Cs, of the four tumor
inhibitors erlotinib, XAV939, gefitinib, and KU-55933
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showed significant differences between the high-WM score  to the stratification of patients based on clinical stage, there
group and the low-WM score group, and a lower ICs, value  was a significant difference in OS between patients with stage
was found in the high-WM score group, suggesting that the  I-II and 2 MW scores, which was similar to that of Figure 7A
samples with a high WM score were more sensitive to  (Figure 7B). However, for patients with stage III-1V, there was
chemotherapy (Figures 6C-F). The results validated that  no significant difference in OS between high and low WM
WM score was associated with drug sensitivity. scores (Figure 7C). Therefore, WM score may be more suitable

In recent years, a number of clinical studies have reported ~ for early clinical prediction of LUAD. Moreover, the
that immunotherapy such as immune checkpoint inhibitors  significant therapeutic effects and clinical response to PD-
(ICIs) is effective in cancer treatment (Zhu et al., 2020). We L1 treatment were confirmed in patients with high WM scores
also studied whether WM score can be applied to predict the  when compared to those with low WM scores (Figures 7D,E).
response of LUAD patients to ICIs. In the anti-PD-L1 cohort,  These results suggested that WM score was related to LUAD
patients with a high WM score tended to develop a better  patients’ response to immunotherapy and can be used to
prognosis than those with a low score (Figure 7A). According  predict the prognosis of LUAD.
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DISCUSSION

RNA modification induced by “writers” is the main contributor
to post-transcriptional regulation of gene expression, and can
occur in all RNA species, including messenger RNAs (mRNAs)
and noncoding RNAs (ncRNAs) (Destefanis et al., 2021). Some
of the known disorders of RNA modification and RNA
modification “writers” have been found to be associated with
various types of cancers, including breast cancer, bladder
cancer, and leukemia (Jonkhout et al., 2017). The present
research studied the genetic variation and expression changes
of four kinds of RNA modification “writers” in LUAD. Two
RNA modification patterns were determined based on 26
known RNA modification “writers”. Cluster_1 was
significantly enriched to the pathways related to cell cycle,
cell proliferation, and metabolism, and the abnormal activity
of these pathways will lead to tumorigenesis (DeBerardinis et al.,
2008; Kroemer and Pouyssegur, 2008; Eymin and Gazzeri, 2010;
Cantor and Sabatini, 2012; Currie et al., 2013). This also
supported the survival results that cluster_1 was worse than
cluster_2 (cluster_2 was associated with heart disease, diabetes,
and other diseases).

We have also developed a WM score to assess the RNA
modification pattern of a single LUAD sample. The WM score

showed a certain degree of independence and accuracy in
predicting LUAD prognosis. LUAD patients with high WM
scores tended to develop a poor prognosis and a higher
proportion of plasma cells, CD8 T cells, activated memory
CD4 T cells, resting NK cells, MO macrophage, Ml
macrophage, activated mast cells, neutrophils. Early studies
showed that activated memory CD4 T cells and MO
macrophages are significantly infiltrated in high-risk
LUAD (Mo et al, 2020). In addition, resting NK cells and
activated plasma cells were also reported to have higher rates
in high-risk non-small cell lung cancer (NSCLC) (Li et al,,
2020). The densities of tumor-associated neutrophils in
NSCLC were related to adverse prognostic factors (Carus
et al., 2013). These studies also support the results of our
analyses. For patients with low WM scores, the proportion of
resting CD4 memory T cells, gamma delta T cells, activated
NK cells, monocytes, resting mast cells and eosinophils were
higher, and they also had higher stromal score and
ESTIMATE score. These results validated that the WM
score was related to TME.

Genetically, LUAD is a highly heterogeneous malignancy.
Studies in the past few years have identified a large number of
somatic mutations in LUAD (Testa et al., 2018). Mutations in
TTN, TP53, and MUC16 are reported to be common in most
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types of cancer (Kim et al., 2013). Similarly, we found that
these three genes were frequently mutated in LUAD patients
with high WM scores, and that the TMB of high WM score
samples were also higher at the same time. Evidence
demonstrated that tumor genomic somatic mutations are
associated with immune checkpoint inhibitor (ICI)
treatment response (Samstein et al., 2019). We examined
the responses of different WM score patients to anti-PD-
L1 treatment and confirmed the significant therapeutic effects
of PD-L1 treatment and clinical response of patients with
high WM when compared to those with low WM scores. In
addition, the responses of different patients with WM score to
conventional drug therapy was explored, and the data
revealed that drug sensitivity related to the WM score
mainly involved the EGFR signaling pathway and that
drug resistance related to the WM score mainly targeted
the regulation of DNA replication, cell cycle, mitosis, and
so on. Patients with a high WM score were more sensitive to
four conventional treatments, namely erlotinib, XA V939,
gefitinib, and KU-55933. These results indicated that RNA
modification patterns could affect the therapeutic efficacy of
ICI and cell line drug therapy.

In summary, our study developed a WM score based on
differences in RNA modification patterns, and it can be used
to evaluate RNA modification patterns, TME cell infiltration
characteristics, clinical characteristics (AJCC stage, T stage,
and N stage), genetic variation, and the response of patients
with LUAD to ICI therapy. The current discoveries
demonstrated the great potential of RNA modification
patterns in predicting LUAD prognosis and in studying
cancer cells in the future.
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